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Abstract

Itis well known thatw (f, 1), <t o ~1(f', 1), <120’ ~2(f", 1), < -- - for functions f € W7,
1< p<oo. Forgeneral functiong € L ,,, itdoes not hold for 6< p < 1, and its inverse is not true for
anyp in general. It has been shown in the literature, however, that for certain classes of functions the
inverse is true, and the terms in the inequalities are all equivalent. Recently, Zhou and Zhou proved
the equivalence for polynomials wifh= oco. Using a technique by Ditzian, Hristov and Ivanov, we
give a simpler proof to their result and extend it to thg space for G< p < oo. We then show its
analogues for the Ditzian—Totik modulus of smoothne§$f, 1), and the weighted Ditzian—Totik

modulus of smoothness], (f, 1), , for polynomials withe (x) = v/1 — x2.
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1. Introduction

Throughout this paper we denote by (4, 5] the usual , norm (quasi-norm i < 1)
on the intervala, b] for 0 < p < oo, and the uniform norm fop = oco. If there is no
possibility of confusion, we will usé - ||, for || - [IL (1,1, and]| - || for || - [IL (-1, 13- We
define the symmetric difference operator by

An(f.x) = f (x + g) s (x - %)

andAj, by
_ - r rh
W00 = ARy = Y00 (1) f (x +5 - kh) . (1.2)
k=0
Similarly we define the forward difference operator by
r d r
Ky(fox) = D=1 (1) fr+kh) (12)
k=0
and the backward difference operator by
<—r L - _nk r _
Ky(fox) = YD () fx = k. (13)
k=0
Foranyf €L ,[a, b] and:r >0, let
s r =<
o (f,0)p = sup A, fIL lat+rn/2.b-rnj21 = SUP [ A, fIIL la, b—ri]
<h<t <h<t
= sup A, FIILatrn by
0<h<t

be the usualth modulus of smoothness Hiwith w°( £, 1) understood a$ f|L (4. 5] We
will omit the subscripto in all moduli with p = oo, for examplew’ (-, ) := &" (-, *)so-

For 1<p<oo, if f € W’;[a, b], the Sobolev Space of functiofi®n [a, b] such that
%=V is absolutely continuous and®’ € L ,[a, b], it is well known that

tha k(O 1, >k,

- 14
CIFON e, T <k (1.4)

o (f, D)<t Hf D, < < {
The inverse of 1.4) with any constants independentf@hndt is not true in general. One
counterexample for k p < ocois givenbyf(x) = (x +¢)1"7 on[0, 1] with 0 < e < 1.
It is readily to verify thatw"(f, 1), <C(r) for any 0 < £ <1, butllf(’)IILp[o, 1) — oo as
e — O forany/>1. Yu and Zhou [18] proved in 1994 part of the inverse in a special case
for splines, namely

u s u) <Cmya™ (s, u), (1.5)
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wheresis any spline of ordemn > 1 with equally spaced knots, ands the mesh size. Hu
and Yu[9] proved in 1995 that for such splinethe whole inverse of (1.4) holds true for
anyr >0 not exceeding, thus

o (s, 1)y ~ ro 7L, 1)y~ 20 2", Dp..., 0<r<u, 1<p<oo, (1.6)

with the equivalence constants depending only on max). A few years later, HY6]
generalized (1.6) to splines with any (fixed) knot sequence, and further to principal shift-
invariant spaces and wavelets under certain conditions. Equivalence (1.6) for splines has
played key roles in shape-preserving spline and polynomial approximation repeatedly, (see
[7,8,10,11]), which motivates us to investigate further along the line. In fact, we believe
similar results are valid for many classes of functions, univariate and multivariate.

It seems to us the whole topic of equivalence of moduli of smoothness, in the sense of
(1.6), has been overlooked to a great extent. The first primitive result (1.5) appeared in 1994,
many years after the theory of splines with fixed knots was established. The topic had not
been explicitly discussed until 1995 [9], to our best knowledge. Some authors were close,
sometimes extremely close, to results similar to (1.6), but failed to take the last step, or
simply failed to claim them. One good example is the following theorem:

Theorem 1. Letn>1,r >1and0 < p <oo. Then forT, € 7, the space of trigonometric
polynomials orf—=, n] of degree<n, we have

O (Ty ) ~t " T )y~ ~ TN e, O<t<nt (1.7)

where the equivalence constants depend only on rgard min(l, p).

