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Presented here are results on almost sure convergence of estimators of regression 
functions subject to certain moment restrictions. Two somewhat different notions of 

almost sure convergence are studied: unconditional and conditional given a training 
sample. The estimators are local means derived from certain recursive partitioning 
schemes. 0 1984 Academic Press, Inc. 

1. INTRODUCTION AND SUMMARY 

This paper is concerned with the almost sure convergence of within-box 
means to conditional expectations. These “boxes” are derived from the 
recursive partitioning of a “feature space,” the Euclidean range of the 
explanatory variables in a regression problem. The within-box means and the 
partitioning are derived from a training sample, which we imagine accrues 
sequentially. The cited partitions we study here are required to be nested as 
the training sample grows. A class of partitioning algorithms which leads to 
almost surely consistent estimators is presented in Section 5; we refer the 
interested reader to the book [3] and to references of our previous papers 
[ 12, 131 for a much more extensive list of recursive partitioning derived 
estimators in classification and regression. The reader is urged to have [ 13 1 
at hand when reading this paper. 
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Suppose that GK Y), (X1, YA,..., (X,, Y,) are independent and identically 
distributed (iid) random vectors on the probability space (fi, 9, P), with 
XEIRd and YEIR’. If E{ Y} exists, then h(x) =E{Y 1 X=x} is the 
regression of Y on X. The assumption is that X and our training sample 
{(Xi, Y,)~=i } are given, and that h is to be estimated. Our estimators will be 
written 6, = fin(X) = &(X, (Xi, Y,),..., (X,, Y,)) and are nearly always 
simple averages of those Yi)s, 1 < i < n, for which Xi lies in the same “box” 
of a partition of Rd as X does. 

Informally, a box is a polyhedron with at most a preassigned number of 
faces. The notion of just what a box is has been discussed in [ 12, 13, 31; 
what we need here is nearly the same as what is in [3]. The precise definition 
and other necessary preliminaries are discussed in Section 2. Note that a 
recursive partitioning scheme has associated with it a binary tree. See [3] for 
details of the association. Note also that the rules of Section 5 and many of 
those of [3] are invariant to strictly monotonic transformations of the X 
coordinate axes. 

Section 3 is devoted to a proof that if (i) Y satisfies a certain moment 
restriction; (ii) the cited partitions are nested as n grows without bound; (iii) 
the “diameter” of a randomly chosen box (in the partition based on 
(X,, Y,),..., (X,, Y,,)) tends to 0 in probability; and (iv) each box contains at 
least k = k(n) X’s from among X, ,..., X, (for suitable k(n)); then A,(X) tends 
to h(X) almost surely. The proof is accomplished by a sequence of lemmas, 
which invoke the martingale convergence theorem and adaptation of the 
arguments of [ 12, 13, 31 along with certain technical considerations which 
were not necessary in the cited work. We are not aware of any result like 
that of Section 3 for other nonparametric estimators of possibly unbounded 
functions. Devroye [6] has given a result like that of Section 3 for certain 
kernel and nearest neighbor estimators and bounded Y. 

The more conventional notion of almost sure convergence in regression is 
that of Section 4. There it is shown that if k,(X) tends almost surely to h(X) 
and Y satisfies certain moment conditions, then E(] i,,(X) - 
h(X)IP ( (X,, Yi),..., (X,, Y,)} tends almost surely to 0 for prescribed values 
of p. Devroye [6] has given a result like that of Section 4 for certain kernel 
and nearest neighbor estimators in the case when Y is bounded. Geman [lo] 
and Geman and Hwang [ 111 have given another argument which applies 
when d= 1, p= 2, YE L*, and the estimators of h(X) are given by the 
method of sieves. Their arguments generalize to d > 1 and more general 
scenarios. 

Nearly all results of the present paper, in contrast to those of [ 12, 13, 31, 
require that the partitions Q(‘) of Rd be nested as n increases. A major 
problem which led to this is related to problems in the differentiation of 
integrals and is discussed in Section 6. However, there are other 
considerations which dictate interest in nested Q(““s. 
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As data accrue sequentially and a recursive partitioning algorithm 
produces nested Q’“” s, a given &--that is, its corresponding tree (see 
[3, 13])--can be used to facilitate preprocessing necessary to the deter- 
mination of subsequent partitions. 

