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The second-order modified Dirac equation leading to the modified dispersion relation due to the Lorentz
invariance violation corrections is suggested. The equation is formulated in the 16-component first-
order form. I have obtained the projection matrix extracting solutions of the equation with definite spin
projections which can be considered as the density matrix for pure spin states. Exact solutions of the
equation are found for particles in the external constant and uniform magnetic field. The synchrotron
radiation radius within the novel modified Dirac equation is estimated.
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1. Introduction

The possibility of the spontaneous violation of Lorentz and CPT
symmetries in the framework of the string theory was proposed
in [1]. Thus, the Standard Model was extended and the Lorentz
invariance violation (LIV) can be described by the effective field
theory [2]. From experiment, bounds on LIV coefficients within the
effective field theory were obtained [3]. Different models of LIV
in the photon sector [4] and fermion sector [5] were investigated
(there are many other publications). At present energies stringy
effects are suppressed by the Planck scale M P = 1.22 × 1019 GeV
and there are not signs yet of LIV in experiments. It should be
mentioned that any LIV models modify dispersion relations. It was
mentioned in [6,7] that quantum gravity corrections can lead to
deformed dispersion relation:

p2
0 = p2 + m2 − (Lp0)

αp2, (1)

where the speed of light in vacuum c = 1, p0 is an energy and p
is a momentum of a particle and L can be considered as “mini-
mal length” which is of the order of the Plank length L P = M−1

P .
The subluminal propagation of particles corresponds to L > 0 at
α = 1. The last term in Eq. (1) violates the Lorentz invariance.
The modified dispersion relation (1) with the parameter α = 1
was introduced in the framework of space–time foam Liouville-
string models [8]. The wave equation for spinless particles with the
dispersion equation (1) for α = 1 was considered in [9,10]. From
the analysis of the Crab Nebula synchrotron radiation some con-
strains on the parameters L and α were made [11,9]. In this Letter,
I postulate the modified Dirac equation for particles with spin-1/2
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leading to the deformed dispersion relation (1) with α = 2. This
modified Dirac equation can be considered within effective field
theory with LIV in flat space–time.

The Euclidean metric and the system of units h̄ = c = 1 is used.
Greek letters run 1, 2, 3, 4 and Latin letters run 1, 2, 3.

2. Modified equation for spin-1/2 particles

I suggest the modified Dirac equation for spin-1/2 particles of
the second order:

(γμ∂μ + m − iLγ4∂tγi∂i)ψ(x) = 0, (2)

where ∂μ = ∂/∂xμ = (∂/∂xi, ∂/(i∂t)), x0 = t is a time and notations
as in [12] are used. Eq. (2) is covariant under the rotational group
but the additional term in Dirac equation (2) violates the invari-
ance under the boost transformations. Thus, the Lorentz symmetry
is broken and one can consider Eq. (2) as an effective wave equa-
tion with LIV introducing preferred frame effects. To obtain the
dispersion relation, we investigate the plane-wave solution for pos-
itive energy ψ(x) = ψ(p)exp[i(px − p0x0)] to Eq. (2). Then Eq. (2)
reads

(i p̂ + m − iLp0γ4p̄)ψ(p) = 0, (3)

where p̂ = γμpμ , p̄ = γi pi . One can verify, with the help of the
γ -matrix algebra, that the matrix

Λ = i p̂ + m − iLp0γ4p̄ (4)

obeys the equation as follows:

(Λ − m)2 + p2 − L2 p2
0p2 = 0, (5)
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where p2 = p2 − p2
0. The matrix equation (3) possesses non-trivial

solutions if det Λ = 0 which is equivalent that some of the eigen-
values λ of the matrix Λ equal zero. Then the requirement λ = 0
leads to the modified dispersion relation:

p2
0 = p2 + m2 − L2 p2

0p2. (6)

Eq. (6) corresponds to Eq. (1) for α = 2. Thus, Eq. (2) postulated
realizes the modified dispersion relation (6). One can treat Eq. (2)
as an effective equation for spin-1/2 particles with LIV parameter
L of the order to the Plank length.