For p = oo, the theorem follows, as pointed out by Zhou and Zfi4], from (1.4) and

r p T
) 1A%, Ta lIL oot~ 71 O<h< —,

”Tn(r)”Lgo[—n, n]< ( n

2sinnh

which has been known for long time (s|]). As for 0 < p < oo, Ditzian et al., showed
in the proof of Theorem 3.1 in [3] that for@ h<n~1

IALTlIL =7, 1 S CH I T, IL =7, (1.8a)

RN e < 27N AL T L (= 7 (1.8b)
where, and throughout the paper,

g :=min(p, 1). (1.9

The two inequalities immediately give' (7, 1), ~ t”||T,f’)||Lp[,n, a1, 0 < r<n~1, from
which the other cases of the theorem follow, (by replacify » — j and replacingl,
by 7,”).2

2 As one referee of this paper points out, the theorem also follows from Theorem [BLitsklf, rather than
from its proof, by a standard argument.
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Recently, Zhou and Zhoj19] proved the following analogue of (1.7) f@®,, the space
of algebraic polynomials of degre€n (in a slightly different form).

Theorem A. Let P, € P,[—1, 1],n > r >1.Then for any € [0, n—2
O (Po,t) ~ta "X Py~ ~ 1PV, 0<r<n?, (1.10)
with the equivalence constants depending only.on r

In 83 we will generalize (1.10) th ,, 0 < p<oo, and then prove similar results for
the Ditzian—Totik (DT) modulusy,, the DT main-part modulus, and for the weighted DT
modulus with a rather general weight functian A technique similar to that in [3] will
be used. The last section will be devoted to applications. But before all this, we need to
introduce in the following section some notation, preliminaries, and a few inequalities of
fundamental importance in algebraic polynomial approximation.

2. Notation and preliminaries

Throughout the paper the step-weight function is chosen as

o) :=+v1—x2 (2.1)

unless otherwise mentioned. The DT modulus of smoothhéseefined by

o (fi)p == sup AL FIL 1)
where
h h
Iy = {x e[-1, 1]: -1<x — r (/;(x) <x+ z (/;(x) <l}.

If we write 1., = [—-1+ h*2, 1 — h*2], then simple computation shows

2(11)2 rh rh
*2 — (—23 and — <h*<—.
1+ (%5)? 2 V2
Sometimes%(f, 1), can be too sensitive to the values of the function near the endpoints,
and its exact domait,, is difficult to calculate, thus the so-called main-part modulus of
smoothness

Q,(fi)p = sup A4y fllL,—142:22, 12202 (2.2)

0<h<t

3 The DT modulus of smoothness is define@hfor a class of step-weight functions not only fory/1 — x2.
Our results only involvey = /1 — x2.
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has been introduced. It is defined on a smaller domain but preserves most of the “essential
behavior’[5, §3.3]. If P, € P,, then by Taylor's Theorem

r o))
Aan<x>=Z(—1)"(,Z)ZP /2=y

j=0
)
_ij(x)hJZ( 1)k< )(F/Z k)/

Denotingg; (x) := x/, we have

0 if j—risoddorj <r,

Dk 2— k) = A} g;(0) =

Z( ) ( )(r/ 2 180 5’ " otherwise,
(J—r)'

where—r/2 < {; < r/2 depends only onandj. Combining all this we have

() K (r+2k)
Py (x) i P (x)
A = 2 ”—J“J’_E:”— r+2k 2k
Ath(x) = — (]—V)'h Cj —k . (2K)! h Cr42k» (23)
i< even -

wherek := | %5~ |. Replacingh by h¢(x) yields

K 2k p(r+2k)
) Px) TP, (X)) ok s
Aoy P (%) = kE_O 01 prre (2.4)

Note o' t% ¢ P, o if ris even, thus

AP 0, if ris even 2.5)
ho™n V1-=x2Q,_1 ifrisodd, '
whereQ,, € P, m = n — 1, n. Similar calculation shows
(r+k)
— P, (x)
Ky Py =Y "TW & O<Gpp<r (2.6)
k=0 )
SinceX;,f(x) = (—1)’Z)r_hf(x), we also have
n—r (r+k)
< P, ( )
A Py(x) = Z( DRtk o 0< < 2.7)

