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Robust Nonparametric Regression 
in Time Series 
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Communicated by the Editors 

Consider a stationary time series (X,, Y,), f = 0, k 1, . . . with X, being &-valued 
and Y, real-valued. Let $( .) denote a monotone function and let 0( .) denote the 
robust conditional location functional so that E[$( I’,, - 19(x,)) (X,] = 0. Given a 
finite realization (X,, Y,), . . . . (X,, Y,), the problem of estimating 0( .) is considered. 
Under appropriate regularity conditions, it is shown that a sequence of the robust 
conditional location functional estimators can be chosen to achieve the optimal rate 
of convergence n-‘1(2+dr both pointwise and in L, (1 $ q < co) norms restricted to 
a compact; it can also be chosen to achieve the optimal rate of convergence 
(n-l log(n))‘i(2+d’ in L, norm restricted to a compact. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

Let (X,, Y,), t = 0, + 1, . . . denote a strictly stationary time series with X, 
being E&valued and Y, being real-valued. Let 0(x) denote the regression 
function of Y, on X0 so’ that 0(x) = E( Y,, (X,=x). To estimate this 
function, Nadaraya [13) and Watson [19] proposed 

d(x) = i WJX, Xi) Yi, 
1 

where the kernel weights 
c; WJX, xi!= 1. e( .) 

W,Jx, XJ satisfy WJx, Xi) 2 0 and 
is called a kernel estimator based on local average. 

Alternately, 0(x) can be obtained by minimizing over t(x) 
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or, by solving 

i W,(x, X,)( Yi - t(x)) = 0. 
1 

But the solution to this ieast squares problem is very sensitive to outliers 
which are known to occur quite often in practice, even in the context 
of nonparametric regression analysis. Examples given in Hardle [ 1 I] 
indicated that nonparametric estimators constructed by taking the average 
over a small neighborhood about x, large Y values may result in peaks and 
bumps. 

To remedy this problem, one may replace the above square function by 
other functions that put less weight on large value of Yi. This leads to the 
estimator 8( .) defined implicitly as the solution to 

G(&x))=i Wi(x,Xi)$(Yi-&x))=O, 

where I,Q .) is an increasing and bounded function. Note that the bounded- 
ness condition here has the effect of truncating large Y values. For example, 
in dealing with heavy-tailed symmetric distributions such as the “gross 
error models,” +(. ) is chosen as tj(v) = max { -k, min ( y, k > 1, k > 0, which 
has the effect of trimming large Y value to k, and the resulting estimator 
takes a form of trimmed mean. Such functions are very important and have 
been studied extensively in the area of robust estimation. See Hampel et al. 
[6] and Huber [12]. 

More generally, regression analysis can be viewed as follows. Let rc/( .) 
denote a monotone function and let t9( .) = f9,( .) denote a function such 
that E[+( Y, - 0(X,)) ( X,] = 0 almost surely. The function B( .) is called the 
robust conditional location functional of Y, on X, by Boente and 
Fraiman [ 13. For example, in regression analysis involving asymmetric 
conditional distributions such as income distributions and if it desired to 
estimate the conditional median function, then the function $( .) is chosen 
to be Ii/(y) = sign(y) so that e(x) = med( Y, ) X0 = x). 

Given a realization of length n from (Xi, Y,), i= 0, + 1, +2, . . . . the 
present paper considers the problem of estimating the function 8( -). Note 
that many important time series problems can be analyzed via this setup. 
Specifically, the applications include problems of estimating the auto- 
regression function of the “present” on its “past” in univariate time series, 
regression function estimation, and dynamic modellings based on bivariate 
time series. These are discussed in Examples l-3 of Truong and Stone 
C181. 

