
Artificial Intelligence 172 (2008) 1809–1832

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

A new approach to estimating the expected first hitting time
of evolutionary algorithms

Yang Yu, Zhi-Hua Zhou ∗

National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 December 2007
Received in revised form 8 July 2008
Accepted 9 July 2008
Available online 12 July 2008

Keywords:
Evolutionary algorithms
Expected first hitting time
Convergence rate
Computational complexity

Evolutionary algorithms (EA) have been shown to be very effective in solving practical
problems, yet many important theoretical issues of them are not clear. The expected first
hitting time is one of the most important theoretical issues of evolutionary algorithms,
since it implies the average computational time complexity. In this paper, we establish
a bridge between the expected first hitting time and another important theoretical
issue, i.e., convergence rate. Through this bridge, we propose a new general approach to
estimating the expected first hitting time. Using this approach, we analyze EAs with
different configurations, including three mutation operators, with/without population, a
recombination operator and a time variant mutation operator, on a hard problem. The
results show that the proposed approach is helpful for analyzing a broad range of
evolutionary algorithms. Moreover, we give an explanation of what makes a problem hard
to EAs, and based on the recognition, we prove the hardness of a general problem.

© 2008 Published by Elsevier B.V.

1. Introduction

Evolutionary algorithms (EAs) are a kind of optimization technique, inspired by the natural evolution process. Despite
many different implementations [1], e.g., genetic algorithm, genetic programming and evolutionary strategies, traditional evolu-
tionary algorithms can be summarized below by four steps:

(1) Generate an initial population of random solutions;
(2) Reproduce new solutions based on the current population;
(3) Remove relatively poor solutions in the population;
(4) Repeat from Step 2 until a stop criterion is satisfied.

In the evolutionary process, a population of randomly initialized solutions is maintained and evolved. Mutation and re-
combination are two popular operators for reproduction in Step 2. A fitness function is employed to guide Step 3. The
evolutionary repetition stops when, e.g., an optimal solution is found or time runs out.

EAs solve problems in straightforward ways and do not require, for example, continuous or differentiable functions or
inversable matrices. So, EAs have been applied to bioinformatics [17], circuit design [3], data mining [9], information retrieval
[4], etc. Despite the remarkable success achieved by EAs on practice problems, EAs are often criticized for the lack of a solid
theoretical foundation. Actually, such a theoretical foundation is very desired in order to gain deep understanding of the
strength and weakness of current EAs and thus develop better EAs.

* Corresponding author.
E-mail address: zhouzh@nju.edu.cn (Z.-H. Zhou).
0004-3702/$ – see front matter © 2008 Published by Elsevier B.V.
doi:10.1016/j.artint.2008.07.001

https://core.ac.uk/display/82770226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:zhouzh@nju.edu.cn
http://dx.doi.org/10.1016/j.artint.2008.07.001

1810 Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832
The first hitting time of EAs is the time that, in a run, EAs find an optimal solution for the first time, and the expected first
hitting time (EFHT) is the average time that EAs require to find an optimal solution, which implies the average computational
time complexity of EAs. It is evident that the EFHT is one of the most important theoretical issues of EAs.

Many papers have been devoted to the analysis of simple EAs. The (1 + 1)-EA, i.e., EA without population, has been
studied on the long path problem [22], the OneMax problem [23], the uni-model functions [5,7] and linear functions [6,7].
Another EA without population has been studied on the OneMax problem [10]. More details can be found in Beyer et al.’s
survey [2]. Owing to these efforts, several theoretical properties of EAs become more clear. In these works, however, ad
hoc approaches were used to analyze simple EAs on simple problems, yet a general approach that can be used to analyze
wider kinds of EAs to gain deeper insights is more desired. Recently, several works [13–15] have been devoted to developing
general analysis approaches, which are summarized in the latest survey [19].

He and Yao [13,15] have developed a general approach to analyzing a wide class of EAs based on drift analysis [11], which
is a significant advance. Intuitively, if we know the length of the whole path toward the optimum and the length of the
drift of the EA at each step, we can estimate the EFHT by dividing the path length by the step drift. However, no practical
measure of these quantities is known.

He and Yao [14] have developed another framework based on the analytical solution of EFHT to analyze and compare
EAs. Under this framework, two hard problem classes (i.e., problems that can only be solved in exponential time), the
‘wide gap’ problem class and the ‘long path’ problem class, were identified. Since the analytical framework is derived from
homogeneous Markov chain models, only EAs with static reproduction operators can be analyzed, although EAs with time-
variant operators or adaptive operators are very popular and powerful [8].

The convergence rate is another important theoretical issue of EAs, which implies how close the current state is to the
optimal area at each step. The convergence issue has been studied for years [12,16,21,23,25]. He and Yu [16] did a thorough
study based on the minorization method [20].

In this paper, we present the first study on the relationship between the EFHT and the convergence rate, and establish
a bridge between them. Through this bridge, we propose a new general approach to estimating the expected first hitting
time. In contrast to previous researches where easy problems (i.e., problems that can be solved in polynomial time) [6,
15,23] were studied, we use the proposed approach to analyze EAs on a hard problem. The analyzed EAs involve various
configurations, including three mutation operators, with/without population, a recombination operator and a time variant
mutation operator. The results show that the proposed approach is helpful for analyzing a broad range of EAs. Moreover,
we give an explanation of what makes a problem hard to an EA, and based on the recognition, we prove the hardness of a
general problem.

The rest of this paper is organized as follows. In Section 2, we briefly review some related work and introduce how to
model EAs using Markov chains. In Section 3, we introduce a new approach to estimating the EFHT, which is the main result
of this paper. In Section 4, we analyze several EAs on a hard problem using the proposed approach, which is followed by
discussions in Section 5. Finally, in Section 6, we conclude the paper.

2. Modeling EAs using Markov chain

EAs evolve solutions from generation to generation. Each generation stochastically depends on the previous one, except
the initial generation which is randomly generated. This conditional independence can be modeled natually by Markov chains
[12–14,18,24,25].

Combinatorial optimization problems are among the most common problems in practice, whose solutions can be repre-
sented by a sequence of symbols. In this paper, we use EAs to tackle them. To model this kind of EAs, we construct Markov
chains with discrete state space. The key to construct such a Markov chain is to bijectively map the populations of an EA
to the states of the Markov chain. A popular mapping [12,16,25] enables one state of the Markov chain to correspond to
one possible population of the EA. Suppose an EA encodes a solution in a vector of length L, each component of the vector
is drawn from an alphabet set B, and each population contains M solutions. Let S denote the solution space. There are

|S| = |B|L number of different solutions. Let X denote the population space. There are |X | = (M+|B|L−1
M

)
number of different

possible populations [25]. A Markov chain which models the EA is constructed by taking X as the state space, i.e., a chain
{ξt}+∞

t=0 is built where ξt ∈ X .
A population is called an optimal population if it contains at least one optimal solution. Let X∗ (∈ X) denote the set of all

optimal populations. The goal of EAs is to reach X∗ from an initial population. Thus, the process of an EA which seeks X∗
can be analyzed by studying the corresponding Markov chain [12,16].

In the rest of this section, we introduce several notations and definitions. Given a Markov chain {ξt}+∞
t=0 (ξt ∈ X) and a

target subspace X∗ ⊂ X , let μt (t = 0,1, . . .) denote the probability of ξt being in X∗ , i.e.,

μt =
∑
x∈X∗

P (ξt = x). (1)

Definition 1 (Convergence). Given a Markov chain {ξt}+∞
t=0 (ξt ∈ X) and a target subspace X∗ ⊂ X , {ξt}+∞

t=0 is said to converge
to X∗ if

lim μt = 1. (2)

t→+∞

Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832 1811
In [16], convergence rate is measured by 1 − μt at step t , which is equivalent to that used in [25]. Therefore, we also use
1 − μt as the measure of convergence rate in this paper.

Definition 2 (Convergence rate). Given a Markov chain {ξt}+∞
t=0 (ξt ∈ X) and a target subspace X∗ ⊂ X , the convergence rate

to X∗ at time t is 1 − μt .

Definition 3 (Absorbing Markov chain). Given a Markov chain {ξt}+∞
t=0 (ξt ∈ X) and a target subspace X∗ ⊂ X , {ξt}+∞

t=0 is said to
be an absorbing chain, if

∀t ∈ {0,1, . . .}: P
(
ξt+1 /∈ X∗ | ξt ∈ X∗) = 0. (3)

We use absorbing Markov chains to model all the EAs studied in this paper, because absorbing Markov chains have good
theoretical properties and can be practically achieved. An EA can be modeled by an absorbing Markov chain if it never
loses an optimal solution once found. Actually, most EAs for real problems satisfy this condition because, if an optimal
solution can be identified, the EA will stop when it finds them; otherwise, when optimal solutions cannot be identified,
the commonly used strategy of keeping the best-so-far solution in every generation can make the condition be satisfied.
Moreover, EAs that can be modeled by absorbing Markov chains converge to optimal solutions with certain operators [16],
which is a desirable property in practice.

Definition 4 (Expected first hitting time, EFHT). Given a Markov chain {ξt}+∞
t=0 (ξt ∈ X) and a target subspace X∗ ⊂ X , let a

random variable τ denote the events

τ = 0: ξ0 ∈ X∗,

τ = 1: ξ1 ∈ X∗ ∧ ξi /∈ X∗ (i = 0),

τ = 2: ξ2 ∈ X∗ ∧ ξi /∈ X∗ (∀i ∈ {0,1}),
. . .

τ = t: ξt ∈ X∗ ∧ ξi /∈ X∗ (∀i ∈ {0,1, . . . , t − 1}),
The mathematical expectation of τ , E[τ], is called the expected first hitting time (EFHT) of the Markov chain.

This definition of EFHT is equivalent to those used in [13,14]. The EFHT of an EA is the average time in which it finds an
optimal solution, which is its average computational time complexity.

Markov chains model the essential of the corresponding EA processes, thus the convergence, convergence rate and EFHT
of EAs can be obtained by analyzing the corresponding Markov chains. So, in the rest of the paper, we do not distinguish
the convergence, convergence rate and EFHT of EAs and those of the corresponding Markov chains.

3. Deriving expected first hitting time from convergence rate

The convergence rate has been studied for many years [12,25] and recently a general bound has been developed in [16]
through the minorization condition method [20]. Since we focus on using EAs to solve combinatorial optimization problems
in this paper, a discrete space version of Theorem 4 in [16] is proven below.