2. PRELIMINARIES 

This section introduces notation and terminology beyond what was 
introduced in Section 1. Here we discuss the fundamental concepts of box, 
basic box, and partition. The presentation closely follows those of [3, 13 ] 
and is included for the sake of completeness. Finally, we provide a short 
digression on the Blackwell-Dubins lemma which is used in Section 4. 

Let d, > d + 1 be a fixed positive integer. A box is a set B c Rd which is 
the solution set to a system of at most ci, inequalities, each inequality being 
of the form b,x, + a.. + b,x,< c or b,x, + ... + b,x, < c, where c and 
b ,,..., b, are real numbers with at least one bi # 0. If for each linear 
inequality defining B, exactly one bi, 1 < i < d, is not 0, then B is a basic 
box. 

In [ 12, 131 we have emphasized the invariance of recursive partitioning 
derived rules for classification and regression to strictly monotonic transfor- 
mations for the coordinate axes of Rd. With the notions of box and 6,(X) 
given in this paper, for the cited invariance to hold not only must all boxes 
be basic boxes, but also each of the hyperplanes which determine the 
boundary of a box must contain at least one Xi, i < n, which belongs to the 
training sample. The general definition of box allows for linear combination 
splits, as defined in Section 5.2 of [3]. 

We reserve Q as a generic symbol for a finite partition of Rd, all of whose 
component subsets are boxes B. For x E Rd, we denote by B(x) the unique 
box in Q containing x. If a sequence of partitions is discussed, the index is 
superscripted, and the same indexing is carried to boxes. For example, Q”” 
denotes an element is a sequence of partitions, and B’“‘(x) is that box in QCfl) 
containing x. 

As was mentioned in Section 1, we think of (X,, Yl), (X, YJ,..., as being 
observed in sequence. At each stage n of sampling we are given Q”‘). a 
partition of Rd which depends measurably on (X, , Y,) ... (X, , Y,). We 
further assume throughout that the partitions observed at the various stages 
of sampling are nested; that is, Q’““’ is a refinement of Q’“’ (which is not 
to preclude that Q(‘+‘) = Q(‘)). 

Write F for the common distribution of X and the Xi’s and let supp X 
denote the support of F. The diameter D,(x) of the box of Q(‘) containing x 
is defined as 

D,(x) = min(o;(x), 1). 
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where 

DA(x) = sup{~~z - ylj: y, z E B(n)(x) n suppX) 

and //z - ylJ is the Euclidean distance between z and y. Because we assume 
that the Q(‘) are nested, D,(X) is monotone nonincreasing in n. 

We shall have recourse in Section 4 to a version of the dominated 
convergence theorem for conditional expectations. This lemma is variously 
known as the Blackwell-Dubins lemma, for its appearance in [Z], or as 
Hunt’s lemma, for example, in Chung and Walsh [S] who refer to Hunt [ 14, 
p. 471. The lemma, by either name, says that if Y, tends almost surely to Y, 
sup 1 Y,l is integrable, and ;“, is either an increasing or decreasing sequence 
of o-fields, then 

E{ Y, 1 ;T} tends almost surely to E{ Y 1 F), 

where F is either nLFm or VX” as the a-fields Fn are either decreasing or 
increasing. 

During the course of our work we introduce various constants: c, , c2 ,... . 
The values of these numbers are not material to our arguments. 

3. UNCONDITIONAL ALMOST SURE CONVERGENCE 

In this section we state and prove our main result. In particular, 
Theorem 3.6 gives conditions sufficient to guarantee almost sure consistency 
for a class of nonparametric estimators of h. Proof of the theorem is accom- 
plished by a sequence of lemmas. 

There is some measure-theoretic delicacy involved in arguing with what 
appear in our notation to be conditional expectations given adaptively deter- 
mined a-fields of subsets of Rd. Thus, we require the following notation, in 
which a{ .} is the u-field of subsets of 9 determined by the random variables 
described inside the brackets, and (as usual) %F V @ is the smallest o-field 
which contains the a-fields 4 and 22. 

xl = a{W,, Yl),..., (x,3 Yn)}. 

Xn = o{(x,, YA.., (X,, Y,J, l,(X) : B E Q(“‘l, 

where I,(X) is 1 if X(w) E B 

and 0 otherwise. 