To estimate the function 19( .), the parametric approach starts with 
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specific assumptions about the relationship between X0 and Y, and about 
the variation in the Y-sequence that may or may not be accounted for by 
the X-sequence. For instance, the standard autoregressive method in time 
series starts with an a priori model for the conditional mean function 
0(x) = E( Y0 (X, = x) which, by assumption or prior knowledge, is a linear 
function that contains finitely many unknown parameters. Under the 
assumption that the joint distribution is Gaussian, it is an optimal predic- 
tion rule; if the distribution is non-Gaussian, it is not generally possible to 
determine such function; so one might settle for the best linear predictor. 
By contrast, in the nonparametric approach, the function will be estimated 
directly without assuming such an a priori model for 0( .). In recent years, 
nonparametric estimation has become an active area in statistics because of 
its flexibility in fitting data. Hence, this approach is adopted in this paper. 

Robust parametric estimation for i.i.d. data in the context of linear 
models is discussed at length in Huber [12] and recently in Hampel et al. 
[6]. The nonparametric approach in regression analysis has been con- 
sidered by Boente and Fraiman Cl], Hardle [7], Hardle and Gasser [8], 
Hardle and Luckhaus [9], Hlrdle and Tsybakov [lo], and Hardle [ll]. 
However, the parallel studies in time series analysis appear to be much less 
developed. Recently, Collomb and Hardle [4] established a uniform 
consistency result based on strong assumptions on the correlated structure. 
Robinson [14] obtained a central limit theorem under weaker mixing 
conditions. Boente and Fraiman [2, 31 addressed issues on robust 
nonparametric estimation for dependent observations. Results on rates of 
convergence are also presented in the above papers. However, the results 
for dependent observations are not optimal in the minimax sense according 
to Stone [16, 171. The present paper focuses on these optimal properties 
and it will be shown that under rather weak conditions, optimal rates of 
convergence for the robust location functional estimators can be achieved. 

The rest of this paper is organized as follows. A class of robust condi- 
tional location functional will be defined in Section 2, along with results on 
optimal rates of convergence. Section 3 contains proofs of these results. 

2. STATEMENT OF RESULTS 

Let U be a nonempty open subset of the origin of W. The following 
smoothness condition is imposed on the conditional M-functional. 

Condition 1. There is a positive constant M, such that 

l@x) - @‘)I < MIJ (Ix - x’ll for x, X’E U, 

where (1xJI = (xi + . . . + xi)“’ for x = (x,, . . . . xd) E [Wd. 
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Condition 2. The distribution of X, is absolutely continuous and its 
density f( .) is bounded away from zero and infinity. That is, there is a 
positive constant M, such that M ; I <f(x) 6 M, for x E U. 

The following technical condition is required for bounding the variance 
of various terms in the proof. 

Condition 3. The conditional distribution of X, given X, is absolutely 
continuous and its density h( .I .) is bounded away from zero and infinity 
on U. That is M ;’ < h(x, ) x0) < M, for x,, and xi E U, j = 1, 2, . . . . 

Conditions on the function $( .) are required to guarantee the unique- 
ness of the robust conditional location functional O( +) (uniqueness will 
ensure consistency) and also the achievability of the desired rate of 
convergence. (The same condition is required in order to obtain the usual 
asymptotic result about the M-estimate in the univariate case.) The proof 
of the existence and the uniqueness of the function O( .) can be found in 
Boente and Fraiman [l] and HHrdle [7]. 

Condition 4. (i) The function +( .) is bounded and increasing with 

E($( Y - e(x)) IX = x) = 0, x E u. 

(ii) There exists a positive constant M, such that 

I~(t4Y-~(x)+t)lX=x)l >M, I4 for Itl<M;‘,xeU. 

(iii) There exists a positive constant M, such that 

IE(~(Y-B(x)+t)lX=x)l>M, for )tl >M;‘, XE U. 

Also, there exist positive constants M4( > M3) and M5( 2 M; ‘) such that 

if y< --MS; 
if y>M,. 

See HCrdle and Luckhaus [9] for motivations of Conditions 4(i) and 
(ii). These conditions ensure uniqueness and finite variance in estimation. 

Let E and 9’ denote the a-fields generated respectively by (Xi, Y,), 
- 00 <i< t, and (Xi, Y,), t < i< co. Given a positive integer k set 

According to Rosenblatt [1.5-J, a stationary sequence is said to be a-mixing 
or strongly mixing if a(k) -+ 0 as k + 00. This mixing condition is known 
to be very weak and hence it has been used in different forms by many 
authors to study nonparametric regression for dependent observations. See, 
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for example, Boente and Fraiman [2,3], Fan [5], Robinson [14], and 
Truong and Stone [ 181. The following formulation is from Truong and 
Stone [ 181. 