Lemma 1. Given an absorbing Markov chain {ξt}+∞
t=0 (ξt ∈ X) and a target subspace X∗ ⊂ X, if two sequences {αt}+∞

t=0 and {βt}+∞
t=0

satisfy

+∞∏
t=0

(1 − αt) = 0 (4)

and

βt �
∑
x/∈X∗

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt
� αt, (5)

then the chain converges to X∗ and the convergence rate is bounded by

(1 − μ0)

t−1∏
i=0

(1 − αi) � 1 − μt � (1 − μ0)

t−1∏
i=0

(1 − βi). (6)

1812 Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832
Proof. From Eqs. (1) and (3), it follows that

μt − μt−1 =
∑
x/∈X∗

P
(
ξt ∈ X∗ | ξt−1 = x

)
P (ξt−1 = x),

and by applying Eq. (5) we get

(1 − μt−1)αt−1 � μt − μt−1 � (1 − μt−1)βt−1,

(1 − μt−1)(1 − αt−1) � 1 − μt � (1 − μt−1)(1 − βt−1),

by applying this inequality recursively, we have

(1 − μ0)

t−1∏
i=0

(1 − αi) � 1 − μt � (1 − μ0)

t−1∏
i=0

(1 − βi). �

Lemma 1 implies that as far as the probability of an EA ‘jumping’ into the set of optimal solutions can be estimated
for each step, the bounds of its convergence rate can be derived. The only requirement is that the EA can be modeled by
an absorbing Markov chain, i.e., the EA satisfies Eq. (3). As mentioned before, most EAs used in real problems meet this
requirement.

In Definition 4, the EFHT is the mathematical expectation of the random variable τ . Meanwhile, the probability distribu-
tion of τ is the probability of an optimal solution being found before step t (t = 0,1, . . .). Thus, as long as the EA can be
modeled by an absorbing Markov chain, it holds that

μt+1 − μt =
∑
x∈X∗

P (ξt+1 = x) −
∑
x∈X∗

P (ξt = x)

= P (τ = t + 1).

This implies that the probability distribution of τ is equal to μt , which is one minus the convergence rate. So, the conver-
gence rate and the EFHT are two sides of a coin.

Meanwhile, the bounds of the probability distribution and bounds of the expectation of the same random variable have
a relationship shown in Lemma 2.

Lemma 2. Let u and v denote two discrete random variables that are nonnegative integers with limited expectation, and Du(·) and
D v(·) denote their distribution functions, respectively, i.e.,

Du(t) = P (u � t) =
t∑

i=0

P (u = i),

D v (t) = P (v � t) =
t∑

i=0

P (v = i).

If Du(t) � D v (t) (∀t = 0,1, . . .), then the expectations of the random variables satisfy

E[u] � E[v], (7)

where E[u] = ∑
t=0,1,... t P (u = t) and E[v] = ∑

t=0,1,... t P (v = t).

Proof. Since Du is the distribution of u,

E[u] = 0 · Du(0) +
+∞∑
t=1

t
(

Du(t) − Du(t − 1)
)

=
+∞∑
i=1

+∞∑
t=i

(
Du(t) − Du(t − 1)

)

=
+∞∑
i=0

(
lim

t→+∞ Du(t) − Du(i)
)

=
+∞∑
i=0

(
1 − Du(i)

)
,

and same for v . Thus,

Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832 1813
E[u] − E[v] =
+∞∑
i=0

(
1 − Du(i)

) −
+∞∑
i=0

(
1 − D v (i)

)

=
+∞∑
i=0

(
D v (i) − Du(i)

)
� 0. �

Since one minus the convergence rate is the probability distribution of τ , and the EFHT is the expectation of τ , Lemma 2
reveals that the lower/upper bounds of the EFHT can be derived from the upper/lower bounds of the convergence rate.

Thus, based on Lemmas 1 and 2, a pair of general bounds of the EFHT in Theorem 1 can be obtained.

Theorem 1. Given an absorbing Markov chain {ξt}+∞
t=0 (ξt ∈ X) and a target subspace X∗ ⊂ X, if two sequences {αt}+∞

t=0 and {βt}+∞
t=0

satisfy

+∞∏
t=0

(1 − αt) = 0 (8)

and

βt �
∑
x/∈X∗

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt
� αt, (9)

then the chain converges and, starting from non-optimal solutions, the EFHT is bounded by

E[τ] � α0 +
+∞∑
t=2

tαt−1

t−2∏
i=0

(1 − αi) (10)

and

E[τ] � β0 +
+∞∑
t=2

tβt−1

t−2∏
i=0

(1 − βi). (11)

Proof. Applying Lemma 1 with Eq. (9), we have

1 − μt � (1 − μ0)

t−1∏
i=0

(1 − αi).

Considering that μt expresses the distribution of τ , i.e., μt = Dτ (t), we can get the lower bound of Dτ (t) as

Dτ (t) �
{

μ0 t = 0,

1 − (1 − μ0)
∏t−1

i=0(1 − αi) t = 1,2,

Imagine a virtual random variable η whose distribution equals the lower bound of Dτ . The expectation of η is

E[η] = 0 · μ0 + 1 · [1 − (1 − α0)(1 − μ0) − μ0
] +

+∞∑
t=2

t ·
[
(1 − μ0)

t−2∏
i=0

(1 − αi) − (1 − μ0)

t−1∏
i=0

(1 − αi)

]

=
[
α0 +

+∞∑
t=2

tαt−1

t−2∏
i=0

(1 − αi)

]
(1 − μ0).

Since Dτ (t) � Dη(t), according to Lemma 2, E[τ] � E[η]. Thus, the upper bound of the EFHT is

E[τ] �
[
α0 +

+∞∑
t=2

tαt−1

t−2∏
i=0

(1 − αi)

]
(1 − μ0).

Note that the EA is assumed to start from non-optimal solutions, i.e., μ0 = 0.
The lower bound of the EFHT can be derived similarly. �
Two points in Theorem 1 remain to be clarified. Firstly, ‘starting from non-optimal solutions’ is just a theoretical assump-

tion that is used to make the result easy to read. Practically, for the problems where EAs are applied, the probability of a
randomly generated solution being optimal is exponentially small. In such case, this assumption will not affect the result of
the asymptotic analysis. Secondly, Theorem 1 is written in a compact form, i.e., we will have both lower and upper bounds

1814 Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832
of the EFHT if we have both βt and αt in Eq. (9). Actually, it is also applicable when we only have one of them. We will
have a lower bound of the EFHT if we have βt , and we will have an upper bound of the EFHT if we have αt .

The bounds of EFHT, i.e., Eqs. (10) and (11), have an intuitive explanation. The part αt−1
∏t−2

i=0(1 − αi) (or replacing α
by β) indicates the probability of the event that the EA finds an optimal solution at the tth step, but does not find it at any
earlier step.

Theorem 1 shows that we can have bounds of the EFHT from the bounds of the formula∑
x/∈X∗

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt
. (12)

The first part of the formula P (ξt+1 ∈ X∗ | ξt = x) is the probability of the EA ‘jumping’ into an optimal population, which
we call as success probability. The second part P (ξt=x)

1−μt
is a normalized distribution over non-optimal states. As long as these

two parts are estimated, the bounds of the EFHT can be derived. The more accurate the estimated probability, the tighter
the derived bounds.

4. Case study on a hard problem

In this section, we will prove that the Trap problem is hard (i.e., can only be solved in exponential time) for several EAs,
using our proposed approach. The Trap problem is defined below.

Definition 5 (Trap problem). Given a set of n positive values, i.e., W = {wi}n
i=1, and a capacity value c, to find x∗ from

x∗ = arg max
x∈{0,1}n

n∑
i=1

wi · xi

s.t.
n∑

i=1

wi · xi � c,

where w1 = w2 = · · · = wn−1 > 1, wn = (
∑n−1

i=1 wi) + 1 and c = wn .

Trap problem has one optimal solution x∗ = (000 . . . 01). A solution is a feasible solution if it satisfies the constraint,
otherwise it is an infeasible solution.

We try to tackle the Trap problem using several EAs which are configured commonly as below. The Reproduction will be
implemented by concrete operators later.

• Encoding: Each solution is encoded by a string with n binary bits, where the ith bit is 1 if wi is included and 0
otherwise.

• Initial: Randomly generate a population of M solutions encoded by binary strings.
• Reproduction: Generate M new solutions from the current population.
• Selection: Select the best M solutions among the current population and the reproduced solutions, which is also called

plus-selection, to form the population of the next generation. The selected M solutions are with the best fitness value
(according to the definition below).

• Fitness: The fitness of a solution x = (x1x2 . . . xn) is defined as

Fitness(x) = θ

n∑
i=1

wi xi − c, (13)

where θ = 1 when x is a feasible solution, i.e.,
∑n

i=1 wi xi � c, and θ = 0 otherwise. The fitness function is to be
maximized, and the larger the fitness is, the better the solution is. Here, the maximum fitness value is zero.

• Stop criterion: If the largest fitness value in population is zero, stop and output the solution with the maximum fitness.

To implement the Reproduction operator, we use several popular operators, listed below.

Mutation#1 (bitwise mutation with constant probability): Independently flip each bit of each solution with an constant
probability pm ∈ (0,0.5].

Mutation#2 (bitwise mutation with probability 1/n): Independently flip each bit of each solution with probability pm = 1
n .

This may be the most commonly used mutation operator.
Mutation#3 (one-bit mutation): Randomly flip one bit of each solution.
Mutation#4 (time-variant mutation): Independently flip each bit of each solution with probability (0.5 − d)e−t + d, where

d ∈ (0,0.5] and t = 0,1,
Recombination (one-point crossover): Exchange the leading σ bits of randomly selected two solutions, where σ is drawn

randomly from {1,2, . . . ,n − 1}.

Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832 1815
Mutation#1 seems like a special case of Mutation#2. However, there is a significant difference, that is, the mutation prob-
ability of Mutation#2 is adapted to the problem size while that of Mutation#1 is a constant. So, the asymptotic behaviors,
as n → +∞, of the two are different.

To focus on the order of the asymptotic complexity of EFHT of EAs, we use the Ω(·) representation. For two functions
f (·) and g(·), we write f (n) = Ω(g(n)) to represent that g(n) is an asymptotic lower bound of f (n), if and only if

lim
n→+∞

f (n)

g(n)
> 0,

and meanwhile, we write g(n) = O (f (n)).

4.1. Static mutation without population

First, we show how the three static mutation operators, Mutations #1, #2 and #3, perform on the Trap problem, with
population size 1, that is, (1 + 1)-EA. Since a population is equal to a solution, the population state space is equal to the
solution state space, i.e., X = S .

Proposition 1. Solving the Trap problem using the EA with Reproduction implemented by Mutation#1 (bitwise mutation with constant
probability) and with a population size 1, i.e. (1 + 1)-EA, if starting from non-optimal populations, the EFHT is bounded by

E[τ] = Ω(θn), (14)

where θ = (1 − pm)−1 ∈ (1,2] is a constant and n is the problem size.

To prove this proposition, we need to find an upper bound of formula (12) applying Theorem 1. We first investigate the
part of success probability of formula (12), P (ξt+1 ∈ X∗ | ξt = x). Assuming a solution has k bits different from the optimal
solution, the probability of the solution being mutated to be the optimal solution is pk

m(1 − pm)n−k using Mutation#1. So
the maximum probability of a solution being mutated to be the optimal solution is pm(1 − pm)n−1, which means that there
is only one bit difference. Therefore, we have P (ξt+1 ∈ X∗ | ξt = x) � pm(1 − pm)n−1. Then, by applying Theorem 1 with this
upper bound, we get this proposition.