If B is a box, then 

P(B) = El Y-Ax> I 

(3.1) 

(3.2) 

(3.3) 
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and 

p,(B) = f f YJ,(X,). 
z 

(3.4) 

(3.5) 

For xE Rd,ifP(XEB(“)(x))>Othen 

h,(x) = ,u(B’“‘(x))/P(X E B’“‘(x)); 

otherwise h,(x) = 0. 

For xE Rd and B(“)(x) = B, 

fin(x) = I~,(B)I~,tB)II,e,,B)>k(n),n,, 

where O/O is taken to be 0, and F,,(B) is the empirical probability of B based 
on X, , X, ,..., X,. In (3.5) k(n) is a nondecreasing sequence of positive 
integers which tends to co. The ideas of this section are summarized in the 
next result. 

3.6. THEOREM. Assume that 

E(I YIP < coofor some p > 1; 

D,(X) tends to 0 in probability as n tends to co; 

for n = 1, 2,..., the partition Qtn’ ” refines the partition 

Qcn’ of Rd-it may happen that Q(“+” = Q(“‘; 

n’lp log n/k(n) tends to 0 as n tends to ~II ; 

4f,(BWXH < k(rt)lrl, tends to 0 almost surely as n tends to 00. 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Then h,,(X) tends to h(X) almost surely as n tends to 00. 

Theorem 3.6 is the consequence of a sequence of lemmas which is our 
concern for most of the remainder of this section. Throughout, we assume 
without loss of generality that Y is nonnegative. We also assume throughout 
this section that (3.7) through (3.11) are satisfied. 

3.12. LEMMA. EiYI&l = UX). 

Proof. For each box B let A(B) =E{ YI,(X) 15$}/E(I,(X) (S‘ff}. It 
follows from the independence of (X, Y) and the training sample and from 
Fubini’s theorem that h,,(X) = CBEQc”) A(B) Since h,(X) is & 



152 GORDON AND OLSHEN 

measurable, in order to prove the lemma it suffices to show that 
E(Z,Z,(X) h,(X)} = E{ YZB(X) r,} for B E Q(‘) and S E yn. But 

EVsZ,(X) hz(X)l =E1ZsZ,(X)A(B)l 

=EV,AWEVB(X) I XII 

= E{ZsE{ Yr,W I 3, I I 

= E{E{ YZ,Z,(X) 1 FL}} = E( YI,(X)Z,}. 

3.13. LEMMA. Zf D,(X) tends in probability to 0, then h,,(X) - h(X) 
tends almost surely to 0. 

Proof Because the partitions Qtn) are nested, the random variables 
D,(X) are nonincreasing, and it follows that (3.8) is equivalent to the 
assumption that D,(X) tends almost surely to 0. Because the o-fields y, are 
nondecreasing, the random variables h,(X) = E( Y 1 Ra} are an expectation 
bounded martingale. A special case of the martingale convergence theorem 
implies that h,(X) tends almost surely to E( Y 1 RI}, where s3-, = VF~. 
Denote by xz and F& the completions of rn and ya, respectively; and 
observe that (almost surely) h,(X) = E{ Y I,F,*}, and h,,(X) tends almost 
surely to E{ Y 1 ST&}. In the next two paragraphs it will be argued that 
E{ Y / <Fz} = E{ Y 1 X} almost surely. 

Let K = supp X and V be an arbitrary open subset of Rd. Then 

Z,(X) = lim x Za(X) 
BEQ(“) 

BnKcl’ 

almost surely because D,(X) tends to 0 almost surely. So a(X) is generated 
by a (countable) family of xz sets; we conclude that X is xz measurable 
and h(X) = E{ Y 1 X} is ST& measurable. 

We now verify the conditional expectation property for indicators of sets 
which generate yz. To that end let S E 9m and B E Qcn). 

EVsZB(X) Yl= EiZsZB(X) Ei Y I 49 ” X 1) 
=E{Z~ZB(X)E{YIX)); (3.14) 

the last equality is a consequence of the independence of (X, Y) and 9,. 
From a standard monotone class argument and (3.14) one concludes that for 
all T E jr;, E{ YZ,) = E{Z,E{ Y 1 X)). Because u(X) cF~, E{ Y 1 X) = 
E{ Y (ST&} almost surely. And since E{ Y I;“,*) tends almost surely to 
E{ Y I x,$), it follows that h,(X) tends almost surely to E{ Y 1 X) = h(X). 