Condition 5. The process (Xi, Y,), i = 0, + 1, f2, . . . . is a-mixing with 

(i) Ci,N a(i) = O(N-‘) as N+ co. 
(ii) a(N)=O(f) as N-+ co for some p with O<p < 1. 

In nonparametric regression estimation based on kernel method, it is 
necessary to assume that the marginal has a smooth distribution (see, for 
example, Condition H4 of Boente and Fraiman [ 11). We adopt an 
approach by Stone [16,17] that avoids this problem. Let S,, n 2 1, be 
positive numbers that tend to zero as n + co. For x E Rd and n > 1, set 

m(x)= {i: l<i<nand ((X,-xl\ <S,} 

and let N,,(x) = #Z,(x) denote the number of points in Z,. Given x E rWd, 
the robust conditional location functional estimator (also referred to as 
local M-estimators or M-smoother) is defined as the solution d,(x) of the 
equation 

&  , ; ,  $( Yj-‘,(x))=o’ 

I I  

Given positive numbers a, and b,, n 2 1, let a,, N b, mean that an/b, is 
bounded away from zero and infinity. Given random variables V,,, n >, 1, 
let V,, = O,(b,) mean that the random variables b;‘V,,, n 2 1, are bounded 
in probability; that is, that 

lim iimP((V,(>cb,)=O. 
c-ice n 

Set r = l/(2 + d). The local (pointwise) rate of convergence of e^,( .) is 
given in the following result. 

THEOREM 1. Suppose 6, N n-’ and that Conditions 1-3, 4(i), and 5(i) 
hold. Then 

I&(x) - e(x)1 = O,(n-l XE u. 

Let C be a fixed compact subset of U having a nonempty interior. Given 
a real-valued function g( . ) on C, set 

IId.N,= 
i 
s, Is(x dxjlk, lfq<co, and IId-NJ02 =sup Ig(x)l. 

xec 

The L, rate of convergence is given in the following result. 
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THEOREM 2. Suppose a,,- (n-‘logn)’ and that Conditions 1-3, 4(i), 
(ii), and S(ii) hold. Then there is a positive constant c such that 

limP(1(8,(.)--t?(.)(I,>c(n-‘log(n))’)=O. 
n 

The L, rate of convergence is given in the following result. 

THEOREM 3. Suppose 6, -n-r and that Conditions 14 and 5(ii) hold. 
Then 

ll~,(.)-~(.)Il,=~,(n--I), l<q<co. 

Proofs of Theorems 1-3 will be given in Section 3. 

Remark 1. According to Stone [16, 171 and since i.i.d. is a special case 
of stationary sequences, the rates presented in Theorems l-3 are optimal 
rates of convergence. 

Remark 2. Collomb and Hlrdle [4], Boente and Fraiman [2,3] 
addressed the uniform consistency of local M-estimators corresponding to 
smooth ti(. ))s. The asymptotic independence used by Collomb and Hardle 
[4] is formulated in terms of b-mixing, which is stronger than the cc-mixing 
adopted in this paper. Moreover, the L, rates of convergence presented in 
[2-4] are slower than the optimal rate (n-l log n)’ given in Theorem 2. 
The L, (1~ q c co ) rates of convergence in Theorem 3 are more difficult to 
obtain and were not considered by [24]. A central limit theorem 
(a pointwise result) for local M-estimators is given in Robinson [14]. 

Remark 3. Examples of the function $( .) that satisfy Condition 4 are 
$(v) = sign(v) and Huber’s II/(v) = max { -k, min { y, k} }. Thus the above 
results unify approaches based on local medians and local M-estimators. 

Remark 4. Truong and Stone [18] obtained the L, rates of con- 
vergence for conditional mean function estimators by assuming the 
sequence Yi to be bounded. Theorem 2 suggests a way to remove this 
boundedness condition by linearizing the tail behavior of Y through the 
function *( .). 