Proof. Since P (ξt+1 ∈ X∗ | ξt = x) � pm(1 − pm)n−1, we have

∑
x/∈X∗

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt

�
∑
x/∈X∗

pm(1 − pm)n−1 P (ξt = x)

1 − μt

= pm(1 − pm)n−1
∑

x/∈X∗ P (ξt = x)

1 − μt

= pm(1 − pm)n−1. %% by Eq. (1)

Let βt = pm(1 − pm)n−1, by Theorem 1,

E[τ] � β0 +
+∞∑
t=2

tβt−1

t−2∏
i=0

(1 − βi) = 1

pm

(
1

1 − pm

)n−1

= 1

pm
θn−1.

Considering that pm is a constant, E[τ] = Ω(θn). �
Proposition 2. Solving the Trap problem using the EA with Reproduction implemented by Mutation#2 (bitwise mutation with proba-
bility 1/n) and with a population size 1, i.e. (1 + 1)-EA, if starting from non-optimal populations, the EFHT is bounded by

E[τ] = Ω
(
2n)

, (15)

where n is the problem size.

If we follow the idea in the proof of Proposition 1 to obtain an upper bound of success probability, i.e., P (ξt+1 ∈ X∗ |
ξt = x) � 1/(en), we can only obtain an Ω(n) lower bound for the EFHT, which is too loose.

To get a tighter bound, we take two steps. First, we show that formula (12) is O (1/2n) at the beginning, i.e., t = 0.
Second, we show that formula (12) decreases as t increases. So O (1/2n) is an upper bound of formula (12). By applying
Theorem 1 we get Proposition 1.

There is a trick for calculating formula (12). We divide the state space into subspaces, in which states share some
common properties, and treat each subspace as a whole. We first divide the state space into n + 1 subspaces {Xi}n , where
i=0

1816 Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832
Xi contains all the solutions that have exactly i identical bits with the optimal solution, so that the solutions in each
subspace have the same probability of being mutated to be the optimal solution. By this division, the success probability at
t = 0 is calculated. We then divide the state space into the optimal space X∗ , the feasible space X F and the infeasible space
XI , according to whether solutions satisfy the constraint, and combine this division with the previous one. By this division,
we find that formula (12) decreases as t increases.

Proof. Let

Xi = {
x ∈ X | ‖x − x∗‖H = n − i

}
,

where ‖ · ‖H is Hamming distance and x∗ is the optimal solution, which means solutions in Xi have i bits identical with the
optimal solution, and that X = ⋃n

i=0 Xi , |Xi| =
(n

i

)
, and Xn = X∗ .

Then, by applying Mutation#2, we calculate the success probability

∀x ∈ Xi : P
(
ξt+1 ∈ X∗ | ξt = x

) =
(

1

n

)n−i(
1 − 1

n

)i

.

At t = 0, we have∑
x/∈X∗

P
(
ξ1 ∈ X∗ | ξ0 = x

) P (ξ0 = x)

1 − μ0

=
∑
x/∈X∗

P
(
ξ1 ∈ X∗ | ξ0 = x

)
P (ξ0 = x) %% by assumption μ0 = 0

=
n−1∑
i=0

∑
x∈Xi

(
P (ξ1 ∈ X∗ | ξ0 = x)P (ξ0 = x)

)
%% by X =

n⋃
i=0

Xi

=
n−1∑
i=0

(
n

i

)(
1

n

)n−i(
1 − 1

n

)i 1

2n
%% by ∀x: P (ξ0 = x) = 1

2n

=
(

1 −
(

n − 1

n

)n)
1

2n

∼ e − 1

e

1

2n
.

Let X = X∗ ∪ X F ∪ XI , where X∗ contains the optimal solutions, X F contains all non-optimal feasible solutions whose
last bit is 0, and XI contains all the infeasible solutions whose last bit is 1. Denote

X F
i = Xi ∩ X F .

According to the fitness function, we have

∀x0 ∈ X F
0 , x1 ∈ X F

1 , . . . , xn−1 ∈ X F
n−1, xI ∈ XI :

f (x∗) > f (x0) > f (x1) > · · · > f (xn−1) > f (xI)

and due to the selection behavior, i.e., the solutions with the largest fitness will be selected, we have

∀ j,q (n − 1 � j > q � 0):
P
(
ξt+1 ∈ X F

j | ξt ∈ X F
q

) = 0, P (ξt+1 ∈ XI | ξt ∈ X F) = 0,

∀ j,q: P (ξt+1 ∈ X F
j | ξt ∈ XI)

P (ξt+1 ∈ X F
q | ξt ∈ XI)

= P (ξ0 ∈ X F
j)

P (ξ0 ∈ X F
q)

,

where the last equation is by that, since every infeasible solution has the same lowest fitness, there is no selection pressure
on the leading n − 1 bits when the solution is infeasible, and thus each of the leading n − 1 bits has probability 0.5 to be
either zero or one.

For all k ∈ {0,1, . . . ,n − 1}, denoting X Ak = ⋃k
i=0 X F

i and XBk = ⋃n−1
i=k+1 X F

i , at time t = 0, for all k ∈ {0,1, . . . ,n − 1},
there exists ηAk,t , ηBk,t , ηF ,t and ηI,t such that∑

x∈X Ak

P
(
ξt+1 ∈ X∗ | ξt = x

)
P (ξt = x) = ηAk,t P (ξt ∈ X Ak),

∑
x∈XB

P
(
ξt+1 ∈ X∗ | ξt = x

)
P (ξt = x) = ηBk,t P (ξt ∈ XBk),
k

Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832 1817
∑
x∈X F

P
(
ξt+1 ∈ X∗ | ξt = x

)
P (ξt = x) = ηF ,t P (ξt ∈ X F),

∑
x∈XI

P
(
ξt+1 ∈ X∗ | ξt = x

)
P (ξt = x) = ηI,t P (ξt ∈ XI).

On the relationship between ηAk,t and ηBk,t , it holds that

ηAk,t < ηBk,t ,

by P (ξt+1 ∈ X∗ | ξt ∈ X Ak) � P (ξt+1 ∈ X∗ | ξt ∈ X F
k) � P (ξt+1 ∈ X∗ | ξt ∈ XBk).

On the relationship between ηAk,t and ηI,t , it holds that at t = 0,

ηAk,0 < ηI,0,

by, first, ηAk,0 < ηF ,0, which is by ηF ,0 = ηAk,0
P (ξ0∈X A)
P (ξ0∈X F)

+ ηBk,0
P (ξ0∈XB)
P (ξ0∈X F)

and ηAk,0 < ηBk,0, and second, ηF ,0 < ηI,0, which is
by ∀x1, x2 ∈ X : P (ξ0 = x1) = P (ξ0 = x2) and∑

x∈X F
P (ξ1 ∈ X∗ | ξ0 = x)

P (ξ0 ∈ X F)
<

∑
x∈XI

P (ξ1 ∈ X∗ | ξ0 = x)

P (ξ0 ∈ XI)
.

And for t > 0,

ηAk,t < ηI,0,

by that, since

P (ξt+1 ∈ X Ak) = P (ξt ∈ X Ak) +
∑

x∈XBk
∪XI

P (ξt+1 ∈ X Ak | ξt = x)P (ξt = x) −
∑

x∈X Ak

P
(
ξt+1 ∈ X∗ ∪ XBk ∪ XI | ξt = x

)
P (ξt = x)

= P (ξt ∈ X Ak) +
∑

x∈XBk
∪XI

P
(
ξt+1 ∈ X Ak | ξt = x

)
P (ξt = x) −

∑
x∈X Ak

P
(
ξt+1 ∈ X∗ | ξt = x

)
P (ξt = x)

%% by P
(
ξt+1 ∈ XBk ∪ XI | ξt ∈ X Ak

) = 0

>
(
1 − P

(
ξt+1 ∈ X∗ | ξt ∈ X F

k

))
P (ξt ∈ X Ak) +

∑
x∈XI

P
(
ξt+1 ∈ X Ak | ξt = x

)
P (ξt = x)

%% by −P
(
ξt+1 ∈ X∗ | ξt ∈ X A

)
� −P

(
ξt+1 ∈ X∗ | ξt ∈ X F

k

)
> P

(
ξ0 ∈ X Ak

) t∏
i=0

(
1 − P (ξi+1 ∈ X∗ | ξi ∈ X F

k)
)

+
t∑

i=0

(∑
x∈XI

P
(
ξi+1 ∈ X Ak | ξi = x

)
P (ξi = x)

)(
t∏

j=i

(
1 − P (ξ j+1 ∈ X∗ | ξ j ∈ X F

k)
))

= P (ξ0 ∈ X Ak)

t∏
i=0

(
1 − P (ξi+1 ∈ X∗ | ξi ∈ X F

k)
)

+
t∑

i=0

P
(
ξi+1 ∈ X Ak | ξi ∈ XI

)
P (ξi ∈ XI)

(
t∏

j=i

(
1 − P (ξ j+1 ∈ X∗ | ξ j ∈ X F

k)
))

,

and similarly,

P (ξt+1 ∈ XBk) < P
(
ξ0 ∈ XBk

) t∏
i=0

(
1 − P (ξi+1 ∈ X∗ | ξi ∈ X F

k)
)

+
t∑

i=0

P
(
ξi+1 ∈ XBk | ξi ∈ XI

)
P (ξi ∈ XI)

(
t∏

j=i

(
1 − P (ξ j+1 ∈ X∗ | ξ j ∈ X F

k)
))

,

and

P (ξt+1 ∈ X F
j | ξt ∈ XI)

P (ξt+1 ∈ X F
q | ξt ∈ XI)

= P (ξ0 ∈ X F
j)

P (ξ0 ∈ X F
q)

,

we thus have

∀k: P (ξt+1 ∈ X Ak)

P (ξ ∈ X)
>

P (ξ0 ∈ X Ak)

P (ξ ∈ X)
;

t+1 Bk 0 Bk

1818 Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832
since P (ξt+1 ∈ X∗ | ξt ∈ X Ak) < P (ξt+1 ∈ X∗ | ξt ∈ XBk), by enumerating k, we have∑
x∈X Ak

P (ξt+1 ∈ X∗ | ξt = x)P (ξt = x)

P (ξt ∈ X Ak)
<

∑
x∈X Ak

P (ξ1 ∈ X∗ | ξt = x)P (ξ0 = x)

P (ξ0 ∈ X Ak)
,

which is ηAk,t < ηAk,0, and by ηAk,0 < ηI,0, it holds ηAk,t < ηI,0.
Then, we have

P (ξt+1 ∈ X Ak)

1 − μt+1
=

P (ξt ∈ X Ak) − ∑
x∈X Ak

P (ξt+1 ∈ X∗ | ξt = x)P (ξt = x)