The following theorem is a corollary of Theorem 12.2 of [3 1. In the 
theorem (in a slight abuse of notation) we write P( [X E B] n [YE I]) (for 
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boxes B c Rd and intervals of real numbers I) as F(B,I). Similarly, #,(a, a) 
refers in an obvious way to empirical probabilities based on (X,, YJ,..., 

(x,7 YtJ 

3.15. THEOREM. [3] Given E > 0 and p’ > 0, there exists a constant c, = 
c,(p’, E, d) such that for all n > N(p’, E, d) suftciently large there is a set in 
.9’ of probability at least 1 - n-(2p’+” on which simultaneously for all 
intervals I and all boxes B E Q’“‘. 

1 f’,(B, I) - F(B, I)1 < E&B, I) + c, y (3.16) 

and 

IP,(B, I) - F(B, I)1 < sF(B, I) + c, F. 

In what follows, for each positive y, Ln,? is defined as 6, except that Yi 
which appears in the definition of i;,, is replaced by max(--y, min(Y,, 7)). The 
reader will note that dn,y was called & in [ 131. 

3.17. LEMMA. Let y,, be an arbitrary sequence of positive constants, and 
assume that p > 1. Given 4 > E > 0, there exists a constant c2 = c2(p,.s, d) 

for which, with probability at least 1 - nPCzpi ‘), 

lk,+,(~> - h,V)I < WY- 19, I&J + CA 1% n/W) 
+ h,(X)lI(j,(B(n,,x))<k(n),n, + 5~ + c, log @@>I. (3.18) 

ProoJ As we did in [ 131, we write 

l~,,,J+U~)I GE{O’-YJ+ IZ,I 

where P,( y, x) = F(B’“‘(x), (y, oo)), P,,( y, x) = F,,(B’“‘(x), (Y, 00))~ and 
@,(B’“‘(X), R ‘) is abbreviated to p,JB’“‘(X)). 

Terms I and IV are repeated verbatim in the statement of the lemma. 
There remains the task of bounding terms II and III. 
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Because E, p, and d are fixed, we may choose c, as in Theorem 3.15. From 
that theorem it follows that for IZ = n(p, E, d) sufficiently large, with 
probability at least 1 - ,-(2P+1’ 

2/(1-E) yfl 
11 G F(B(n’(X)) I &P,(YT m dY + Cl 

Y, 1% n 
o 

k(n) 

< 4E 
I 

yfl P,(Y,X) Y, 1% n 
0 q@“‘(X)) 

dy+c,- 
k(n) 

< 4E h,(X) + c, 
Yn log n 

k(n) ’ 

An application of Theorem 3.15 to III shows that for n = n(p, E, d) 
sufficiently large, on the same set of probability 1 - n-(2p+‘) as appeared in 
the argument for II, 

III < 
I 

Yn P,(Y>X) 
( 

log n 

0 F(B’“‘(X)) ’ + ‘I k(n) - 4 
1 

< (E + c,@x n/W))) h,(X). 
3.19. LEMMA. Let yn = n IJp; then as n tends to co &,JX) - h,,(X) tends 

to 0 almost surely. 

Proof. Choose and fix E for which 0 < E < i. From Lemma 3.17 and the 
Borel-Cantelli lemma it follows that almost surely, (3.18) holds for all but 
finitely many n. We now show that each of the three summands of (3.18) 
tends to 0 almost surely. 

Since the a-fields ;r, are monotone nondecreasing, (Y - YJ+ tends to 0 
almost surely, and (Y - r,), < Y, the Blackweli-Dubins lemma implies that 
E( (Y - y,), 1 S, ) tends to 0 almost surely. 

That the second term of (3.18) tends to 0 follows from (3.10). 
Because h,(X) = E{ Y 1 rn}, Kolmogorov’s inequality for martingales 

implies that sup, h,(X) < co almost surely. Hence, in view of (3.1 l), we may 
make the third summand of (3.18) arbitrarily small on a set of arbitrarily 
large probability by a judicious choice of E in Lemma 3.17. 