3. PROOFS 

The proofs depend on the general properties of the function Ic/( .) given 
in Condition 4 and are refinements of the arguments in Truong and 
Stone [18]. 
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Proof of Theorem 1. By symmetry, it suflkes to show that 

lim Gii P(B,(x) > d(x) + cn-‘) = 0. 
c-m n 

(3.1) 

Set Z”=Z,Jx). It follows from Condition 1 that 8(Xi)<6(x)+M,6, for 
i E I,,. Let c > MO; then by Condition 4(ii), 

E[~(Y~-8(X)-C~,)IXi]=E[~(Yi-8(Xi)+(8(Xi)-e(X))-C~,)IXi] 

< -(c-M,) M&, n>> 1, iE1,. (3.2) 

Set 

Zi= $( Yi - e(x) - Cd,) - E[$( Yi - e(X) - Cc?,) ) Xi]. 

Then 

E cZi =0 [ 1 I” 
and, by Conditions 2-4(i) and 5(i) (see Lemma 6 of Truong and 
Stone [18]), 

Let c > MO. Then by (3.2), 

N,‘CE[~(Y,-8(x)-cs,)IXi]~ -(c-M,)Mz6,, n4 1. 
I” 

It now follows from (3.2) and Lemma 5 of Truong and Stone [18] that, for 
some c,>O and n% 1, 
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Since n&,d+2- 1, (3.1) now follows from Chebyshev’s inequality. This 
completes the proof of Theorem 1. 

Proof of Theorem 2. We can assume that C = [ - 4, $1”~ U. Set 
L, = [n2’]. Let W, be the collection of (2L, + l)d points in C each of 
whose coordinates is of the form j/(2L,) for some integer j such that 
ljl &L,. Then C can be written as the union of (2~5,)~ subcubes, each 
having length 21, = (2L,)-’ and all of its vertices in W,. For each x E C, 
there is a subcube Qw with center w such that x E Q,. Let C, denote the 
collection of the centers of these subcubes. Then 

P 
( 

sup I&(x) - e(x)/ > c(n-’ log n)r 
XEC 1 

= P max sup /8,(x)-0(x)/ >c(n-’ logn)’ . 
WCC, xeQ,, 

It follws from A, - n -2r and Condition 1 that (for n sufficiently large) 

le(x)-e(w)l GM, llx-WI1 GM,& for XEQ,, WEC,. 

Therefore, to prove the theorem, it is sufficient to show that there is a 
positive constant c such that 

lim P max sup [4,(x) - e(w)1 2 c(n-’ log n)l (3.3) 
n WOC. XEQ,, 

Given x E Q,, set 

N, = N,(x 1, 

1, = m(x), 
1,,=1Jw)= {i: l<i<nand IIXi-wll C6,+1,$}, 

R, = R,(w) = #In(w), 

iyn=iy”(w)= #{i: I(xi-w)( <s,-n”*}. 

Then there is a positive constant c3 such that 

lim P(l7,) = 1, 
n 

where 

(3.4) 

$i=$(Yj-O(W)-Can). 
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In fact, by Conditions 2, 3, and 5(ii), there are positive constants c4 and c5 
such that 

limP(YJ=l, (3.5) n 

where Y,, = {NJw) -N,(w) < c4nli~-‘A, and m,(w) > c,ndz for all 
WE&}. (Proof of (3.5) is given in (2.13) of Truong and Stone [18]). 
Given x E C, choose w such that x E QW. Then 8, < N, < m,, and 

Thus 

and, hence, 

Consequently, (3.4) follows from (3.5) and the boundedness of $( .). 
BY (3.4), 

(&z(x) -e(w) b ~6,) c {N,' c t,b( Yi- t?(w) - a?,) > 0) 
1" 

s 
i 

rn,lC yq Y,- e(w) - c&J 2 -+a" 
I" I 

on fl,,n$l. 
Thus 

u mx> - e(w) 2 4) 
Q” 

c 
{ 

~,‘~~(Yi-e(w)-csn)~ -C3dn 
I 

on Z7,,n+l. 
&I 

Hence 

max sup [0,(x)-O(w)] 2~8, 
WSC, xsQn > 

GP u LJ {&Ax)4w)~c~,} 
( G Qw ) 

‘rTIC’/‘(Yi-e(w)-Cd,)& -C3hn +P(L!f;). (3.6) 
4 
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According to Condition 1, 

l@(XJ - e(w)1 < M0(6, + A, ,/& whenever /jXi- wI1 < 6, + ;I, $. 