1 − μt − ∑
x∈X Ak

∪XBk
∪XI

P (ξt+1 ∈ X∗ | ξt = x)P (ξt = x)

= (1 − ηAk,t)P (ξt ∈ X Ak)

1 − μt − ηAk,t P (ξt ∈ X Ak) − ηBk,t P (ξt ∈ XBk) − ηI,t P (ξt ∈ XI)

>
(1 − ηAk,t)P (ξt ∈ X Ak)

1 − μt − ηAk,t P (ξt ∈ X Ak) − ηAk,t P (ξt ∈ XBk) − ηAk,t P (ξt ∈ XI)

%% by ηAk,t < ηBk,t , ηAk,t < ηI,0 and ηI,t = ηI,0

= (1 − ηAk,t)P (ξt ∈ X Ak)

(1 − ηAk,t)(1 − μt)

= P (ξt ∈ X Ak)

1 − μt
,

which is ∀n − 1 � k � 0: P (ξt+1∈⋃k
i=0 X F

i)

1−μt+1
� P (ξt∈⋃k

i=0 X F
i)

1−μt
by writing back X Ak = ⋃k

i=0 X F
i . So, we have

∑
x/∈X∗

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt

=
∑

x∈X F

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt
+

∑
x∈XI

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt

�
∑

x∈X F

P
(
ξ1 ∈ X∗ | ξ0 = x

) P (ξ0 = x)

1 − μ0
+

∑
x∈XI

P
(
ξ1 ∈ X∗ | ξ0 = x

) P (ξ0 = x)

1 − μ0

%% by both that ∀n − 1 � k � 0: P (ξt+1 ∈ ⋃k
i=0 X F

i)

1 − μt+1
�

P (ξt ∈ ⋃k
i=0 X F

i)

1 − μt
and

%% P

(
ξt+1 ∈ X∗ | ξt ∈

k⋃
i=0

X F
i

)
� P

(
ξt+1 ∈ X∗ | ξt ∈

k⋃
i=0

X F
i

)

=
∑
x/∈X∗

P
(
ξ1 ∈ X∗ | ξ0 = x

) P (ξ0 = x)

1 − μ0

= e − 1

e

1

2n
.

Let βt = e−1
e

1
2n , by Theorem 1,

E[τ] � e

e − 1
2n,

that is, E[τ] = Ω(2n). �
Proposition 3. Solving the Trap problem using the EA with Reproduction implemented by Mutation#3 (one-bit mutation) and with a
population size 1, i.e. (1 + 1)-EA, if starting from non-optimal populations, the EFHT is bounded by

E[τ] = Ω(2n), (16)

where n is the problem size.

We can follow the idea of the proof to Proposition 2. First, at t = 0, formula (12) is calculated to be O (1/2n). Then we
find that formula (12) reduces as t increases, which leads to an upper bound O (1/2n) of formula (12). By Theorem 1, the
EFHT has a lower bound Ω(1/2n). The difference to the proof of Proposition 2 is that the solution space is divided into
subspaces in a different way, according to the characteristic of Mutation#3. To arrive at the proof, we divide the state space
into subspaces, in each subspace solutions have the same Hamming distance to the optimal solution. By this division, we

Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832 1819
find that only the solutions, which have only one bit different from the optimal solution, have non-zero probability of being
mutated to be the optimal solution. Thus, formula (12) is calculated.

Proof. Let

Xi = {
x ∈ X | ‖x − x∗‖H = n − i

}
,

where ‖ · ‖H is Hamming distance and x∗ is the optimal solution, such that X = ⋃n
i=0 Xi , |Xi| =

(n
i

)
, and Xn = X∗ .

Then, by applying Mutation#3, the success probability is

∀x ∈ Xi : P
(
ξt+1 ∈ X∗ | ξt = x

) =
{ 1

n , if i = n − 1,

0, otherwise.

Noticing that Xn−1 contains the one feasible solution, which has the lowest fitness among feasible solutions, and n − 1
infeasible solutions, which has the lowest fitness among all solutions, we have

P
(
ξt+1 ∈ Xn−1 | ξt ∈ X − Xn−1 − X∗) < P

(
ξt+1 ∈ X − Xn−1 − X∗ | ξt ∈ Xn−1

)
.

At t = 0, we have∑
x/∈X∗

P
(
ξ1 ∈ X∗ | ξ0 = x

) P (ξ0 = x)

1 − μ0

=
∑

x∈Xn−1

P
(
ξ1 ∈ X∗ | ξ0 = x

) P (ξ0 = x)

1 − μ0
%% by subspace dividing

=
∑

x∈Xn−1

1

n

P (ξ0 = x)

1 − μ0
%% by P

(
ξt+1 ∈ X∗ | ξt ∈ Xn−1

) = 1

n

= 1

n

n

2n
= 1

2n
. %% by P (ξ0 ∈ Xn−1) = |Xn−1|

2n
= 1

2n

At time t + 1, on the relationship between μt and μt+1, we have

μt+1 = μt + P
(
ξt+1 ∈ X∗ | ξt ∈ X − Xn−1 − X∗) + P

(
ξt+1 ∈ X∗ | ξt ∈ Xn−1

)
= μt + P

(
ξt+1 ∈ X∗ | ξt ∈ Xn−1

)
.

%% by P
(
ξt+1 ∈ X∗ | ξt ∈ X − Xn−1 − X∗) = 0

On the relationship between P (ξt ∈ Xn−1) and P (ξt+1 ∈ Xn−1), we have

P (ξt+1 ∈ Xn−1) = P (ξt ∈ Xn−1) + P
(
ξt+1 ∈ Xn−1 | ξt ∈ X − Xn−1 − X∗)

− P
(
ξt+1 ∈ X∗ | ξt ∈ Xn−1

) − P
(
ξt+1 ∈ X − Xn−1 − X∗ | ξt ∈ Xn−1

)
� P (ξt ∈ Xn−1) − P (ξt+1 ∈ X∗ | ξt ∈ Xn−1).

%% by P
(
ξt+1 ∈ Xn−1 | ξt ∈ X − Xn−1 − X∗) < P

(
ξt+1 ∈ X − Xn−1 − X∗ | ξt ∈ Xn−1

)
Considering the above two relationships together, we have

P (ξt+1 ∈ Xn−1)

1 − μt+1
<

P (ξt ∈ Xn−1) − P (ξt+1 ∈ X∗ | ξt ∈ Xn−1)

1 − μt − P (ξt+1 ∈ X∗ | ξt ∈ Xn−1)

� P (ξt ∈ Xn−1)

1 − μt
%% by ∀t: 1 − μt � P (ξt ∈ Xn−1) � 0.

Therefore,∑
x/∈X∗

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt

�
∑
x/∈X∗

P
(
ξ1 ∈ X∗ | ξ0 = x

) P (ξ0 = x)

1 − μ0
%% by

P (ξt+1 ∈ Xi)

1 − μt+1
� P (ξt ∈ Xi)

1 − μt

= 1

2n
.

So, let βt = 1
2n , by Theorem 1, the EFHT is lower bounded

E[τ] � 2n,

that is, E[τ] = Ω(2n). �

1820 Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832
4.2. Static mutation with population

Now we study how the three static mutation operators perform with population size larger than 1. Specifically, let us
consider the case where the population size is equal to the problem size n, i.e. (n + n)-EA, which is a practical strategy. In
this case, the population state space consists of solution state spaces, which means a population x ∈ X contains n solutions
from solution space S .

We can consider each population as a set of solutions without order. Denoting ‘(· · ·)’ as a solution and ‘{· · ·}’ as a popula-
tion set, the two populations, which consist of the same solutions with different orders, are equal, e.g., {(001), (011), (110)} =
{(110), (011), (001)}. By this consideration, there are |X | = (2n+n−1

n

)
number of population states [25]. But if we generate

a population by generating each bit of each solution independently from an uniform distribution, we will have differ-
ent probabilities to choose different states, e.g., P ({(001), (001), (001)}) = 0.59 but P ({(001), (011), (110)}) = 6 × 0.59.
Meanwhile, we can equivalently consider each population as an ordered set of solutions. Denoting ‘[· · ·]’ as a popu-
lation with order, the two populations, which consist of the same solutions with different orders are unequal, e.g.,
[(001), (011), (110)] = [(110), (011), (001)]. By this consideration, there are |X | = 2n×n number of different population states,
and the probability of randomly generating every population is exactly 1/|X |. We use the second consideration in the
follows, such that the calculation will be simple.

Proposition 4. Solving the Trap problem using the EA with Reproduction implemented by Mutation#1 (bitwise mutation with constant
probability) and with a population size equals to the problem size, i.e. (n + n)-EA, if starting from non-optimal populations, the EFHT
is bounded by

E[τ] = Ω

(
θn

n

)
, (17)

where θ = (1 − pm)−1 ∈ (1,2] is a constant and n is the problem size.

The proof of this proposition is the same as of Proposition 1, except that the state level is upgraded to the population
states. We know that the maximum probability of a solution being mutated to be the optimal solution by Mutation#1 is
pm(1 − pm)n−1, which leads to that the maximum probability of a population being mutated to be an optimal population is
1 − (1 − pm(1 − pm)n−1)n . Therefore, we can have an upper bound of formula (12). By Theorem 1, we get this proposition.

Proof. Since P (ξt+1 ∈ X∗ | ξt = x) � 1 − (1 − pm(1 − pm)n−1)n , we have

∑
x/∈X∗

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt

�
∑
x/∈X∗

pm(1 − pm)n−1 P (ξt = x)

1 − μt

= (
1 − (

1 − pm(1 − pm)n−1)n)∑
x/∈X∗ P (ξt = x)

1 − μt

= 1 − (
1 − pm(1 − pm)n−1)n

%% by Eq. (1)

∼ npm(1 − pm)n−1. %% asymptotically equal

Let βt = npm(1 − pm)n−1, by Theorem 1,

E[τ] � β0 +
+∞∑
t=2

tβt−1

t−2∏
i=0

(1 − βi) = 1

n

1

pm

(
1

1 − pm

)n−1

= θn

npm
.

Considering that pm is a constant, E[τ] = Ω(θn

n). �
Proposition 5. Solving the Trap problem using the EA with Reproduction implemented by Mutation#2 (bitwise mutation with proba-
bility 1/n) and with a population size equals to the problem size, i.e. (n + n)-EA, if starting from non-optimal populations, the EFHT is
bounded by

E[τ] = Ω

(
2n

n2

)
, (18)

where n is the problem size.

Following the proof of Proposition 2, we divide the population state space X = {0,1}n∗n into n + 1 subspaces {Xi}n
i=0,

where Xn contains all optimal populations, Xi (i ∈ {0, . . . ,n − 1}) contains non-optimal populations, and the solution with

Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832 1821
the worst fitness in each Xi has i identical bits with the optimal solution. By doing so, the state subspaces hold the same
properties as those in the proof of Proposition 2, which leads to the calculation of formula (12). The only difference from the
proof of Proposition 2 is that the upper bound of formula (12) is calculated at the population level but not at the solution
level, which results in O (n2

2n). Therefore a lower bound Ω(2n

n2) is obtained by Theorem 1.