In both €.6) and (2.7){, ., depends only onandk.
We will extend our results to the weighted DT modulus of smoothness.
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Definition 1 (Ditzian and Toti5, Chapter 8). A positive weight functiorw on (-1, 1)
is of class/} if

(@) wx) = w_(vV1+x) wi(¥1—x);

(b) wi(y) = y"1vp(y), w-(y) = y2v_(y), wherey; > —2/p andvy ~ 1 on every
interval[8, /2], 6 > O;

(c) for everye > 0, y®v.(y) are increasing and “v.(y) are decreasing it0, (¢)) for
somed(s) > 0; and

(d) for p = oo we may have; = 0 ory, = 0 in which case_(y) or v, (y) have to be
nondecreasing for small

One can see from the definition tha‘;f contains the Jacobi weight&(x) =
(14 x)1(1—x)"2,y; > =1/pfor 0 < p < oo, andy;, >0 for p = oo; in particular,
it contains the constant functian(x) = 1. Also, if wisin J,,or is a Jacobi weight, then so
iswe/ for any j >0. The weighted. , norm (or quasi-norm) with weight function € J,
is defined by

I f lwL = lwfll,o)-

We will shorten|| flu,L ,(-1,1] tO [ fllw,p- The weighted DT modulus of smoothness is
defined by

(i Dw,p = oup lwAL g FIIL 112202, 12202
X \l

—r
+ osup wAyflle, -1, 11222
0<h <222

<~
+ sup ||w A hf”Lp[l—Zrztz, 1] (28)
0<h<2r22
wherew is a Jacobi weight with; > 0. The weighted DT modulus can be defined for alarger
class of weightsv, but one has to be careful. For some weight functionthe differences

WAy, f wX:lf or wX; may not be inL , even ifwf is, (see the first half of §6.1 of
[5]). The weighted DT modulus can be defined for all weights L , for polynomials
though, since polynomials are bounded on any finite interval. Fowaay/, the weighted
main-part modulus of smoothness is defined by

Q:D(f’ t)w,p = fgg ||UJAZ¢f||Lp[7l+2r2h2)172r2h2]. (29)

NSt

We will prove our results on weighted DT moduli only for Weightsfg]if 1< p<oo,and
for Jacobi weights witly; > —1/p if 0 < p < 1. The reason for this is we only have
Bernstein and Remez inequalities for these weights, see the conditica2bhdnd (2.22)
later in this section.

Itis well known that|| - [|L 4, 5] iS NOt @ norm but a quasi-norm for0 p < 1, that is,
in place of the triangular inequality, we only have

IIf =+ gllfl,la,b& IIfII'L’p[a,b] + IIgIpr[a,b]-
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Properties and inequalities depending on the triangular inequality need to be re-proved for
0 < p < 1, which often is more difficult, and some of them simply do not hold anymore.
For example, 1.4) is not true folp < 1 in general [14, Chapter 7]. We collect below some
properties of moduli that are also true foOp < 1 and/or for the DT moduli, the reader

is referred to [2, §12.5; 3,5], for references.

o (f,)p <" (f, ) p SC (f, 1), (2.10)
Wl (f. 1) p S0l (f. A1) p SCwiy (£, 1) p, (2.11)
(LD <CIlfllp, (2.12)
o (f + g D)<’ (f. 0)f + o' (g. 15, (2.13)

where 0< p<oo, 2 > 1,4 = min(, p), andC is a constant depending only ong, and
also on/ if applicable. The triangular inequalit@(13) also holds itv" is replaced by,
or QZ, and/or a weightv is added. For X p<oco and/ > 1 we have

Q, (f, D, p QG (S, )w, p SCTATQG(f, D, ps - w € T, (2.14)
QL (f D p <CIWS I (14222, 1-222, W € T, (2.15)
@6 (f Dw,p S04, (f, 2w, p SCTAT 0 (f, Dw, ps

w is a Jacobi weight with; >0, (2.16)

where C depends onm and the weightw. These inequalities can be deduced from their
equivalence to the respectiefunctionals[5, Chapters 8 and 6], namely