Thus by Condition 4(ii), there is a positive constant cc such that c 2 2~,, 

E(rl/(Yi-e(W)-Cs,))Xi)=E(~(Yi-e(Xi)+e(Xi) 

-O(w)-c6,,+M,d,&)IXi) 

< -cc6d,, n$l, ieIn. 

Hence 

~,‘CE(~(Yi-8(W)-C6,)(Xi),< --CCgd,. (3.7) 
I” 

Set Zi=~(Yi-e(w)-cs,)-E(II/(Yi- O(W) - d,)IXi). By (3.4)-(3.7), 
there is a positive constant K such that for n $. 1, 

P max sup (B,(X)-e(w))2~6, 
WEC’~ xeQ* 

<P u N,1CZi>(CC~-cC3)6, 
( i 

+‘(I) 
G in I) 

<nKmaxP ~;‘~.Zi>(cc,-cj)6, 
( 

+0(l). (3.8) 
C” L 

Set p,, = p,(w) = P( llXi - wII G 6, + 1, @). Then p, N 6:. Note that 
& Zi = xi K,Z, and E(K,Z,) = 0. By Lemma 6 of Truong and Stone [ 183, 
Var(C, KiZi) = O(nd$. It follows from a(n) = O(p”) and a double applica- 
tion of Lemma 8 of Truong and Stone [18] that there are positive 
constants c, and cs such that 

P m,‘~zi~(CCg-Cj)8, 
( r. 

).sP(liL+lP~) 

+P iiy~zi~cc,6”;N”+p~ 
( L > 

< exp( - ~&,d/n’~) + exp( - c2c,nd,d+ ‘) 

+O np ( ( 1 CnYl ‘+- 
~3:~ 6flogn >> 

for WEC,. 

(The first term on the right is bounded by applying Lemma 8 of Truong 
and Stone Cl83 with y<r, e2w Bf, and R2 = h4;‘nd~‘. The second term is 
bounded by using that Lemma again with R2 = M; ‘(cc6 - c~)~ n8zd+‘.) 
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Now it follows from n6:+* N log n that there is a positive constant c such 
that 

n”mFP iV;1CZi>(cc6-c,)Ci, 
( > 

+O as n-bco. (3.9) 
L 

Hence by (3.8) and (3.9), 

limp max sup (0,(x)-0(w))>c6, =O for c>O. (3.10) 
n C” XEQ. 

Similarly, 

lim P max sup (B,(x) - 6(w)) < -c6, =0 for c>O. (3.11) 
” C” XSQW 

It follows from (3.10) and (3.11) that (3.3) is valid. This completes the 
proof of Theorem 2. 

Proof of Theorem 3. By Condition 1, 0( .) is bounded on C (compact). 
Thus it follows from Theorem 2 that there is a positive constant T> 1 such 
that jl0( .)I1 < T and 

lim P(Qp,) = 1, (3.12) 
n 

where @,={Ildn(.)Ila<TT). For i=l,...,n, set 

if Yi< -(T+M,); 

if IYil<T+M5; 

if Yi> T+ M,. 

Let 0,(x) denote the solution of the equation 

Note that 0,(x) = I!?“(X) for x E C except on @:. Thus by (3.12), in order to 
prove the theorem, it is suhicient to show that 

lim lirnP(I(8,-8ll,~~n-r)=0. (3.13) 
E’cc n 

To verify (3.13), we may assume that C= [ - 4, $‘c U. According to 
al(n) = O(p”), there is a positive constant c9 such that 

lim P(ln,) = 1, (3.14) 
n 
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where Q, = {N,(x)>,c&~ for XE C}. (See Lemma 7 of Truong and 
Stone [ 181). 