Proof. Let

Xi =
{

x ∈ X | min
s∈x

‖s − s∗‖H = n − i
}
,

where ‖ · ‖H is Hamming distance, x denotes a population, s denotes a solution, and s∗ is the optimal solution.
Denote

X̃i = {
x ∈ Xi | ∀s ∈ x: ‖s − s∗‖H = n − i

}
.

By applying Mutation#2, the success probability is

∀x ∈ Xi : P
(
ξt+1 ∈ X∗ | ξt = x

)
� P

(
ξt+1 ∈ X∗ | ξt ∈ X̃i

)
%% by considering the worst population in the subspace Xi

= 1 −
(

1 −
(

1

n

)n−i(
1 − 1

n

)i)n

∼ n

(
1

n

)n−i(
1 − 1

n

)i

. %% asymptotically equal

Because all the solutions in every population of subspace Xi have at most i bits identical to the optimal solution, and there
is at least one solution holding the exact i bits of that, we have the probability at the initialization that

P (ξ0 ∈ Xi) =
(

n

1

)
·
((

n

i

)
1

2n

)
·
(

i∑
j=0

(
n

j

)
1

2n

)n−1

� n

(
n

i

)
1

2n
.

At t = 0, we have∑
x/∈X∗

P
(
ξ1 ∈ X∗ | ξ0 = x

) P (ξ0 = x)

1 − μ0

=
∑
x/∈X∗

P
(
ξ1 ∈ X∗ | ξ0 = x

)
P (ξ0 = x) %% by assumption μ0 = 0

=
n−1∑
i=0

∑
x∈Xi

(
P
(
ξ1 ∈ X∗ | ξ0 = x

)
P (ξ0 = x)

)
%% by X =

n⋃
i=0

Xi

�
n−1∑
i=0

n2
(

1

n

)n−i(
1 − 1

n

)i(n

i

)
1

2n

= n2
(

1 −
(

n − 1

n

)n)
1

2n

∼ e − 1

e

n2

2n
.

Let the solution space S be divided into three subspaces S = S∗ ∪ S F ∪ S I , where S∗ contains the optimal solution, S F

contains all the non-optimal feasible solutions whose last bit is 0, and S I contains all the infeasible solutions whose last bit
is 1. Denote

X F = {x ∈ X | ∀s ∈ x: s ∈ S F }, XI = X − X F − X∗

and then denote

X F
i = Xi ∩ X F , X̃ F

i = X̃i ∩ X F .

According to the selection behavior, i.e., the solutions with the largest fitness will be selected, we have

∀ j,q(n − 1 � j � q � 0): P
(
ξt+1 ∈ X F

j | ξt ∈ X F
q

) = 0, P
(
ξt+1 ∈ XI | ξt ∈ X F

) = 0,

∀ j,q: P (ξt+1 ∈ X F
j | ξt ∈ XI)

P (ξ ∈ X F | ξ ∈ X)
= P (ξ0 ∈ X F

j)

P (ξ ∈ X F)
,

t+1 q t I 0 q

1822 Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832
where the last equation is by that, since every infeasible solution has the same lowest fitness, there is no selection pressure
on the leading n − 1 bits when there is at least one solution in the current population is infeasible, and thus each of the
leading n − 1 bits has probability 0.5 to be either zero or one.

For all k ∈ {0,1, . . . ,n − 1}, denoting X Ak = ⋃k
i=0 X F

i and XBk = ⋃n−1
i=k+1 X F

i , at time 0, for all k ∈ {0,1, . . . ,n − 1}, there
exists ηAk,t, ηBk,t, ηF ,t and ηI,t such that∑

x∈X Ak

P
(
ξt+1 ∈ X∗ | ξt = x

)
P (ξt = x) = ηAk,t P (ξt ∈ X Ak),

∑
x∈XBk

P
(
ξt+1 ∈ X∗ | ξt = x

)
P (ξt = x) = ηBk,t P (ξt ∈ XBk),

∑
x∈X F

P
(
ξt+1 ∈ X∗ | ξt = x

)
P (ξt = x) = ηF ,t P (ξt ∈ X F),

∑
x∈XI

P
(
ξt+1 ∈ X∗ | ξt = x

)
P (ξt = x) = ηI,t P (ξt ∈ XI).

On the relationship between ηAk,t and ηBk,t , it holds that

ηAk,t < ηBk,t,

by P (ξt+1 ∈ X∗ | ξt ∈ X Ak) � P (ξt+1 ∈ X∗ | ξt ∈ XBk), which is by

P
(
ξt+1 ∈ X∗ | ξt ∈ X Ak

)
� P

(
ξt+1 ∈ X∗ | ξt ∈ X̃ F

k

)
according to the definition of X̃ F

k , and

P
(
ξt+1 ∈ X∗ | ξt ∈ X̃ F

k

)
� P

(
ξt+1 ∈ X∗ | ξt ∈ XBk

)
when n → +∞.

On the relationship between ηAk,t and ηI,t , it holds that at t = 0,

ηAk,0 < ηI,0,

by, first, ηAk,0 < ηF ,0, which is by ηF ,0 = ηAk,0
P (ξ0∈X A)
P (ξ0∈X F)

+ ηBk,0
P (ξ0∈XB)
P (ξ0∈X F)

and ηAk,0 < ηBk,0, and second, ηF ,0 < ηI,0, which is
by

∀x1, x2 ∈ X : P (ξ0 = x1) = P (ξ0 = x2) and

∑
x∈X F

P (ξ1 ∈ X∗ | ξ0 = x)

P (ξ0 ∈ X F)
<

∑
x∈XI

P (ξ1 ∈ X∗ | ξ0 = x)

P (ξ0 ∈ XI)
.

And for t > 0,

ηAk,t < ηI,0,

by that, since

P (ξt+1 ∈ X Ak) = P (ξt ∈ X Ak) +
∑

x∈XBk
∪XI

P (ξt+1 ∈ X Ak | ξt = x)P (ξt = x) −
∑

x∈X Ak

P
(
ξt+1 ∈ X∗ ∪ XBk ∪ XI | ξt = x

)
P (ξt = x)

= P (ξt ∈ X Ak) +
∑

x∈XBk
∪XI

P (ξt+1 ∈ X Ak | ξt = x)P (ξt = x) −
∑

x∈X Ak

P
(
ξt+1 ∈ X∗ | ξt = x

)
P (ξt = x)

%% by P (ξt+1 ∈ XBk ∪ XI | ξt ∈ X Ak) = 0

>
(
1 − P

(
ξt+1 ∈ X∗ | ξt ∈ X F

k

))
P (ξt ∈ X Ak) +

∑
x∈XI

P (ξt+1 ∈ X Ak | ξt = x)P (ξt = x)

%% by −P
(
ξt+1 ∈ X∗ | ξt ∈ X A

)
� −P

(
ξt+1 ∈ X∗ | ξt ∈ X F

k

)
> P (ξ0 ∈ X Ak)

t∏
i=0

(
1 − P (ξi+1 ∈ X∗ | ξi ∈ X F

k)
)

+
t∑

i=0

(∑
x∈XI

P
(
ξi+1 ∈ X Ak | ξi = x

)
P (ξi = x)

)(
t∏

j=i

(
1 − P (ξ j+1 ∈ X∗ | ξ j ∈ X F

k)
))

= P (ξ0 ∈ X Ak)

t∏
i=0

(
1 − P (ξi+1 ∈ X∗ | ξi ∈ X F

k)
)

+
t∑

P
(
ξi+1 ∈ X Ak | ξi ∈ XI

)
P (ξi ∈ XI)

(
t∏

(1 − P (ξ j+1 ∈ X∗ | ξ j ∈ X F
k))

)
,

i=0 j=i

Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832 1823
and similarly,

P (ξt+1 ∈ XBk) < P (ξ0 ∈ XBk)

t∏
i=0

(
1 − P (ξi+1 ∈ X∗ | ξi ∈ X F

k)
)

+
t∑

i=0

P
(
ξi+1 ∈ XBk | ξi ∈ XI

)
P (ξi ∈ XI)

(
t∏

j=i

(
1 − P (ξ j+1 ∈ X∗ | ξ j ∈ X F

k)
))

,

and
P (ξt+1∈X F

j |ξt∈XI)

P (ξt+1∈X F
q |ξt∈XI)

= P (ξ0∈X F
j)

P (ξ0∈X F
q)

, we thus have ∀k: P (ξt+1∈X Ak
)

P (ξt+1∈XBk
)
>

P (ξ0∈X Ak
)

P (ξ0∈XBk
)
; since P (ξt+1 ∈ X∗ | ξt ∈ X Ak) < P (ξt+1 ∈ X∗ | ξt ∈

XBk), by enumerating k, we have∑
x∈X Ak

P (ξt+1 ∈ X∗ | ξt = x)P (ξt = x)

P (ξt ∈ X Ak)
<

∑
x∈X Ak

P (ξ1 ∈ X∗ | ξt = x)P (ξ0 = x)

P (ξ0 ∈ X Ak)
,

which is ηAk,t < ηAk,0, and by ηAk,0 < ηI,0, it holds ηAk,t < ηI,0.
Then, we have

P (ξt+1 ∈ X Ak)

1 − μt+1
>

P (ξt ∈ X Ak) − ∑
x∈X Ak

P (ξt+1 ∈ X∗ | ξt = x)P (ξt = x)

1 − μt − ∑
x∈X Ak

∪XBk
∪XI

P (ξt+1 ∈ X∗ | ξt = x)P (ξt = x)

= (1 − ηAk,t)P (ξt ∈ X Ak)

1 − μt − ηAk,t P (ξt ∈ X Ak) − ηBk,t P (ξt ∈ XBk) − ηI,t P (ξt ∈ XI)

>
(1 − ηAk,t)P (ξt ∈ X Ak)

1 − μt − ηAk,t P (ξt ∈ X Ak) − ηAk,t P (ξt ∈ XBk) − ηAk,t P (ξt ∈ XI)

%% by ηAk,t < ηBk,t , ηAk,t < ηI,0 and ηI,t = ηI,0

= (1 − ηAk,t)P (ξt ∈ X Ak)

(1 − ηAk,t)(1 − μt)

= P (ξt ∈ X Ak)

1 − μt
,

which is ∀n − 1 � k � 0 : P (ξt+1∈⋃k
i=0 X F

i)

1−μt+1
� P (ξt∈⋃k

i=0 X F
i)

1−μt
by writing back X Ak = ⋃k

i=0 X F
i . So, we have

∑
x/∈X∗

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt

=
∑

x∈X F

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt
+

∑
x∈XI

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt

�
∑

x∈X F

P
(
ξ1 ∈ X∗ | ξ0 = x

) P (ξ0 = x)

1 − μ0
+

∑
x∈XI

P
(
ξ1 ∈ X∗ | ξ0 = x

) P (ξ0 = x)

1 − μ0

%% by both that ∀n − 1 � k � 0:
P (ξt+1 ∈ ⋃k

i=0 X F
i)

1 − μt+1
�

P (ξt ∈ ⋃k
i=0 X F

i)

1 − μt

%% and P

(
ξt+1 ∈ X∗ | ξt ∈

k⋃
i=0

X F
i

)
� P

(
ξt+1 ∈ X∗ | ξt ∈

n−1⋃
i=k+1

X F
i

)

=
∑
x/∈X∗

P
(
ξ1 ∈ X∗ | ξ0 = x

) P (ξ0 = x)

1 − μ0

= e − 1

e

n2

2n
.