Q:D(f, t)w,p ~ ]Cr,go(fv tr)w,p
= Ssup inf{||w(f—g)|||_p[,l+2r2h2’ 1-2r242)

O0<h<t 8
0w gV —1az2n2, 12202 : €70 € ACI=1+ 2r%h%, 1 — 2r%h?))
(2.17)
and
(Ufp(f» t)w,p ~ Kr,(p(f» tr)w,p
=inf{lw(f — ), +1 we g, : g € ACcl—1. 11} (2.18)

Several types of inequalities are of fundamental importance in polynomial approximation,
namely Bernstein-, Markov- and Remez-type inequalities. The Bernstein inequality for
algebraic polynomials takes the form

loPollp<nllPullp, Pan€Pu, 0<p<oo.
Markov's inequality (se¢l, Theorem A.4.14] for a more general version) has the form

1PN, <Cr?|Pyll,, 0< p<oo, (2.19)
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whereC can be written ag1+1/? with A an absolute constant. The Remez inequality, (see
[15] for p = co and [1] for 0< p < o0), is given in the following lemma:

Lemma B. For any P, € P,, any measurabled C [—1, 1] with a Lebesgue measure
2 — an—2 for somed<a <n?/2,and0 < p<oo we have

”Pn”ng”Pn”L,,(A)» (2.20)

where C depends on a agd= min(1, p).

We will also need weighted Bernstein- and Remez-type inequalities. The Bernstein
inequality we will need is

”onPy;”pgcn”wprl”p, Py, € Py, (221)

whereC depends o andg (againg = min(1, p) throughout the papery € J, if p>1
([5, Theorem 8.4.7]), and is any Jacobi weight with; > —1/p if0 < p < 1, (a special
case of Nevai [13, Theorem 5] in which one chooses the humber of Médes2 and
the exponents’y = I'; = 0). We remind the reader that Jacobi weights belongtof

y; > —1/p for 0 < p < o0, andy; >0 for p = co. The weighted Remez inequality we
will need is

lwPpllp <C”wpn”Lp[—1+,m*2, 1—an—2] n? > az0, P, € Py. (2.22)

whereC depends om, a andg, w € J;7 if p>1[5, Theorem 8.4.8], and is any Jacobi
weight withy; > —1/pif0 < p < 1, which was proved by Nevai [12, Chapter 6, Theorem
14]for 0 < p < oo in a different form.

One key step in dealing withy, is to estimate|w of Pn(k) | with k being as large as.
We could use (2.21) witlvp*~1 as the weight, but this way the const&hivould depend
on k thus also om, which is unacceptable. For this reason, we need the following two
special versions of (2.21), whose constant is independdaiodin. One of them is for the
non-weighted¢ = 1) DT modulus [4, 2.3]:

lo* Pyl , <Crk |9 2Pyl 0 < p<oo, 1<k<n, (2.23)
whereC depends only oq. The other one is for the weighted DT modulus:
lwe" Pyl <Crk |we* Pyll,,  0< p<oo, 1<k<n, (2.24)

wherew € J; for p>1, and is any Jacobi weight with > —1/p for0 < p < 1, andC
depends omw andg. This can be proved in a way almost identical to that228), see [4].
The proof will use (2.21) withw replaced bywe*—2l%/21-1 and (2.22) withw replaced
by we*—2l%/2] Note thatk — 2|k/2] equals either 0 or 1. This is why the constéhis
independent ok.

Remark. Itis because of the presence@in Bernstein inequalities that our results on the
DT and weighted DT moduli are only proved forx) = +/1 — x2.
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3. Main results

Using a technique adopted frdBl, we first generalize the result of Zhou and Zhou [19]
to theL , space. Recall from (1.9) that= min(p, 1) throughout this paper.

Theorem 2. LetP, € P,[—1, 1],n>1,r >1and0 < p<oo. Then

W (Pu, 1)y ~ 10 " YPL )y ~ -~ 1| PO, 0<1<n2, (3.1)
where the equivalence constants depend only on r and g
Proof. In view of (2.10) we can assume<(h <1<t := 1/(ACorn?), whereCy is the

; e ; ; 1 1

constant in Markov’s inequality (2.19), ard> 1 is chosen sq that;2 T < 5. Itsuf-
fices to shown” (P, 1), ~ | P |, only, sincer/ oI eY, Dp ~ | P |, follows
from this by replacing by r — j and replacing?, by Pn(”. Using (2.6) and (2.19) we obtain

ot —or e\
A, P! <A, Pl <hd” E R T
” h n|||_p[_1, 1—rh] ” h n”p pard AkC’gnZkk!