3.20. LEMMA. Write y, = nllp; then i,,(X) - 6,JX) tends to 0 almost 
surely. 

Proof: If F’,(B’“‘(X)) < k(n)/n then the cited difference is 0, so suppose 
that E@“‘(X)) > k(n)/n. In that case 
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which is not more than the 

But it follows from a result of Robbins quoted in [ 1 ] that SUP~>~(Y~ - y,), is 
almost surely eventually 0. 

Proof of Theorem 3.6. Write yn = n’lp and 

h^,W) - h(X) = (&AX) - h^,,&V) + &,,(X) - h,(X)) + (h,(X) - h(X)) 

~fv+vI+vII. 

Term V tends almost surely to 0 as a consequency of Lemma 3.20, whereas 
terms VI and VII likewise tend almost surely to 0 in view, respectively, of 
Lemma 3.19 and Lemma 3.13. 

4. CONDITIONAL ALMOST SURE CONVERGENCE 

We mentioned in Section 1 that the notion of almost sure convergence as 
studied in the previous section differs from the notions of convergence as 
presented in [6, 10, 111. In this section it is shown that, given suitable 
moment conditions, the notion of convergence established for nested 
recursive partitioning estimators in Section 3 implies the integrated form of 
almost sure convergence studied in the cited references. In particular, we 
show that if E{] YIP} < co for some p > 2, then E{sup, ]h^,(X)]‘} < co for 
r < p/2. This, together with the Blackwell-Dubins lemma, establishes the 
result which follows. 

4.1. THEOREM. Assume that 

E{(YIP} < oo for somep> 2r>2; 

D,(X) tends to 0 in probability as n tends to 00 ; 

For all n = 1, 2,..., the partition Q(“+” of U refines 

(but may be identical to) the partition Q(“‘; 

n lfr log n/k(n) tends to 0 as n tends to co ; and 

Z ,~,~B~~,~X,,<k~n,,n, tends to 0 almost surely as n tends to 0~). 

(4.2.) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

It then follows that 

E{J&(X) - h(X)I’ ) 9,,} tends to 0 almost surely as n tends to 03. 
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We prove Theorem 4.1 by means of Lemmas 4.7, 4.8, and 4.9. 
Throughout we assume that (4.2) through (4.6) are in force and that Y > 0; 
also, take q to be a constant for which 1 < q < p - r. 

4.7. LEMMA. From the stated assumptions it follows that 

E{(s;p h,(X))P1 < ~0. 

Proof We have from Lemma 3.12 that h,(X) = E{ Y 1 ST,}, and so h,,(X) 
is a martingale. From the well-known inequality of Doob 17, p. 3171, 

P 

E( Yp). 

4.8. LEMMA. Let y, = n’jq. Then 

E{s;p I&,Jx) - h,(X)lP1 < ~0; 

that is, supn I&,(X) - h,(X)1 belongs to Lp = L”(Q, 59, P). 

ProoJ: Choose and fix E for which 0 < E < f . Let Zf be the indicator of 
the event that (for n) the inequality (3.18) is violated. By noticing that 

s”,p V&“(X) - h”W)I 

G sup I &y,(X) - h,(X)I 1; + s;p I kz,,,(X) - UXI (1 - C> n 

and that 

sup y,Z,* < f Y,Z,*, 
n n=1 

we have that 

sq~Ih^,,,(X)-h,(X)I~s~ph,(X)Z,* + : Z,*Y, 
n=1 

+~;PUJ~ 

+ s;p c2 Yn log n/k(n) 

+ s;p h,(X)[ 1 + 5~ + cl log n/k(n)] 
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Terms VIII, X, and XII are in Lp because of Lemma 4.7. In view of 
Lemma 3.17, compute thus with IX and the Lp norm: 

and so IX is bounded in Lp. The boundedness of XI is a consequence of 
(4.5). 

4.9. LEMMA. E{sup, I&(X) - &z,y”(W1 < 00. 

Proof: gn,,JX) - h,(X) can be written (see (3.16) of [ 131) 

1’ O” { 1 - C(Y I @val @ r(e,(Bcn)(x))>k(n),n~~ 
Y" 

which is not more than the 

yFt('j - Yn) t . (4.10) 
1 

As was noted in Section 3, (4.10) is almost surely eventually 0. Because the 
yn are increasing, there almost surely exists some n, = no(o) for which 

m? ytt(yj - YJ+ = tyn,- Y,,>+. 