3. Wave equation in the first-order 16-component form

Now we present the second-order equation (2) in the 16-
component first-order form which is convenient for different cal-
culations. Let us introduce, following the method of [13] (see also
[14]) the system of first order equations equivalences to Eq. (2)

(γμ∂μ + m)ψ(x) − iLmγ4∂tγiψi(x) = 0,

∂iψ(x) = mψi(x). (7)

We define the 16-component wave function

Ψ (x) = {
ΨA(x)

} =
(

ψ(x)
ψi(x)

)
, (8)

so that Ψ0(x) = ψ(x), Ψi(x) = (1/m)∂iψ(x). Using the elements of
the entire matrix algebra εA,B , with matrix elements and products
of matrices [14](
εM,N)

AB = δM AδN B , εM,AεB,N = δABε
M,N , (9)

where A, B, M, N = (0, i), the system of equations (7), with tak-
ing into consideration Eq. (8), can be written in the 16-component
matrix form[
ε0,0 ⊗ γμ + mLδ4με0,i ⊗ γ4γi

− δμiε
i,0 ⊗ I4 + m

(
ε0,0 + εi,i) ⊗ I4

]
Ψ (x) = 0, (10)

where I4 is unit 4 × 4-matrix, the ⊗ is the direct product of ma-
trices, and we imply the summation over all repeated indices. One
can introduce the 16 × 16-matrices

Γμ = ε0,0 ⊗ γμ + mLδ4με0,i ⊗ γ4γi − δμiε
i,0 ⊗ I4,

I16 = (
ε0,0 + εi,i) ⊗ I4, (11)

where I16 is unit 16 × 16-matrix. Then Eq. (10) becomes the first-
order 16 × 16-component wave equation

(Γμ∂μ + m)Ψ (x) = 0. (12)

From Eq. (11) we have generalized Dirac matrices as follows:

Γm = ε0,0 ⊗ γm − εm,0 ⊗ I4,

Γ4 = ε0,0 ⊗ γ4 + mLε0,i ⊗ γ4γi . (13)

The rotational group generators in the 16-dimension representa-
tion space are given by

Jmn = (
εm,n − εn,m) ⊗ I4 + I4 ⊗ 1

4
(γmγn − γnγm). (14)

The wave equation (12) is form-invariant under the rotation group
transformations because matrices (13) obey the commutation rela-
tions as follows [15]:

[Γa, Jmn] = δamΓn − δanΓm, [Γ4, Jmn] = 0. (15)
For the positive energies Ψ (x) = Ψ (p)exp[i(px − p0x0)] and
Eq. (12) becomes

(i p̌ + m)Ψ (p) = 0, (16)

where p̌ = Γμpμ . One can verify that the matrix p̌ obeys the equa-
tion

p̌5 − p2 p̌3 + (mL)2 p2
4p2 p̌ = 0, (17)

where p4 = ip0. Introducing the matrix of Eq. (16)

Σ = i p̌ + m, (18)

and using Eqs. (6), (17), we obtain the matrix equation

Σ(Σ − m)(Σ − 2m)
[
(Σ − m)2 + p2 + m2] = 0. (19)

With the help of Eq. (19), we find solutions to Eq. (16) in the form
of the projection matrix

Π = N(Σ − m)(Σ − 2m)
[
(Σ − m)2 + p2 + m2]. (20)

Indeed, it follows from Eq. (19) that (i p̌ + m)Π = 0. Therefore,
every column of the matrix Π is the solution to Eq. (16). The nor-
malization constant N can be find from the requirement [16]:

Π2 = Π. (21)

From Eqs. (19), (20), after some calculations, one obtains the nor-
malization constant

N = 1

2m2(p2 + 2m2)
. (22)

We treat the matrix Π as a density matrix which describes impure
spin states. To extract pure spin states, one may introduce the spin
projection operator

σp = − i

2|p|εabcpa Jbc, (23)

where |p| =
√

p2
i , which obeys the minimal matrix equation as fol-

lows [17]:(
σ 2

p − 1

4

)(
σ 2

p − 9

4

)
= 0. (24)

With the help of the method [16], we find from Eq. (24) the pro-
jection operators extracting spin projections ±1/2:

P±1/2 = ∓1

2

(
σp ± 1

2

)(
σ 2

p − 9

4

)
. (25)

Then the projection operator extracting pure spin states with pos-
itive energy is

�±1/2 = Π P±1/2, (26)

obeying �2±1/2 = �±1/2. Thus, �±1/2 may be explored in calcula-
tions of some processes including electrons with taking into con-
sideration LIV parameter L.