Let βt = e−1
e

n2

2n , by Theorem 1,

E[τ] � e

e − 1

2n

n2
,

that is, E[τ] = Ω(2n

n2). �

1824 Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832
Proposition 6. Solving the Trap problem using the EA with Reproduction implemented by Mutation#3 (one-bit mutation) and with a
population size equals to the problem size, i.e. (n + n)-EA, if starting from non-optimal populations, the EFHT is bounded by

E[τ] = Ω

(
2n

n2

)
, (19)

where n is the problem size.

As in the proof of Proposition 5, we can divide the population state space X = {0,1}n∗n into n + 1 subspaces {Xi}n
i=0,

where Xn contains all the optimal populations, and Xi (i ∈ {0, . . . ,n − 1}) contains non-optimal populations, among which
the solution with the worst fitness in the population has n − i bits different from the optimal solution. By doing so, the state
subspaces hold the same properties as those in the proof of Proposition 2, which leads to the calculation of formula (12).
The only difference from the proof of Proposition 2 is that the upper bound of formula (12) is calculated at the population
level but not at the solution level, which results in O (n2

2n). Therefore a lower bound Ω(2n

n2) is obtained by Theorem 1.

Proof. Let

Xi =
{

x ∈ X | min
s∈x

‖s − s∗‖H = n − i
}
,

where ‖ · ‖H is Hamming distance, x denotes a population, s denotes a solution, and s∗ is the optimal solution.
By applying the one-bit mutation, the success probability is

P
(
ξt+1 ∈ X∗ | ξt = x

){
� 1 − (1 − 1

n)n, x ∈ Xn−1,

= 0, x ∈ X − Xn−1 − X∗,

by considering that only populations in Xn−1 have chance to mutate to be optimal, and that the best case that all solutions
in Xn−1 have only 1 bit different from the optimal solution. Since there are n solutions that have one bit different from the
optimal solution, the probability of being in Xn−1 at initialization is

P (ξ0 ∈ Xn−1) = 1 −
(

1 − n

2n

)n

.

Noticing that Xn−1 consists of populations that contain either the feasible solution that has the lowest fitness among feasible
solutions, or n − 1 infeasible solutions that are with the lowest fitness among all solutions, we have

P
(
ξt+1 ∈ Xn−1 | ξt ∈ X − Xn−1 − X∗) < P

(
ξt+1 ∈ X − Xn−1 − X∗ | ξt ∈ Xn−1

)
.

At t = 0, we have

∑
x/∈X∗

P
(
ξ1 ∈ X∗ | ξ0 = x

) P (ξ0 = x)

1 − μ0

=
∑
x/∈X∗

P
(
ξ1 ∈ X∗ | ξ0 = x

)
P (ξ0 = x) %% by assumption μ0 = 0

=
∑

x∈Xn−1

P
(
ξ1 ∈ X∗ | ξ0 = x

)
P (ξ0 = x)

%% by P
(
ξt+1 ∈ X∗ | ξt ∈ X − Xn−1 − X∗) = 0

�
(

1 −
(

1 − 1

n

)n)(
1 −

(
1 − n

2n

)n)

∼ n2

2n
.

At time t + 1, on the relationship between μt and μt+1, we have

μt+1 = μt +
∑

x∈(X−Xn−1−X∗)

P
(
ξt+1 ∈ X∗ | ξt = x

)
P (ξt = x) +

∑
x∈Xn−1

P
(
ξt+1 ∈ X∗ | ξt = x

)
P (ξt = x)

= μt +
∑

x∈Xn−1

P
(
ξt+1 ∈ X∗ | ξt = x

)
P (ξt = x)

%% by P
(
ξt+1 ∈ X∗ | ξt ∈ X − Xn−1 − X∗) = 0.

On the relationship between P (ξt ∈ Xn−1) and P (ξt+1 ∈ Xn−1), we have

Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832 1825
P (ξt+1 ∈ Xn−1) = P (ξt ∈ Xn−1) +
∑

x∈X−Xn−1−X∗
P (ξt+1 ∈ Xn−1 | ξt = x)P (ξt = x)

−
∑

x∈Xn−1

P
(
ξt+1 ∈ X∗ | ξt = x

)
P (ξt) −

∑
x∈Xn−1

P
(
ξt+1 ∈ X − Xn−1 − X∗ | ξt = x

)
P (ξt = x)

< P (ξt ∈ Xn−1) −
∑

x∈Xn−1

P
(
ξt+1 ∈ X∗ | ξt = x

)
P (ξt)

%% by P
(
ξt+1 ∈ Xn−1 | ξt ∈ X − Xn−1 − X∗) < P

(
ξt+1 ∈ X − Xn−1 − X∗ | ξt ∈ Xn−1

)
.

Considering the above two relationships together, we have

P (ξt+1 ∈ Xn−1)

1 − μt+1
<

P (ξt ∈ Xn−1) − ∑
x∈Xn−1

P (ξt+1 ∈ X∗ | ξt = x)P (ξt)

1 − μt − ∑
x∈Xn−1

P (ξt+1 ∈ X∗ | ξt = x)P (ξt = x)

� P (ξt ∈ Xn−1)

1 − μt
. %% by ∀t : 1 − μt � P (ξt ∈ Xn−1) � 0

Therefore, we have∑
x/∈X∗

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt

�
∑
x/∈X∗

P
(
ξ1 ∈ X∗ | ξ0 = x

) P (ξ0 = x)

1 − μ0
%% by

P (ξt+1 ∈ Xn−1)

1 − μt+1
� P (ξt ∈ Xn−1)

1 − μt

� n2

2n
.

So, let βt = n2

2n , by Theorem 1, the EFHT is lower bounded

E[τ] � 2n

n2
,

that is, E[τ] = Ω(2n

n2). �
4.3. Mutation and recombination with population

We implement the Reproduction by a mutation operator and a recombination operator together as follows, where ξ M
t+1

and ξ C
t+1 are defined as the sets of solutions produced by mutation and recombination from ξt , respectively:

1. the population ξt contains n solutions,
2. apply the mutation on ξt to produce another n solutions ξ M

t+1,
3. apply the recombination on ξt to produce n more solutions ξ C

t+1,
4. choose the best n solutions from ξt ∪ ξ M

t+1 ∪ ξ C
t+1.

Considering the fitness function of the Trap problem, when the last bit of a solution is 1, it is either the optimal solution
or a solution with the worst fitness. We can divide the solution space S into SF and SI , where the last bit of solutions in
SF is 0, and the last bit of solutions in SI is 1. This separation is helpful for our analysis on recombination. We first give a
lemma, based on which the lower bounds of three EAs are then derived.

Lemma 3. Solving the Trap problem by the EA with population size equals to the problem size, i.e. (n + n)-EA. Let Φ : X → Z be a
function that cuts off the last bit of all solutions in the population from X, and Z is another population space Z = {0,1}n∗(n−1) where
each population contains n solutions of n − 1 bits long. Then, as long as there is at least one solution in the current population ξt is
from SI , we have

∀ Z̃ ⊆ Z : P
(
Φ(ξt) ∈ Z̃

) = | Z̃ |
|Z | .

This lemma tells that how the leading n − 1 bits of solutions in the population distribute, given that there is at least one
solution whose last bit is 1. To prove the lemma, first, we find that, by initialization, each of the leading n − 1 bits of every
solution has probability 0.5 to be either zero or one. Second, we notice that applying of the mutation and the recombination
operators does not change that distribution. Finally, the selection does not change the distribution of those n − 1 bits so far
as at least one solution from SI remains in the population after the selection operation. Thus, the lemma is proved.

1826 Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832
Proof. At t = 0, we have

∀ Z̃ ⊆ Z : P
(
Φ(ξ0) ∈ Z̃

) = | Z̃ |
|Z | ,

due to random initialization.
At time t + 1, the mutation operators and the recombination operator are all symmetric, i.e.,{

P (ξ M
t+1 = y | ξt = x) = P (ξ M

t+1 = x | ξt = y),

P (ξ R
t+1 = y | ξt = x) = P (ξ R

t+1 = x | ξt = y),

where ξ M
t+1 and ξ R

t+1 denote the populations of ξt after the mutation and the recombination operators, respectively.
By applying an arbitrary symmetric operator, i.e., one for which it holds P (ξt+1 = y | ξt = x) = P (ξt+1 = x | ξt = y) for

arbitrary x ∈ X and y ∈ X , we have

∀y: P (ξ1 = y) − P (ξ0 = y)

=
∑

x∈X−{y}
P (ξ1 = y | ξ0 = x)P (ξ0 = x) −

∑
x∈X−{y}

P (ξ1 = x | ξ0 = y)P (ξ0 = y)

=
∑

x∈X−{y}
P (ξ1 = y | ξ0 = x)(P (ξ0 = x) − P (ξ0 = y))

%% by P (ξ1 = y | ξ0 = x) = P (ξ1 = x | ξ0 = y)

=
∑

x∈X−{y}
P (ξ1 = y | ξ0 = x)

(
1

|X | − 1

|X |
)

= 0.

Therefore, we have

∀ X̃ ⊆ X : P
(
ξ M

1 ∈ X̃
) = | X̃|

|X | , P
(
ξ C

1 ∈ X̃
) = | X̃|

|X |
for the mutation operators and the recombination operator, respectively. This leads to

∀ Z̃ ⊆ Z : P
(
Φ

(
ξ M

1

) ∈ Z̃
) = | Z̃ |

|Z | , P
(
Φ

(
ξ C

1

) ∈ Z̃
) = | Z̃ |

|Z |
by noticing the universal quantifier ∀.

The Selection operation generates ξt+1 by choosing the best n solutions from ξt ∪ ξ M
t+1 ∪ ξ R

t+1. Since there is at least one
solution from SI survives in ξt+1, we have

∀s ∈ SF : P
(
s ∈ ξt+1 | s ∈ ξt ∪ ξ M

t+1 ∪ ξ R
t+1

) = 1,

by considering that every solution in SF has a better fitness value than all the non-optimal solutions in SI . Since all the
non-optimal solutions in SI have the same fitness values, they have the same probability to survive in ξt+1, i.e.,

∀s1, s2 ∈ SI : P
(
s1 ∈ ξt+1 | s1 ∈ ξt ∪ ξ M

t+1 ∪ ξ R
t+1

) = P
(
s2 ∈ ξt+1 | s2 ∈ ξt ∪ ξ M

t+1 ∪ ξ R
t+1

)
.