Write PQ,(. ) = P( .; Q,) = P( . n Q,) and Z&,( IV) = E( IV1 9,), where W is 
a real-valued random variable. By (3.14), there is a sequence of positive 
numbers E, + 0 such that 

P 
(J 

[On(X) - e(x)(” dx 2 (cn 
C 

-Yq) 

<P 
(J 

p,(x) - e(x)lq dx 2 (cn-‘)q; an 
> 

+ &, 
C 

~ &.Cjc IfJn@) - w)lq dxl + E . 
--r Y (cn 1 

n (3.15) 

Set U,(x) = I on(x) - 0(x)1. By Condition 1, U,(x) is bounded by 2T for 
x E C. Thus there is a positive constant cl0 such that 

&[U;(x)] = JzT qtq- ‘P&l,(x) > t) dt 
0 

J 
2Mo6. = qtq-LPn,(U,(~)>t)dt 

0 

+ J2T qtq-l P,“( U,(x) ’ t) dt 
*MO 6” 

J 

2T 

< Cl& + 4t q- ‘P,,( U,(x) > t) dt. (3.16) 
2Mo& 

By Conditions 1-3, 4(iii), and 5(ii), there is a positive number cl1 such that 

J 
2T 

41 “-‘Pp,(U,(x)>t)dt~cll 6: for XE C. (3.17) 
=40& 

(The proof of (3.17) will be given shortly.) It follows from (3.16) and (3.17) 
that there is a positive constant c,* such that 

&,CUR(x)l G Cl2 4$ 

Thus there is a positive constant cl3 such that 

The conclusion of Theorem 3 follows from (3.15) and (3.18). 
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Finally, (3.17) will be proven. Let x E C be fixed. By Conditions 
4(ii), (iii), 

-N,1~E[$(Y;-e(x)-t)lXi]2M,t, ?M,d,<t<M;‘; 
L 

-N,L~E[$(Y;-e(x)-t)lXi]~M,, M,‘dt<2T. 
1” 

Set 

zi= lfq r; - e(x) - t) - E[$( r; - e(x) - t) 1 Xi]. 

Then 

p,n(ux) - w > 0 
G p, ( N;lC+(Y;-e(x)-t)20 

1” ) 

6 ps-2, N,‘xZi> -N-l ” 
f” 

<P ~Zi+,MZtn6f 
( 

for 2M,,6,<t<M;‘. (3.19) 
z 

Similarly, 

P,“((?,(x) - e(x) > I) <P 1 Zi3 c,M,n 6: for M;‘Gt<2T. 
I” 

(3.20) 

Set Ki=Ki(x)=l(IIXi-Ill~sn). Note 
E lK,Z,I = 0(&f), 

that C, Zi = Ii KiZi, E(K,Z,) = 0, 
and E lKiZiKjZjl= O(6rfd). Since Zi is bounded, it 

follows from Lemma 9 of Truong and Stone [18], 

EI~ZjIzk=EI~KiZi12k=O(n6L)k for k=l,2,3,.... 

Consequently, by Markov’s inequality, 

~Zi~cgM2tn6d < E IC, Zi12k 
&I > (c,M,tn 6;)2k 

O(ni5,d)k 
= (c,M,tn d;)2k 

for 2M06,<t<M;’ (3.21) 
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and 

By (3.19)-( 3.21), there is a positive constant c14 such that (note that 
nsfw S;‘) 

P,$,(x)- 6(x)> t) < C,/k 6: for 2M,b,<t<M;‘, 

< Cl4 s; for M;‘<t<2T. (3.22) 

Similarly, 

PQ$&(X) -6(x) < 4) < C&k s; for 2M06,<t<M;‘, 

< Cl4 sik for M;‘<t<2T. (3.23) 

Note that c14 does not depend on x. It now follows from (3.22) and (3.23) 
by choosing k > q/2 that 

f- ‘Pn,( U,,(x) > t) dt < 26ikc14 - q 2k-1dr+0(1)B;k=O(Sf). 
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