Hence 

and also 

E{s;p Ih^n,y,(X> - uwl< f Irn v-v -m + r,>> & n=1 0 

< f rE(YP)jrn y’-‘(y + y,)-” dy, (4.11) 
n=1 0 

where we have made use of the Markov inequality in (4.11) The expression 
(4.11) is not more than 

a, 

which is finite since p - r > q. 
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Proof of Theorem 4.1. Lemmas 4.7, 4.8, and 4.9 imply that 

E{sup ]&(X) - h(X)]‘] < co. 
n 

From Theorem 3.6 it follows that /i,(X) - h(X) tends to 0 almost surely. The 
Blackwell-Dubins lemma implies that 

E((&(X) - h(X)l’ ] ~S‘i} tends to 0 almost surely. 

The reader may be interested to note that we have paid the price of 
hypothesis (4.2) in order to preserve the affine invariance of 6,. For 
example, the conclusion of Theorem 4.1 holds with r = p and k(n) = ne for 
the truncated estimators of [ 131 provided 2pB > p + 2. The cited price is 
confined to Lemma 4.9 in the present paper. We believe that a conclusion 
like that mentioned for the estimators of [ 131 holds for suitably chosen 
affinely invariant truncated estimators. 

5. IMPLEMENTING AND ALMOST SURELY CONSISTENT SPLITTING RULE 

We now sketch an adaptive splitting rule to which apply the arguments of 
Theorems 3.6 and 4.1. Therefore, the corresponding sequence of estimators 
converges almost surely in the two described senses to E{ Y 1 X}. In order to 
simplify exposition of the rule we assume throughout this section that F has 
continuous marginal distributions on the d coordinate axes of X. An 
additional simplifying assumption in force is that all boxes are basic boxes. 
The algorithm can be implemented so that i,(X) is invariant to strictly 
monotonic transformations of the coordinate axes of X. 

The nesting of partitions, which enables us to prove the two cited 
theorems, entails certain difftculties in the definition of the splitting rule. For 
as n grows, a terminal box B which once had more than the desired k = k(n) 
members of the training sample may have fewer members if sufficiently few 
observations among X,,, i, Xn+Z,...r belong to B. In order to demonstrate that 
(3.11) (which is the same thing as (4.6)) holds, we employ a large deviation 
result which ensures that for F almost every x, and the splitting rule to be 
sketched, the possible lapses in box content are almost surely temporary. The 
tree which corresponds to our splitting rule will grow fitfully, one terminal 
node at a time. In view of the foregoing discussion and the results of 
[ 12, 13,3], we base our splitting rule on two guiding principles: split only 
those boxes which are sufficiently full; monitor and, if necessary, enforce the 
occurrence of quantile splits (called quantile cuts in [ 12, 131. For a given 
box B, we say that a jth p-quantile split has been achieved if the box is 
refined by a split perpendicular to coordinate axis j into daughter boxes B’, 
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B” so that max(p,(B’), p’,(B”)) < plF’,(B). Necessarily, p is at least l/2. 
When, as is assumed here, the coordinates of X have continuous 
distributions, jth p-quantile splits can always be implemented. It is possible 
but technically difficult to prescribe algorithms which apply when the 
distribution of X is completely general. 

The splitting rule requires an increasing sequence k(n), and a quantile 
splitting target q, 4 < q < 3; k(n) = 3/c’(n), where k’(n) = clog n and the 
constant c will be specified. We begin our prescription with the definition of 
t1 : set 4, = Y,. In what follows we describe how to split and how to update 
h n-, for n = 2, 3 ,... . Throughout, ) T] is the cardinality of the set T. If x E B 
and B E Q(““, we write h,(B) for the common value of h,(x) on B. 

Cycle through B E Q’“-” for which X, G B. If ]{i: i < n, 
xi E B}I < k(n), set 6,(B) = 0. Otherwise, set 6,(B) = 

hn- ,W 

Examine B (“-‘)(X,). If ](i: i < n, Xi E B’“-“(X,)}I < k(n), 
set 6,(B) = 0. If k(n) < I{i: i < n, Xi E B’“-“(X,)}I < 8/c(n), 
average {Yi:i<n, XiEB (+‘)(X,)}. Set 6,(X,) equal to 
that average, and stop. 