Therefore,

∀ Z̃ ∈ Z : P
(
Φ(ξt+1) ∈ Z̃

) = | Z̃ |
|Z | . �

Proposition 7. Solving the Trap problem using the EA with a population size equals to the problem size, i.e. (n + n)-EA, if starting from
non-optimal populations,

(a) if the Reproduction is implemented by Mutation#1 (bitwise mutation with constant probability) and Recombination, the EFHT is
bounded by

E[τ] = Ω

(
2n

n3

)
, (20)

(b) if the Reproduction is implemented by Mutation#2 (bitwise mutation with probability 1/n) and Recombination, the EFHT is
bounded by

E[τ] = Ω

(
2n

n3

)
, (21)

Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832 1827
(c) if the Reproduction is implemented by Mutation#3 (one-bit mutation) and Recombination, the EFHT is bounded by

E[τ] = Ω

(
2n

n3

)
, (22)

where n is the problem size.

To prove the proposition, we first notice that the recombination operator could not generate the optimal solution from
a population that does not contain any solutions from SI , which derives an upper bound for when the recombination has
non-zero success probability. Then we find that the probability of being in populations that contain solutions from SI is
decreasing. Thus we get an upper bound of formula (12), which leads to the proposition.

Proof. Considering that the mutation and recombination are applied independently and the Selection operation does not
generate new solutions, we have

∑
x/∈X∗

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt

=
∑
x/∈X∗

P
(
ξ M

t+1 ∈ X∗ | ξt = x
) P (ξt = x)

1 − μt
+

∑
x/∈X∗

P
(
ξ R

t+1 ∈ X∗ | ξt = x
) P (ξt = x)

1 − μt
,

where ξ M
t+1 is the population reproduced from ξt+1 with only mutation, and ξ R

t+1 is that with only recombination.
Let

X F = {x ∈ X | ∀s ∈ x: s ∈ SF },
XI = X − X F − X∗,

X P
I = {

x ∈ XI | P
(
ξ R

t+1 ∈ X∗ | ξt = x
)
> 0

}
.

Then, we have

∀t: P (ξt+1 ∈ XI | ξt ∈ X F) = 0,

∀t: P
(
ξ R

t+1 ∈ X∗ | ξt ∈ X F
) = 0,

by considering the behavior of the selection and the recombination.
When ξt ∈ X F , we have exactly the same results as with using mutation operators only, since the recombination is not

useful.
When ξt ∈ XI , for the mutation operators we have

∑
x/∈X∗

P
(
ξ M

t+1 ∈ X∗ | ξt = x
) P (ξt = x)

1 − μt
�

⎧⎪⎪⎨
⎪⎪⎩

npm(1 − pm)n−1, for Mutation#1,

e−1
e

n2

2n , for Mutation#2,

n2

2n , for Mutation#3.

For the recombination operator, we have

∑
x∈XI

P
(
ξ R

t+1 ∈ X∗ | ξt = x
) P (ξt = x)

1 − μt

=
∑

x∈X P
I

P
(
ξ R

t+1 ∈ X∗ | ξt = x
) P (ξt = x)

1 − μt
%% by the definition of X P

I

�
∑

x∈X P
I

P
(
ξ R

t+1 ∈ X∗ | ξt = x
) P (Φ(ξt) = Φ(x))(1 − μt)

1 − μt

%% by optimistic assumption that the last bits of all solutions in x are all 1

�
∑

x∈X P
I

P
(
Φ(ξt) = Φ(x)

)
%% by P

(
ξ R

t+1 ∈ X∗ | ξt = x
)
� 1

= P
(
Φ(ξt) ∈ {Φ(x) | x ∈ X P

I })
= |{Φ(x)|x ∈ X P

I }|
|Z | , %% by Lemma 3

where Φ(·) and Z are defined in Lemma 3.

1828 Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832
By the definition of X P
I , every population in X P

I should contain at least one solution whose leading d bits are the same
as those of the optimal solution, and at least one solution whose tailing n − 1 − d bits are the same as those of the optimal
solution. Thus we have

|{Φ(x)|x ∈ X P
I }|

|Z | =
n−2∑
d=1

(
n

1

)((
1

2

)d+1(
1 −

(
1 −

(
1

2

)n−d)n))
� n

n−2∑
d=1

((
1

2

)d+1

n

(
1

2

)n−d)
= n2(n − 2)

2n+1
.

Then, we get

∑
x∈XI

P
(
ξ R

t+1 ∈ X∗ | ξt = x
) P (ξt = x)

1 − μt
� n2(n − 2)

2n+1
.

Therefore, for Mutation#1,

∑
x∈X

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt
� npm(1 − pm)n−1 + n2(n − 2)

2n+1
.

Let β = npm(1 − pm)n−1 + n2(n−2)

2n+1 , the EFHT is obtained,

E[τ] =
(

npm(1 − pm)n−1 + n2(n − 2)

2n+1

)−1

= Ω

(
2n

n3

)
.

For Mutation#2,

∑
x∈X

P
(
ξ C

t+1 ∈ X∗ | ξt = x
) P (ξt = x)

1 − μt
� e − 1

e

n2

2n
+ n2(n − 2)

2n+1
.

Let β = e−1
e

n2

2n + n2(n−2)

2n+1 , the EFHT is obtained,

E[τ] =
(

e − 1

e

n2

2n
+ n2(n − 2)

2n+1

)−1

= Ω

(
2n

n3

)
.

For Mutation#3,

∑
x∈X

P
(
ξ C

t+1 ∈ X∗ | ξt = x
) P (ξt = x)

1 − μt
� n2

2n
+ n2(n − 2)

2n+1
.

Let β = n2

2n + n2(n−2)

2n+1 , the EFHT is obtained,

E[τ] =
(

n2

2n
+ n2(n − 2)

2n+1

)−1

= Ω

(
2n

n3

)
. �

4.4. Time variant mutation

Proposition 8. Solving the Trap problem using the EA with Reproduction implemented by Mutation#4 and with a population size 1,
i.e. (1 + 1)-EA, if starting from non-optimal population, the EFHT is bounded by

E[τ] = Ω
(
θn)

(23)

where θ ∈ (1,2] is a constant and n is the problem size.

Since we model the evolution process by a non-homogeneous Markov chain, we can easily model the time-variant mu-
tation, and simply reduce it to a homogeneous Markov chain to prove the proposition following the proof of Proposition 1.

Proof. Applying Mutation#4, for x such that ‖x − x∗‖H = k, we have

P
(
ξt+1 ∈ X∗ | ξt = x

) = (
(0.5 − d)e−t + d

)k(
1 − (0.5 − d)e−t − d

)n−k
.

Since (0.5 − d)e−t + d ∈ (0,0.5], we have

P
(
ξt+1 ∈ X∗ | ξt ∈ X − X∗) �

(
(0.5 − d)e−t + d

)(
1 − (0.5 − d)e−t − d

)n−1
.

Thus,

Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832 1829
∑
x/∈X∗

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt

�
(
(0.5 − d)e−t + d

)(
1 − (0.5 − d)e−t − d

)n−1 ∑
x/∈X∗

P (ξt = x)

1 − μt

= (
(0.5 − d)e−t + d

)(
1 − (0.5 − d)e−t − d

)n−1
%% by Eq. (1)

� 0.5(1 − d)n−1. %% further relax

Therefore, βt = 0.5(1 − d)n−1, by Theorem 1, the EFHT is lower bounded

E[τ] � β0 +
+∞∑
t=2

tβt−1

t−2∏
i=0

(1 − βi) = 2(1 − d)−n+1 = 2θn−1,

that is, E[τ] = Ω(θn). �
5. Discussion

In the previous section, we have proved that it needs exponential time to obtain the optimal solution to the Trap
problem using several variations of EAs. To arrive the proof of that the Trap problem is hard to be solved by the EA using
Mutation#1, we need only to bound the part of success probability of formula (12). In the same way, we can also prove
that any problem with exponential size of solution space, even easy problems such as the OneMax problem, is hard for
the EA using Mutation#1. This suggests that a non-adaptive mutation rate is not suitable for any problem which is with
exponential size of solution space, and in those cases an adaptive mutation rate is preferred.

From the proofs for EAs using Mutations #2, #3 and Recombination, we find a common trick. At first the success
probability at the initial step is exponentially small, then the EA goes toward a wrong direction which makes the success
probability even lower. To disclose what is behind this trick, we re-investigate formula (12), i.e.,

∑
x/∈X∗

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt
=

∑
x/∈X∗

P
(
s∗ ∈ ξ M

t+1 ∪ ξ R
t+1 | ξt = x

) P (ξt = x)

1 − μt
,

%% by that Selection does not generate solutions

where ξ M
t+1 and ξ R

t+1 are the populations reproduced by mutation and recombination operators from ξt , respectively, and s∗
is the optimal solution.

The above formula consists of two parts. The success probability part

P
(
s∗ ∈ ξ M

t+1 ∪ ξ R
t+1 | ξt = x

)
is determined by the Reproduction operators. Once the operators of the EA are fixed, the success probability is determined.
In other words, this part is at the algorithm side. The normalized distribution part P (ξt=x)

(1−μt)
is calculated by a recursive

equation

P (ξt+1 = x) = P (ξt = x) +
∑
y /∈X∗

P (ξt+1 = x | ξt = y)P (ξt = y) −
∑
y /∈X∗

P (ξt+1 = y | ξt = x)P (ξt = x),

in which, once the Reproduction operators have been fixed, the non-recursive terms P (ξt+1 = x | ξt = y) and P (ξt+1 = y |
ξt = x) are determined by how solutions are favored, which is dominated by the fitness. Considering that when we apply
an existing EA to tackle a problem, the Reproduction operator is fixed before we see the problem, while the fitness fully
depends on the problem. So, the normalized distribution part is at the problem side.

So, our explanation to the question that what makes a problem hard to an EA is, on such problem the EA will run in
a direction, which causes that the probability of being in good areas (i.e., having a large success probability) to decrease
while that of being in bad areas (i.e., having a small success probability) to increase. In other words, the algorithm side
mismatches the problem side.

Motivated by this recognition, we raise a question: how large is a problem class which, for any EA, contains at least one
problem instance that cannot be solved by the EA in polynomial time? The answer to this question implies a general bound
on the effectiveness of EAs.

At the first glance, this question seems related to the No Free Lunch theorem [26] which indicates that if all possible
problems are considered, and if every problem instance has equal chance to be encountered (which is arguable), any two
algorithms will have equal average performance. But note that the No Free Lunch theorem only considers whether one
algorithm is relatively better than another algorithm, and an algorithm performs poor on a problem does not mean other
algorithms will also perform poor on this problem. While, what we want to know is, whether there is some problem class
which is hard for all EAs, that is, for any EA the problem class contains at least one hard problem instance.

