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In loop quantum gravity the discrete nature of quantum geometry acts as a natural regulator for matter 
theories. Studies of quantum field theory in quantum space–times in spherical symmetry in the canonical 
approach have shown that the main effect of the quantum geometry is to discretize the equations of 
matter fields. This raises the possibility that in the case of fermion fields one could confront the usual 
fermion doubling problem that arises in lattice gauge theories. We suggest, again based on recent results 
on spherical symmetry, that since the background space–times will generically involve superpositions of 
states associated with different discretizations the phenomenon may not arise. This opens a possibility of 
incorporating chiral fermions in the framework of loop quantum gravity.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Loop quantum gravity has provided a non-trivial, anomaly free, 
finite theory of quantum general relativity coupled to matter [1]. 
In it, the quantum geometry plays the role of regulator of matter 
fields. Although this is suggested in the general theory, difficulties 
in making progress in general have hampered exhibiting detailed 
examples. On the other hand, detailed calculations are possible 
in the context of spherically symmetric space–times, where the 
theory can be solved completely in closed form [2]. In partic-
ular Hawking radiation has been recovered using quantum field 
theory in quantum space–time techniques [3]. Certain very high 
frequency trans-Planckian modes of the field are suppressed natu-
rally as a consequence of the discreteness of the quantum space–
time. This opens new possibilities for issues like the backreaction 
of Hawking radiation on black holes. What has been seen in the 
spherically symmetric case is that if one considers quantum field 
theories living on the quantum space–time, one ends up with a 
Fock-like quantization where the main ingredient is that the equa-
tions of the field theory become discretized. Although one can 
consider quantum geometries with sub-Planckian separations for 
the vertices of the spin networks (which play the role of points 
of the lattice), and therefore have an excellent approximation to 
the continuum theory, some important differences arise. To begin 
with, one obtains dispersion relations similar to those of lattices, 
which suppress the propagation of certain trans-Planckian modes 
of wavelength smaller than the lattice spacing. In turn, this helps 
eliminate the divergences that arise in ordinary field theories, for 
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instance, when one computes the expectation value of the stress 
energy tensor.

A concern that may arise in this context is what happens when 
one considers fermions, particularly chiral ones. As is well known, 
fermions on the lattice have the problem of fermion doubling [4]. 
In fact, fermion doubling has already been noted in certain mod-
els of loop quantum gravity [5]. Under very general assumptions, 
the Nielsen–Ninomiya no-go theorem makes their appearance in-
evitable. Let us briefly recall how this problem arises. The disper-
sion relation for a fermion on a one dimensional lattice (or on a 
spherical quantum space–time) is given by,

ωn = ± 1

�
sin (ln) , (1)

with ln = kn�, −π ≤ ln ≤ π and

kn = 2πn

N�
(2)

with N the number of vertices in the spin networks of the back-
ground quantum space–time and � the separation of the vertices 
of the spin network. The quantity −N/2 ≤ n ≤ N/2 is an integer 
that characterizes the wave number. For small values of kn one re-
covers the linear dispersion relation of fermions in the continuum.

For small lattice spacings, the frequencies go as �−1. So one 
will have finite frequencies will correspond to ln → kn� or ln ±
π → ±kn�. Waves near ln → 0 will correspond to long wavelength 
modes (compared to the Planck scale) that will correspond to the 
modes of the fermions in the continuum, with the usual linear dis-
persion relation. But what about the modes near ln → ±π? They 
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will also have a linear dispersion relation. In the case of a free 
field theory one can simply choose not to populate those modes 
and therefore one would recover at low energies the usual fermion 
behavior. But in an interactive theory that may not be possible. 
Following Susskind [4] we can consider an interaction term pro-
portional to the charge density of fermions ψ(m)†ψ(m) with m
denoting the position on the lattice. In momentum space this will 
lead to an interaction term in the Hamiltonian of the form, in mo-
mentum space,

ψ(m)ψ†(m) =
π∫

−π

exp
(
im

(
l − l′

))
ψ(l′)†ψ(l)dldl′. (3)

Such a term is likely to excite a pair with momentum ±kn as with 
(π/� − kn) or (−π/� + kn). Generic couplings will all excite the 
low frequency modes near kn → ±π/�.

However, when one is contemplating a quantum field living 
on a quantum space–time, only for a measure zero set of quan-
tum space–times will one encounter the situation above. That set 
would be quantum states with a single spin network leading to a 
single discretization of the quantum field. Generically, one would 
have superpositions with different separations between the ver-
tices of the spin network � (and more in general superpositions 
with non-uniform spacings, here for simplicity we consider super-
positions with uniform spacings). If one considers that case then 
it will not be true anymore that an interaction like the one con-
sidered above (and generic ones as well) will connect kn = 0 with 
kn = ±π . Let us consider how the above interaction gets modified 
in this case. We consider a superposition of spin networks of spac-
ing �, all of which contain a vertex at the point x. Then we have 
for the previously introduced interaction term,

ψ(x)ψ†(x)

=
�+∫

�−

d�d�′
π∫

−π

exp

(
ix

(
l

�
− l′

�′

))
ψ�(l′)†ψ�′(l)dldl′ (4)

where we assume that the spacing � is in an interval [�−, �+]
such that �+ − �− < � � 1 and that π/�− − π/�+ ∼
(�+ − �−)π/�2− � 2π . These assumptions are quite reasonable if 
one assumes that the spacing of the lattices take continuous values 
and their properties resulted from very high energy physical pro-
cesses occurring at early stages of the universe near the bounce. 
The generic situation would be in fact having superpositions of 
random lattices. And substituting l → k� and l′ → −π + k′�′ , we 
get,

ψ(x)ψ†(x)

=
�+∫

�−

d�d�′
π/�∫

−π/�

2π/�′∫
0

exp
(
−ix

π

�′
)

× exp
(
ix

(
k − k′))ψ�(−π + k′�′)†ψ�′(k�)��′dkdk′. (5)

And we see that unlike in the previous case, there appears a 
phase factor that when integrated over �′ will vanish due to its 
oscillatory nature. Therefore the coupling between small k and 
± (π/� − k) vanishes.

In fact, there is not even the possibility of doubling in this con-
text. If one computes the probability density ψ(x)ψ†(x) for low 
energies, in the integrand the momenta of the order of inverse 
lattice scale will not contribute, whereas in the usual lattice treat-
ment they do, leading to doubling.

The argument presented is in a two dimensional example, 
based on spherical symmetry, so we need to note that at this 
point this is only a suggestion. At the moment we do not have 
a similar framework in 3 + 1 dimensions that would allow us to 
extend the argument there at any level of detail. It should be 
noted that others have argued that there is no fermion doubling 
in 3 + 1 dimensions based on the use of random lattices, for in-
stance, in the spin network context [6]. The mechanism we are 
suggesting here is a different one. A challenge in the use of ran-
dom lattices is how to make sense of the continuum limit, which 
is usually achieved through a sum over lattices. Here we consider 
superpositions of background quantum space–times that provide 
an effective superposition of lattices, but one can choose the back-
ground quantum space–time to approximate a semiclassical situa-
tion and one does not need to sum over all possible lattices. Given 
the amount of interest in if loop quantum gravity can incorporate 
chiral fermions [7], it is encouraging to have more than one possi-
ble mechanism to address the problem. It may also lead to insights 
into the chiral anomaly in 1 + 1 dimensions [8], were one could in 
principle carry out explicit calculations in the context of quantum 
geometries.
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