= 34
qr p) 4 )4
<RI (1+;<Akk!)q)< 5 12715
This showsw' (P, ), < (%)1/‘1tr||P,§r)||p. Similarly, by (2.20) and (2.19)

o o SR,
n

CUNR PllY 111y = WK Pally =1 I PO, =197 YT
k=1 0 :

o

1 "
) W) > IR,

> 97| PO, (1 -
k=1

—>r
thusCo’ (Py. 1)y 2 CII K, PallL -1, 1 21 1PNl O

Ditzian et al. showed in the proof of [3, Lemma 5.4] these two inequalities:
I, PallL (1,0 SCHl@" P, (3.2a)
W o" BNy S CUAG o PallL ) (3.2b)

which imply part of the following theorem, namei;@,(f, Hp ~t"| Prf” ll 1 p- We will still

give a proof, somewhat simpler and more straightforward, to this part for completeness,
and also because we will need to modify it for other parts of the theorem. We point out that
inequalities in both directions are needed to establish the equivalence, since pyeh, if

the equivalent of1.4)

Wl (f 0)p <Ctaly H(f gy

is not known in general for the step-weightx) = +/1 — x2 we use in this paper, although
it is known for some other step-weight functiopgsee[5, Corollary 6.3.3]).
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Theorem 3. Letr >1,n>1, 0<s<n 'and0 < p<oc. Then for anyP, € P,

Wl (Py. 1) p ~ 1l (Py. 1) p ~ 120, (P

o D2y~ ~ IR N grp. (3.3)

with the equivalence constants depending only onr and q

Proof. In view of (2.11) and (2.16) we can assumeg <1 := m'n(Acern’ m)

where( is the constant in (2.23), andl = 3%/%7 (so that} ", —& 7 = 1/2). We first
provew,(Pn, t)p ~ t’||<p’P,f’)||p. Using (2.23) and recalling ;| < r/2in (2.3) and (2.4),
we have for any & h <t <1

+k
o kRO, Iy lp

k!

r+k—1pn(r+k—1)”p pk=1 V|5r+k|k_l
k! AC1rn 2
_ k-1 _ _
[ e PN Gy OV e T L
(k —1)!A 2kr
k-1
”(pr-l—k 1P(r+ )”[7 k 1|é
(k — 1A r
" P,
Ak ’
where we have used the factid+ 1/r <2 orr + k<2rk forr, k >1. Now by (2.4)

K ||¢r+2kPrSr+2k)||p " " q
1Ahg Palll 1,y < 1144 Pn||‘,€<h”fz 2 n . WK o

1€ xlF < Can(r + k)

|k—1<...

X

~

(2K)!

3"
<Hlg" PG (1+ 2 Aqu) —5 o P71 (3:4)
k=1

Therefore
Wiy (Pa, 1)y <3721 19" PO . (3.5)

On the other hand, because @t%) we can apply to&z,an either (2.20), or (2.22) with
w = ¢, and obtain

K
1
CUNA G Palll 1) = 183 Pally =17 110" PG ( Z A—)

h'd
> —-lo" P71,

Therefore

||<p PO, (3.6)

CwZD(an t)p>c||A;¢Pi1||Lp(1,,)/ 21/‘1

hencew!, (Pu. 1)y ~ " ll0" Py llp = "1 Pl g
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We now show/ o, / (P,” ~ 1" | Pl o for 1< j < r. Replacing in 2.4)r by

Dol
r — j andP, by P\’ (whose degree is — j), and multiplying both sides by o(x)/ give

2k p(r+2k)
)H_ Pr (x) 2/{5

) i 9

t/(p(x)/Ah(p(x)

wherek = | =200 | — | 2or | By almost the same arguments as those use8l@) (

i r—JjpU) j r=j p(j)
Ctlawgy ' (Py Deip = ct’ O<Sggt||(p]A P, |||_],[—1+2(,_j)2h2’ 1-2(r— j)2h?]