4. Spin-1/2 particle in an external magnetic field

Let us consider a particle in an external uniform and static mag-
netic field along the x3 axis, H = (0,0, H). Then the 4-potential can
be chosen as

Aμ = (0, Hx1,0,0). (27)
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The electromagnetic interaction of particles in Eq. (2) can be intro-
duced by the standard substitution ∂μ → Dμ = ∂μ − ie Aμ. For the
electrons e = −e0, e0 > 0 and Eq. (2) becomes[
γm∂m + ie0 Hx1γ2

− iγ4(1 + Lγm∂m + ie0 H Lx1γ2)∂t + m
]
Ψ (x) = 0. (28)

One can look for a solution to Eq. (28), as for Dirac equation
[12,18], in the form

Ψ (x) = 1√
L2L3

exp
[
i(p2x2 + p3x3 − p0t)

]
Ψ (x1), (29)

where p2 = 2πn2/L2, p3 = 2πn3/L3; n2 and n3 are integer quan-
tum numbers. Taking into account Eq. (29), Eq. (28) becomes{
(γ1 + iLp0α1)∂1 + i

[
γ2 p2 + γ3 p3 + iLp0(α2 p2 + α3 p3)

]
+ ie0 Hx1(γ2 + iLp0α2) + m

}
Ψ (x1) = p0γ4Ψ (x1), (30)

where we have introduced matrices as follows [12]:

αk = iγ4γk =
(

0 σk
σk

)
, γ4 =

(
I2 0
0 −I2

)
, (31)

and σk are the Pauli matrices. Replacing the bispinor wave function

Ψ (x1) =
(

ϕ(x1)

χ(x1)

)
, (32)

into Eq. (30) with the help of Eq. (31), we obtain the system of
equations

(1 − Lp0)(−iσ1∂1 + p2σ2 + p3σ3 + e0 Hx1σ2)χ = (p0 − m)ϕ,

(1 + Lp0)(iσ1∂1 − p2σ2 − p3σ3 − e0 Hx1σ2)ϕ = −(p0 + m)χ.

(33)

From Eqs. (33) one finds the equation for ϕ:[(
1 − L2 p2

0

)
(iσ1∂1 − p2σ2 − p3σ3

− e0 Hx1σ2)
2 + m2 − p2

0

]
ϕ(x1) = 0. (34)

To take into consideration the spin projection of an electron, we
require that the ϕ is the eigenfunction of the operator of the spin
projection on the magnetic field direction σ3 [12]:

σ3ϕ(x1,μ) = μϕ(x1,μ), (35)

where μ = ±1. Then Eq. (34), with the help of Eq. (35) and the
properties of Pauli’s matrices, becomes[−∂2

1 + p2
3 + (p2 + e0 Hx1)

2 + e0 Hμ
]
ϕ(x1,μ)

= p2
0 − m2

1 − L2 p2
0

ϕ(x1,μ). (36)

After introducing new variable

ξ = √
e0 H

(
x1 + p2

e0 H

)

Eq. (36) takes the form of the equation for the harmonic oscillator:(
− d2

dξ2
+ ξ2

)
ϕ(ξ,μ)

= 1

e0 H

(
p2

0 − m2

1 − L2 p2
− p2

3 − e0 Hμ

)
ϕ(ξ,μ). (37)
0

It should be mentioned that p2 defines the coordinate of the
orbit center [18] x1 = −p2/(e0 H) (ξ = 0). The requirement that
ϕ(ξ,μ) → 0 at ξ → ±∞ gives

1

e0 H

(
p2

0 − m2

1 − L2 p2
0

− p2
3 − e0 Hμ

)
= 2n + 1, (38)

where n = 0,1,2, . . . is the principal quantum number. From
Eq. (38) one obtains the energy quantization:

p2
0 = m2 + (

1 − L2 p2
0

)[
p2

3 + e0 H(2n + 1 + μ)
]
. (39)