Otherwise, 1 {i : i < n, Xi E B’“- “(XJ)] > 8k(n), and 
B’“- ‘)(XJ is split according to specifications which follow. 
All splits are made according to the risk reduction splitting 
rule (see [3]) subject to the constraint that every split is a 
q-quantile split. Require a split on axisj if 

among the previous 4d ancestor nodes of B’“- “(XJ none 
involves a split of axisj, and 

j is the smallest index of an axis satisfying (5.3a). (See [3] 
for details of the relationship between 6, and a binary tree.) 

Compute within box averages of the Yi, i < n, for the new 
boxes determined in (5.3). For each new box B set /i,(B) 
equal to its corresponding average, and stop. 

15.1) 

(5.2) 

(5.3) 

(5.3a) 

(5.3b) 

(5.4) 

With the splitting process defined, D,(X) tends to 0 in probability in view 
of Lemma4.1 and Theorems 3.13 and 3.12 of [13]. Therefore, (3.8) and 
(4.3) are satisfied. We now use the Borel-Cantelli lemma to demonstrate that 
almost surely, F=,(B”“(X)) is sufficiently large for all but finitely many n so 
that (3.11) and (4.6) are satisfied. 

What we demonstrate is that 
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converges. The argument which is presented here is essentially due to Ken 
Alexander-his argument extends an earlier one of ours. Denote by E, the 
events whose probabilities are being summed in (5.5). Fix an E > 0 for which 

(1 - E)’ > 2/3. (5.6) 

Let c1 = c,(l, E, d) as in Theorem 3.15, and pick c > c, large enough that 

3c - 3ce - c, > 2c/( 1 - E); (5.7) 

(5.6) implies that there is a c which satisfies (5.7). Clearly, 

P(E,)<P E,n 0 
i 

log n 
In”-F(B)I~&P,(B)+c,- 

BcQ(“) n I) 

u la.(R)--(~)I>EI’.(B)+c,~). (5.8) 
BeQ(“) 

It follows from Theorem 3.15 that for n sufficiently large the second 
probability in (5.8) is at most nP3. On the event whose probability is the 
first term on the right hand side of (5.8), p,@) > k(n)/n for each 3, so 

1% n > 2c log n 
F(B)> (3c-30c,)y,--. 

I-& n 

Also, on the cited event for some s and B E Q(“, F,+,(B) < 
k’(n + s)/(n + s) = c log(n + s)/(n + s). Since for n > 3, 2c log n/( 1 - c)n > 
(c + cl) log(n + s)/(l - e)(n + s), for s and B as described 

&+#I) < (1 - &)P(E) - c, ‘opn(;; s, for n > 3. (5.9) 

The first probability on the right hand side of (5.8) has therefore been shown 
to be bounded, for n > 3, by 

F?,+,(B)<(l-&)F(B)-c, (5.10) 

Theorem 3.15 implies that for n sufficiently large the sum (5.10) is at most 

f (n + s)-3 = O(K2). 
s=1 

Therefore, C,“, P(E,) < co, and so (3.11) and (4.6) are satisfied for k(n) as 
given. The argument applies also to show that (3.11) and (4.6) also hold for 
the algorithm (5.1~(5.4) and k(n) = 3k’(n) = o(n) for any nondecreasing 
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sequence of positive integers for which log n = o(k(n)). In view of 
Theorem 3.6, for such k(n) and p satisfying (3.7) and (3.10), i,(X) tends to 
h(X) almost surely as n tends to co, while 

E{/&(X) - h(X)/’ 19”) tends to 0 almost surely 

as n tends to co for p and r which satisfy (4.2) and (4.5). 
For example, if n”’ log n/k(n) tends to 0, then the unconditional almost 

sure convergence of Theorem 3.6 holds if E(] Y13’*} < co, and the conditional 
almost sure convergence of Theorem 4.1 holds for r = 3/2 if E{ 1 Y13”} < 00 
for any 6 > 0. 