Zl/q S

For the inequality in the other direction, we estimate separately the three terms in (2.8), the
definition of the weighted DT modulus. For the first term, it is similar to (3.4) and (3.5):

thSUD o’ A JPJ L1 20— 22, 12— ey < G/ o B .
<h<t

For the second term in the definition, we replac&i®)r by r — j and P, by P,f-’), multiply
both sides by’ ¢(x)/ and obtain

— k

o Ry PP () = tinr (x)f'ni—P"(rH(x)hk

® h n = ® ! Cr—j+k»
k=0

where O< &,_j,x < r — j. Because the supremum in this term is taken oveh alich
that 0<h <2(r — j)?t2, thus 0 < h<1/(2AC1r°n?). By the fact that 1n < ¢(x) for
x €[-14+n"2 1—n"2],and by .22) and (2.23)
i e )y
t/q”(/’j A P ”L [ 1, 1+2(r ])2 2]
(PJ Pn(r+k) hk
DA

k=0

q
<C1t &=

Lpl—1, —14+2(r— )22
n—r (Pj P(r+k) 4

n k
k! h ér Jj+k

citrd
= nr—igq

k=0 Lp[—1+n=2,1-n"2]
q
P [_1+n_23 l_n_z]

(2AC1rn?)kk!

+k
TP

| e
<cuny

- [ k p(r+k)
<Cit74 Zr ”(pr+ Pnr |||_p[,1+n—2’ 1-n—2]
= (2AC1rn)kk!

o0
1
<CU " PV Y 7 <CU gl PG,
k=0
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Taking the supremum of the left side of this gives
. ,_)rfj .
tosup e Ry PN 120 e <CE " PO .
0<h <2(r—j)212
The proof of

; i<—r—] i .
t! sup o) Ay, Prfj)||Ll,[172(r7j)212, y<Ct'llo" PO,
0<h <2(r—j)%2

is almost identical. Now we have showfw:,,_j(P,,(j), Dpip ~ 119" P,f")||p, 0<j < r,
and finished the proof of the theorem(

We observe that arguments almost identical to those in the second part of the above proof
(with (2.23) replaced by (2.24)) will show

oty (P iy ~ 1P wgrp, 0 <1,

that is,

Theorem 4. Letr>1,n>1, 0<t<(Mn)~' and0 < p<ooc, and letw be in 7% if p>1
and be a Jacobi weight with} > — 1/p if 0 < p < 1,then for anyP, € P,

-1 2 r—2
wfp(Pn»t)w,p Ntw:p (P,;st)w(p,p ~1 wfp (P,;/J)wq)%p

~ e~ P g s 3.7

where M and the equivalence constants depending grand the weight. If p>1 and
w is a Jacobi weight witly; >0, then one can tak#/ = 1.

Remark. The reason for the constakt in the theorem is that2(16) is only known for
p =1 and Jacobi weights witp) > 0. Similarly, the reason for the constavitin Theorem 5
below is the restrictiop > 1 on inequality (2.14).

The theorem is also valid if the weighted modLﬂm{§(P,,, Hu, p is replaced by the main-
part modulusQZ,(P,,, Hu,p defined by (2.9), as stated below. We leave the proof to the
reader.

Theorem 5. Letr >1,n>1, 0<r<(Mn)~! and0 < p<oo, and letw be in Jyifp=1
and be a Jacobi weight withy > —1/p if 0 < p < 1, then for anyP, € P,
QL (Pu. Dup ~ 19 (P Dwgp ~ 12 2(P) . 1) 02,
N"'Ntr||PyEr)||w(p';p» (3-8)

where M and the equivalence constants depending grand the weight w. Ip >1 then
one can take\l = 1.