Due to the condition (39) the solution to Eq. (37) is given by

ϕ(ξ) = C exp

(
−ξ2

2

)
Hn(ξ), (40)

where Hn(ξ) are the Hermite polynomials and C is the normal-
ization constant. Eq. (39) shows that the energy of the electron
depends on the LIV parameter L. At L = 0 one arrives to the well-
known result [12]. From (29), (32), (33), one may find the bispinor
wave function Ψ (x). The normalization constant C is defined from
the relation [12]:

L3∫
0

dx3

L2∫
0

dx2

∞∫
−∞

Ψ +(x)Ψ (x)dx1 = 1, (41)

where Ψ +(x) is the Hermitian conjugate function. One can apply
Eqs. (29), (32), (40) to study the synchrotron radiation of electrons
with modified dispersion relation (39). Electrons in an external
magnetic field moves in helical orbits and emit the synchrotron ra-
diation and the frequency depends on the orbit radius [18]. Let us
consider the high (ultra-relativistic) energies of electrons (p0 � m).
In the case p3 = 0 particles move in a plane and at 2L2e0 Hn � 1
Eq. (39) is approximated as

p0 ≈ √
2e0 Hn − √

2L2(e0 Hn)3/2. (42)

The classical radius of the orbit is given by [18]:

R = βp0

e0 H
, (43)

with β = v being the electron velocity. Substituting Eq. (42) into
(43) at v ≈ 1, we obtain the orbit radius

R ≈ R0 − L2
√

2e0 Hn3/2, (44)

where

R0 ≈
√

2n

e0 H
(45)

is the orbit radius in the framework of the Klein–Gordon equation
[18]. It follows from Eq. (44) that LIV parameter L reduces the or-
bit radius. The angular orbital frequency ω = v/R becomes greater
due to the Lorentz-violating term.

To estimate the contribution of LIV parameter L to observable,
we use the data from experiments with magnetic trapping of elec-
trons [19]. Electrons in the Penning trap 90% of the time are in
the cyclotron ground state n = 1 and in external magnetic field
H = 6 T. Using the Heaviside–Lorentz system with the fine struc-
ture constant α = e2/(4π) and the SI units which are related to
the energy units 1 T = 195.5 eV2, 1 m = 5.1×106 eV−1, we obtain
the radius change at L = L P from Eq. (44): �R = L2

P

√
2e0 Hn3/2 ≈

10−60 m. Thus, when the LIV parameter L is equal to the Planck
length L P the change of the radius of the electron orbit is ex-
tremely small and Penning trap experiments are not relevant.
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From the Crab Nebula data, one can use the possible energy
of electrons p0 = 1 TeV, and the magnetic field H = 260 μG.
We obtain the principal quantum number n ≈ p2

0/(2e0 H) ≈ 3 ×
1029, and the change of the synchrotron radius at L = L P , �R =
L2

P

√
2e0 Hn3/2 ≈ 10−22 m. This value is very small compared to

the classical radius (45). If the LIV parameter L is much greater
than the Planck length L P , then the LIV effect has to be taken into
account.

5. Conclusion

The wave equation for spin-1/2 particles (electrons) suggested
leads to the modified dispersion relation (1) with α = 2 which
was discussed in the context of quantum gravity corrections in [9].
I have formulated the novel equation in the first-order form and
found the minimal polynomial of matrices of the equation and
the spin projection operators. This allowed us to obtain the pro-
jection matrix extracting solutions for free particles in the mo-
mentum space. One may consider the projection matrix found as
the density matrix with taking into account LIV effects. Such den-
sity matrix can be explored in different calculations of quantum
possesses. We have found exact solutions to the wave equation
for spin-1/2 particles in a constant and uniform external magnetic
field. Exact solutions obtained can be used for the analysis of the
synchrotron radiation of electrons with taking into consideration
LIV corrections. The synchrotron radius corrections leading to in-
creasing the synchrotron frequency were estimated. We leave the
analysis of bounds on the LIV parameter L from astrophysical data
for further investigations.
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