6. THE NON-NESTED CASE APPEARS TO BE DIFFICULT 

The principal difficulty in proving a theorem like Theorem 3.6 in case the 
Q’““s are not nested lies in the putative convergence of h,(X) to h(X). If a 
general recursive partitioning rule guarantees that D,(X) tends almost surely 
to 0, then it follows from [3], Fubini’s theorem, and what Garsia [9] calls 
Banach’s principle that for all (X, Y) with YE L ‘, h,(X) tends almost surely 
to h(X) provided that (in an obvious notation) 

s;pE(Y’ ) Q(‘)}(X) < co a.e. 

for each Y’ E L'. In other words, if D,(X) tends to 0 almost surely, and the 
cited suprema are finite, then the Q (“j’s differentiate h(X) for each integrable 
Y almost surely. From the viewpoint of Shilov and Gurevich [ 161, if the 
coordinatewise marginal distributions of X are continuous and Q(‘) is 
comprised of basic boxes, then when D,(X) tends to zero almost surely, 
h,(X) tends almost surely to h(X) if the Q(‘)‘s and the distribution ofX form 
a Vitali system. 

In the remainder of the paper we assume that suppXc U, the unit cube in 
Rd. Arguments of R. Dudley [8] show that either (i) D,(X) tends to 0 
almost surely implies that the Q”)‘s differentiate h(X) for each integrable Y 
almost surely, or (ii) there are an X, a sequence Q’“’ of partitions of U for 
which D,(X) tends to 0 almost surely, and an open set d c U for which the 
Q (“j’s do not differentiate IP almost surely. We sketch Dudley’s arguments. 

First note that standard approximations which use the regularity of Bore1 
measures on U imply that (ii) holds if we find X, Q(‘)‘s, and a bounded Bore1 
f on U for which D,(X) tends to 0 almost surely and the Q(‘)‘s do not 
differentiate f almost surely. Suppose now that (i) fails. Then there are an 
integrable Y, X, and Q’“” s with D,(X) tending almost surely to 0 for which 
the Q (“j’s do not differentiate h(X) almost surely. Write Y = Y+ - Y- to 

m/15/2-2 
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conclude that without loss we may assume Y > 0. But if differentiation fails 
for Y, it also fails for Y + 1. Thus, without loss, suppose that Y > 1 and that 

does not tend almost surely to E{ Y / X}. Write the displayed sum as 

where E{ Y} v(B) dsfp(B). The expression (6.1) is (almost surely) the 
reciprocal of the conditional expectation of Y-i when X has distribution V, 
and Y-’ is clearly bounded. That is, when X has distribution v and the Q(‘)‘s 
are as with Y, then still D,(X) tends to 0 almost surely, and yet the Q’““s do 
not differentiate the bounded function Y- ‘. Thus, the cited dichotomy is 
demonstrated. We can actually say a bit more, as the following arguments 
demonstrate. 

Suppose that @’ is any open subset of U. If D,(X) tends to 0 almost surely, 
then almost surely E{Ze 1 Q’“‘}(X) tends to 1 on 8. Also, E{Z,] Q(‘)}(X) 
tends to ZP in L ’ [ 131. So Fatou’s lemma implies 

E{l&E{Z,] Qcn'}(aj <l&E{E{Z,I Q'"'}(X)=E{Z,} =P(e). 

The foregoing observations guarantee that 

bE{Z, 1 Q'"'}(x)=Z&) 

and therefore that (ii) obtains only if 

F-almost everywhere, 

- 
llm E{Z,I Q'"'}(x) > 0 (6.2) 

on a subset of 0’ of positive probability. One point of Theorem 3.6 is that 
with nested partitions (6.2) occurs at most on a set of F measure 0. 

When X has a uniform distribution, famous results of Jessen, 
Marcinkiewicz, and Zygmund [ 151 and of Busemann and Feller [4] bear 
upon the almost sure convergence of h,(X) to h(X). Thus, if X is uniform on 
U, and D,(x) tends to 0 almost surely, then the Q(‘)‘s almost surely differen- 
tiate each Borelfon U for which j If] (log(1 + + ]f])d-’ dF is finite, that is, 
each f E L(log L)d- ‘. (The condition is automatic if d = 1.) It would be 
enough to have f merely integrable if we could the ratios of sides of boxes 
which comprise the Q(“)’ s away from 0 and co (which requirement would be 
inconsistent with the described invariance of our estimators to strictly 
monotonic transformations of the coordinates of X.) 
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