The following corollary says the main-part moduli are also equivalent to the “whole”
moduli w}, for polynomials.
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Corollary 6. Under the conditions of Theorefwe have
pr(ant)w,p '\’(UZD(Pn’t)w,pa Oglg(Mi’l)_l. (39)
In particular, if w(x) = 1, we have

QL (Pa.1)p ~ y(Pa.1)p,  O<t<(Mn)™h. (3.10)

4. Asymptotic behavior of best approximating polynomials

In this section, we give two examples to show the usefulness of the equivalence in
applications. In the first exampl&,* denotes a best approximationfia L , from P, and
E,(f)p = Ilf — Pfll,. Section 7.3 of5] is devoted to asymptotic behavior of derivatives
of best approximating polynomials. The final result of the section is

Theorem C. For 0 < «<r and1< p<oo, ¢ |, = O(n" %) and o, (f.n™1), =
O((n~*) are equivalent

As an application, we prove the following generalization of Theo@&mwhich is more
balanced and easier to prove, and holds fer p < 1 as well.

Theorem 7. For0 < a<rand0 < p<oo,wl, (P, n~ 1), = O(~*) andw,(f,n" 1), =
O(n~%) are equivalentwhere the equivalence constants depend on r@admin(l, p),
and also onx if « is close to zero

This theorem is a direct consequence of the next lemma, which is a modification (and
an extension to 0< p <oo) of Theorems 7.3.1 and 7.3.2 [§]. We changed the formu-

lation of Theorem 7.3.2, but merely replaced’ | ¢" P;"||,, by o, (PF,n~Y), in The-
orem 7.3.1, which sayse” P;"||, <Cn” o, (f,n1) . Without usinga, (P, n~1t), ~
n~" ¢ P, its proof is much more than trivial.

Lemma 8. For0 < p<oo

e PrO, ~ wfp(P,;",n_l)p<wa/,(f,n_l)p, (4.1)
1/q
@y (f, r>p<c[2ww( e 20 14 . 0<i<l n=[1, (4.2)
k=1

where C depends only onr and q

Proof. (4.1) follows from a standard argument:
Wl (f = Pr,n ™, <CIf = Pillp = CEL(f)p <Calp(finh),
and

Wl (P n O <ol (f — Pron ™D + ol (f.n7h).
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For (4.2) we use the idea of Sunouchi [17] as Ditzian and Totik did in [5]. Forranyl,
let P, (P5,) be a best approximation #®; in L , from P,, then

Ly == Ps, — Pu(P3)lp = En(P3,)p <Coly (P, n_l)péwa,,(Pz*,,, (2n)_1)p
and

L2 = Pa(P3)IG = If = P3N = Ea( ) = E2n(),

We can now write

o0

En(f)h =Y (Eatn (N — Epi1,())P) < lek <c? Z%( 27 Y

k=0
For any O< <1 letn = [t~1]. Then
Wl (f. 0 < Claly(f. 2n) ™)
< Clwly(f = P, 20) Y% + ol (Ps,. (21)™HY]
< CUE2(f)h + oy (Pg,. (20) " H%]

o0
<CUY ol(Py,. 2 nh). O
k=1

In our second example we leklp <oo, w € Ji, P, be a best weighted approximation
tofinL, fromP, andE,(f)w.p := || f — Pfllw, . We also letD,, := [~1+2r%/n?, 1—
2r2/n?1 andEy (f)w.p := | .f — P;fllw.L (D, This example is about an analog to Theo-
remcC (see 88.3 of [5]):

Theorem D. If 1< p<oo, w € J;‘ and0 < a<r, then

1/n
I P;lk(r) ”w(p’,p <Cn" /0 pr(f, T)w,pf_ldf» (4.3)
o0
Qo (f O p<C Y 2Py g p n=171. (4.4)
k=1

As a consequencthe cond|t|onq|P,f ) lwer,p = O(n"~*) andQ, o (. Dw,p = = O@(%) are
equivalent

The complex form of4.3) comes from (8.2.1) of [5]
1/n
En(Fup< CZQ (2 Dy~ [ G0

whose complexity is understandable since it bounds the approximation&6y,,, , on
the whole interval—1, 1] by themain-partmodulus off. This is another situation in which
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our newly proved equivalence, (P, n b, , ~ .n*"||P,;‘f(’)||wq,r,p can help, bridging
[—1, 1] and its subintervab,,, and resulting in an inequality stronger th@n3). We have

Theorem E. If 1< p<oo, w € J;; and0 < a<r, then

QL (P D p SCQU(f.n D p, (4.5)
oo

QL (f. Dwp<CY Qo (Py 2750 Yyg p. 0<t<1 n=[1 (4.6)
k=1

As a consequengthe conditionsQfP(Pn*, n*l)w,p = O0Om % and Q:D(f, Duw,p = O@%)
are equivalent