We find that, for any EAs there must exist a problem instance which is hard in an exponential size general problem.

1830 Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832
Definition 6 (General problem). A general problem with a solution space S and solution space size |S| is a finite set of
problem instances, where every function in a bijective function cluster F :S → {1,2, . . . , |S|} corresponds to the fitness
function of a problem instance.

In other words, a general problem contains |S|! number of problem instances, each is a permutation of solutions. Thus,
every point in the solution space can be found as the optimal solution to an instance of the general problem.

We denote exp(n) as the exponential order of n, and poly(n) as the polynomial order of n, omitting the exact components
of that order.

Theorem 2. Given that

(a) a general problem with a solution space size no smaller than exp(n),
(b) an EA with a population size no larger than poly(n),
(c) every solution has an equal probability to appear in the initial population,

there exists at least one problem instance on which the EFHT of the EA is no smaller than exp(n)/poly(n), where n is the problem size.

Proof. Denote Reprod(ξt) as the solution set generated by Reproduction operators, of which the size is no more than
poly(n) (otherwise it already costs exp(n) time). Considering that |S| = exp(n) and population size is no more than poly(n),
the population state space |X | = exp(n)poly(n) . We have

∑
s∈S

P
(
s ∈ Reprod(ξt) | ξt = x

)
�

∣∣Reprod(ξt)
∣∣ � poly(n)

⇒
∑
s∈S

∑
x∈X

P
(
s ∈ Reprod(ξt) | ξt = x

)
� poly(n)exp(n)poly(n)

⇒ ∃s̃ ∈ S :
∑
x∈X

P
(
s̃ ∈ Reprod(ξt) | ξt = x

)
� poly(n)exp(n)poly(n) 1

exp(n)
.

%% otherwise the sum over S will exceed poly(n)exp(n)poly(n)

Let s̃ denote the optimal solution s∗ .
At time t = 0, we have

∑
x/∈X∗

P
(
ξ1 ∈ X∗ | ξ0 = x

) P (ξ0 = x)

1 − μ0

=
∑
x/∈X∗

P
(
s∗ ∈ Reprod(ξ0) | ξ0 = x

) P (ξ0 = x)

1 − μ0

%% by that the selection does not generate new solutions

=
∑
x/∈X∗

P
(
s∗ ∈ Reprod(ξ0) | ξ0 = x

) 1

exp(n)poly(n)
%% by assumption μ0 = 0

� poly(n)exp(n)poly(n) 1

exp(n)

1

exp(n)poly(n)

= poly(n)

exp(n)
.

At time t + 1, we sort all non-optimal population states into a sequence {xi} (xi /∈ X∗), such that

P
(
ξt+1 ∈ X∗ | ξt = xi

)
� P

(
ξt+1 ∈ X∗ | ξt = xi+1

)
.

Afterwards, we have

∑
x∈X

P
(
ξt+1 ∈ X∗ | ξt = x

) =
∑
x∈X

P
(
s∗ ∈ Reprod(ξt) | ξt = x

)
� poly(n)exp(n)poly(n)

exp(n)

⇒ ∃x̂ ∈ X : P
(
ξt+1 ∈ X∗ | ξt = x̂

)
� poly(n)

exp(n)
.

%% otherwise the sum over X will exceed
poly(n)exp(n)poly(n)
exp(n)

Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832 1831
Therefore,

P
(
ξ R

t = x∗ | ξt = x0
)
� P

(
ξ R

t = x∗|ξt = x̂
)
� poly(n)

exp(n)
,

by considering that x0 has the lowest success probability.
Now, we choose a fitness function f (·) such that

f (x∗) > f (x0) > · · · > f (xi) > f (xi+1) >

Since the solutions with larger fitness values will have higher probability to survive from the selection, we have

∀k: P (ξt+1 ∈ {x0, . . . , xk})
P (ξt+1 ∈ X − {x0, . . . , xk} − {x∗}) >

P (ξt ∈ {x0, . . . , xk})
P (ξt ∈ X − {x0, . . . , xk} − {x∗})

⇒ ∀k: P (ξt+1 ∈ {x0, . . . , xk})
1 − μt+1

� P (ξt ∈ {x0, . . . , xk})
1 − μt

.

Then, we have

∑
x/∈X∗

P
(
ξt+1 ∈ X∗ | ξt = x

) P (ξt = x)

1 − μt

�
∑
x/∈X∗

P
(
ξ1 ∈ X∗ | ξ0 = x

) P (ξ0 = x)

1 − μt
� poly(n)

exp(n)
,

which makes E[τ] � exp(n)
poly(n)

by Theorem 1. �
6. Conclusion

This paper extends our preliminary research [27]. We establish a bridge between two of the most important theoretical
issues of evolutionary algorithms (EAs), that is, the expected first hitting time (EFHT) and the convergence rate. With this
bridge, we propose a new approach for analyzing the EFHT of EAs. The proposed approach bases on non-homogeneous
Markov chains, and thus it is suitable for analyzing a broad range of EAs.

Using the proposed approach, we proved that a problem is hard (i.e., can only be solved in exponential time) for several
EAs under various settings, including three static mutation operators, with/without population, a recombination operator
and a time-variant mutation operator. It is noteworthy that the time-variant operator was hard to analyze before, while the
proposed approach is naturally useful for this situation.

We gave an explanation to the question that what makes a problem hard to EA, that is, the algorithm part and the
problem part mismatch. EAs are usually considered as general optimization approaches, or in other words, they are problem
independent. Thus, when the parameters of an EA are fixed, the EA may run toward a wrong direction on some problems,
which makes the problems hard for the EA. Based on this recognition, we proved that a general problem is hard if it has an
exponentially large state space.

In the future, we intend to extend our approach to optimization problems for real-valued functions.

Acknowledgements

We want to thank the anonymous reviewers for their helpful comments and suggestions, and want to thank Tianshi Chen,
Xiang-Nan Kong, Chao Qian and De-Chuan Zhan for proofreading the paper. We also want to thank the editor Raymond
Perrault for his generous help in polishing the final version of the paper. This research was supported by the National
Science Foundation of China (60635030, 60721002).

References

[1] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms, Oxford University Press,
Oxford, UK, 1996.

[2] H.-G. Beyer, H.-P. Schwefel, I. Wegener, How to analyse evolutionary algorithms, Theoretical Computer Science 287 (1) (2002) 101–130.
[3] S.-J. Chang, H.-S. Hou, Y.-K. Su, Automated passive filter synthesis using a novel tree representation and genetic programming, IEEE Transactions on

Evolutionary Computation 10 (1) (2006) 93–100.
[4] Y.-C. Chang, S.-M. Chen, A new query reweighting method for document retrieval based on genetic algorithms, IEEE Transactions on Evolutionary

Computation 10 (5) (2006) 617–622.
[5] S. Droste, T. Jansen, I. Wegener, On the optimization of unimodal functions with the (1 + 1) evolutionary algorithm, in: Proceedings of the 5th

International Conference on Parallel Problem Solving from Nature (PPSN V), Amsterdam, Netherlands, 1998.
[6] S. Droste, T. Jansen, I. Wegener, A rigorous complexity analysis of the (1 + 1) evolutionary algorithm for linear functions with boolean inputs, Evolu-

tionary Computation 6 (2) (1998) 185–196.
[7] S. Droste, T. Jansen, I. Wegener, On the analysis of the (1 + 1) evolutionary algorithm, Theoretical Computer Science 276 (1–2) (2002) 51–81.

1832 Y. Yu, Z.-H. Zhou / Artificial Intelligence 172 (2008) 1809–1832
[8] A.E. Eiben, R. Hinterding, Z. Michalewicz, Parameter control in evolutionary algorithms, IEEE Transactions on Evolutionary Computation 3 (2) (1999)
124–141.

[9] A.A. Freitas, A survey of evolutionary algorithms for data mining and knowledge discovery, in: A. Ghosh, S. Tsutsui (Eds.), Advances in Evolutionary
Computing: Theory and Applications, Springer-Verlag, New York, NY, 2003, pp. 819–845.

[10] J. Garnier, L. Kallel, M. Schoenauer, Rigorous hitting times for binary mutations, Evolutionary Computation 7 (2) (1999) 173–203.
[11] B. Hajek, Hitting time and occupation time bounds implied by drift analysis with applications, Advances in Applied Probability 14 (1982) 502–525.
[12] J. He, L. Kang, On the convergence rates of genetic algorithms, Theoretical Computer Science 229 (1–2) (1999) 23–39.
[13] J. He, X. Yao, Drift analysis and average time complexity of evolutionary algorithms, Artificial Intelligence 127 (1) (2001) 57–85.
[14] J. He, X. Yao, Towards an analytic framework for analysing the computation time of evolutionary algorithms, Artificial Intelligence 145 (1–2) (2003)

59–97.
[15] J. He, X. Yao, A study of drift analysis for estimating computation time of evolutionary algorithms, Natural Computing 3 (1) (2004) 21–35.
[16] J. He, X. Yu, Conditions for the convergence of evolutionary algorithms, Journal of Systems Architecture 47 (7) (2001) 601–612.
[17] P.C.H. Ma, K.C.C. Chan, X. Yao, D.K.Y. Chiu, An evolutionary clustering algorithm for gene expression microarray data analysis, IEEE Transactions on

Evolutionary Computation 10 (3) (2006) 296–314.
[18] A.E. Nix, M.D. Vose, Modeling genetic algorithms with Markov chains, Annals of Mathematics and Artificial Intelligence 5 (1) (1992) 77–88.
[19] P.S. Oliveto, J. He, X. Yao, Time complexity of evolutionary algorithms for combinatorial optimization: A decade of results, International Journal of

Automation and Computing 4 (3) (2007) 281–293.
[20] J.S. Rosenthal, Minorization conditions and convergence rates for Markov chain Monte Carlo, Journal of the American Statistical Association 90 (430)

(1995) 558–566.
[21] G. Rudolph, Convergence analysis of canonical genetic algorithms, IEEE Transactions on Neural Networks 5 (1) (1994) 96–101.
[22] G. Rudolph, How mutation and selection solve long path problems in polynomial expected time, Evolutionary Computation 4 (2) (1996) 195–205.
[23] G. Rudolph, Convergence Properties of Evolutionary Algorithms, Verlag Dr. Kovač, Hamburg, Germany, 1997.
[24] G. Rudolph, Finite Markov chain results in evolutionary computation: A tour d’horizon, Fundamenta Informaticae 35 (1–4) (1998) 67–89.
[25] J. Suzuki, A Markov chain analysis on simple genetic algorithms, IEEE Transactions on Systems, Man and Cybernetics 25 (4) (1995) 655–659.
[26] D. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1 (1) (1997) 67–82.
[27] Y. Yu, Z.-H. Zhou, A new approach to estimating the expected first hitting time of evolutionary algorithms, in: Proceeding of the 21st National Confer-

ence on Artificial Intelligence, Boston, WA, 2006, pp. 555–560.