The proofs of 4.5) and (4.6) are very similar to those of (4.1) and (4.2), in which one
needs the Jackson inequality on, ((8.2.4) in [5])

En(£)p =1 = Py llwL 0 <C(fin™ Hup. (4.7)

inequalities 2.14) and (2.15), and a variation of (2.13) fa@;(-, Jw, p-

We conclude the paper by acomment on part (a) of Remark 7.3.4 of §51. lp" i l»
is replaced bywy, (P, n—l)p, these interesting statements on the relationship among the

orders ofE, (), ,(f,n~ 1), andn ™" || ¢" Py, (to be replaced by?, (P, n1),) will
be more natural and balanced, thus will be even more interesting.

Acknowledgments

The authors are grateful to the referees of this paper, who point out, among other things,
that other cases of Theorems 1 and 2 follow from the gase0 by simple substitutions,
thus Theorem 1 is essentially known. Their other suggestions helped us streamline the
manuscript, correct typos and minor mistakes, and make it more readable. Thanks also go
to Professor Tamas Erdélyi for his helpful suggestions, such as one on using a more general
version of the Remez inequality for9 p <oo.

References

[1] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.

[2] R.A. DeVore, G.G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.

[3] Z. Ditzian, V.H. Hristov, K.G. lvanov, Moduli of smoothness akdfunctionals inL ,, 0< p <1, Constr.
Approx. 11 (1995) 67—-83.

[4] Z. Ditzian, D. Jiang, D. Leviatan, Inverse theorem for best polynomial approximatlop,it < p < 1, Proc.
Amer. Math. Soc. 120 (1994) 151-155.

[5] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer, New York, 1987.

[6] Y.-K. Hu, On equivalence of moduli of smoothness, J. Approx. Theory 97 (1999) 282—-293.

[7] Y.-K. Hu, K.A. Kopotun, X.M. Yu, On positive and copositive polynomial and spline approximation in
Lp[—1, 1], 0< p < oo, J. Approx. Theory 86 (1996) 320-334.



Y. Hu, Y. Liu / Journal of Approximation Theory 136 (2005) 182—197 197

[8] Y.-K. Hu, D. Leviatan, X.M. Yu, Copositive polynomial and spline approximation, J. Approx. Theory 80
(1995) 204-218.

[9] Y.-K. Hu, X.M. Yu, Discrete modulus of smoothness of splines with equally spaced knots, SIAM J. Num.
Anal. 32 (1995) 1428-1435.

[10] Y.-K. Hu, X.M. Yu, The degree of copositive approximation and a computer algorithm, SIAM J. Num. Anal.
33 (1996) 388—398.

[11] Y.-K. Hu, X.M. Yu, Copositive polynomial approximation revisited, in: G.A. Anastassiou (Ed.), Applied
Mathematics Reviews, vol. 1, World Scientific, Singapore, 2000, pp. 157-174.

[12] P.G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 18 (213) (1979).

[13] P.G. Nevai, Bernstein's inequality In, for 0 < p <1, J. Approx. Theory 27 (1979) 239-243.

[14] P.P. Petrushev, V.A. Popov, Rational Approximation of Real Functions, Cambridge University Press, New
York, 1987.

[15] E.J. Remez, Sur une propriété des polyndmes de Tchebycheff, Comm. Inst. Sci. Kharkov 13 (1936) 93-95.

[16] S.B. Stechkin, A generalization of some inequalities of S. N. Bernstein, Dokl. Akad. Nauk SSSR 60 (1948)
1511-1514 (in Russian).

[17] G.1. Sunouchi, Derivatives of polynomials of best approximation, in: P.L. Butzer, B. Sz-Nagy (Eds.), Abstract
Spaces and Approximation, Proceedings of the Conference on Oberwolfach, 1968, ISNM, vol. 10, Birkhauser,
1969, pp. 233-241.

[18] X.M. Yu, S.P. Zhou, On monotone spline approximation, SIAM J. Math. Anal. 25 (1994) 1227-1239.

[19] G.Z. Zhou, S.P. Zhou, Some remarks on equivalence of moduli of smoothness, J. Approx. Theory 113 (2001)
165-171.



