
Pergamon 
Computers Math. Applic. Vol. 36, No. 9, pp. 71-83, 1998 

(~) 1998 Elsevier Science Ltd. All rights reserved 
Printed in Great Britain 

0898-1221/98 $19.00 + 0.00 
P lh  S0898-1221 (98)00193-X 

Curvatures  of the Quadrat ic  
Rat ional  Bdzier Curves 

Y. J. AHN AND H. O. KIM* 
Department of Mathematics, KAIST 

Taejon, Korea 

(Received and accepted October 1997) 

A b s t r a c t - - W e  find necessary and sufficient conditions for the curvature of a quadratic rational 
Bdzier curve to be monotone in [0, 1], to have a unique local minimum, to have a unique local 
maximum, and to have both extrema in (0, 1), and we also visualize them in figures. As an application, 
we present a necessary and sufficient condition for the offset curve to be regular and to have the same 
tangent direction with the given quadratic rational Bdzier curve, and give a simple algorithm to find 
it. (~) 1998 Elsevier Science Ltd. All rights reserved. 

Keywords--Quadratic rational Bdzier curves, Monotone curvature, Local extrema of curvature, 
Fairing curves, Offset curves. 

1. I N T R O D U C T I O N  

The curvature is one of the most important geometric concepts of curves and surfaces. In par- 
ticular, the curvature needs to be considered for the approximate curve with GC k, k > 2 (see 

[1-3]), or for the interpolant curve with minimal fairness criterion [4-6], or in order to investigate 

the regularity of offset curves [7]. 

The quadratic rational Bdzier curves which are usually called the conic section curves have been 

widely used in industry due to its well-known properties [8] and convenient implementations for 

the users. In CAD system, a circular arc and an ellipse can be expressed by quadratic rational 
Bdzier curves, but not by any polynomial Bdzier curves. In particular, the quadratic rational 

Bdzier curves are used, for example, to design the bodies of aircraft or to design fonts [9,10]. 

Many papers have been published on the quadratic rational Bdzier curves with topics such as 

curvature continuous interpolation problem [11,12], expression as conics [13], contact order [14], 

and high accuracy approximation [15], etc. 

Sapidis and Frey [5] characterized a necessary and sufficient condition for the curvature of 

quadratic polynomial Bdzier curve to be monotone. We found the corresponding condition for 

the case of quadratic rational Bdzier curve, but we are informed that  the same condition was 

found by Frey and Field [16]. Our characterization is more complete in the sense that  it tells the 

extrema as well as the monotonicity of curvature of the quadratic rational Bdzier curves. In the 

derivation of conditions, Frey and Field [16] used 'differentiation' of the curvature s(t) of conics, 
but we used the ' symmetry '  of the conics. For better understanding of our characterizations, 

we present Figures 2-4 which describe all of our assertions. As an application, we also give an 

algorithm for finding the region of offset distance which make the offset curve to be regular and 
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to have the same tangent direction with the given quadratic rational B4zier curve at both end 
points. 

In Section 2, we give some basic facts of the quadratic rational B6zier curves and characterize 
the local extrema of curvature of a quadratic rational B6zier curve when it is symmetric. In 
Section 3, we extend the characterizations in Section 2 to the nonsymmetric case to cover all 
cases and we exhibit our findings in Figures 2-4. In Section 4, using our main results in Section 3, 
we present an application to the offset curve of the quadratic rational B4zier curves and an easy 
and simple algorithm to find the region of offset distance for the regular offset curve matching 
endpoint tangents. We summarize our results in Section 5. 

2. P R E L I M I N A R I E S  

Let r(t)  be the quadratic rational B4zier curve with noncolinear control points bi • R 2 and 
weights wi > 0, i = 0, 1, 2, which can be expressed as 

2 
wiBi( t )b i  

r(t)  = i=0 
2 

E wjB j ( t )  
j = 0  

t • [0, 1], 

where Bo(t) = (1 - t )  2, Bi ( t )  = 2t(1 - t ) ,  and B2(t) = t ~. Any quadratic rational B6zier curve r(t) 
can be converted to the standard form, i.e., Wo = w2 = 1, without changing the shape of the 
curve r. In this paper, we mainly treat  the standard form for each quadratic rational B6zier 
curve. The new weights for the standard form are 1, #, and 1, in order, where # := wl /v / -~w2  
is called the fullness factor of the conic r. It  is easier to handle the quadratic rational B6zier 
curve in its standard form than in the general form. By the fullness factor, the quadratic rational 
B6zier curve is classified into one of the conics, as we see in the following. 

PROPOSITION 2.1. Let r(t)  be a quadratic rational Bdzier curve with its fullness factor #: 

(i) r is a segment of e11ipse i f  # < 1; 
(ii) r is a segment of parabola i f #  = 1; 

(iii) r is a segment of hyperbola ff  # > 1. 

PROOF. See [8]. 

Let ~(t) be the curvature of r(t) ,  i.e., 

~ ( t )  = I I r ' ( t )  x r " ( t ) l l  

i i r , ( t ) l l  z ' 

where the notation ' x '  denotes the vector product of two vectors and [[ [[ means the Euclidean 
length of the vector. Using the above proposition, we can characterize the point t such that  ~(t) 
is a local extremum in (0, 1). 

PROPOSITION 2.2. The [ollowing statements are equivalent: 

(i) ~ has a local extremum at to e (0, 1); 
(ii) r(to) lies on the symmetric axes of the conic containing the curve r;  

( i i i )  ~ ' ( t o )  = O. 

Furthermore, ~(to) is the un/que maximum or un/que m/n/mum of ~(t), t e [0, 1], i f  r is not a 
circular arc. 

PROOF. See [13,17]. | 

The next proposition is also easily derived from Proposition 2.1. 
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PROPOSITION 2.3. The quadratic rational Bdzier curve r has not any point at  which its curva- 

ture s( t)  is an inflection point in the open interva/(0,  1). 
For # _> 1, r(t)  has at  most one point at which ~(t) is a local maximum and has not any point 

at which ~(t) is a local m/n/mum in the open interval (0, 1). 
For/~ < 1, if r(t)  is not a circular arc, then it has at most one point at which s( t )  is a local 

max imum and at  most  one point at which s( t )  is a local m/n/mum in the open interva/(0,  1). 

PROOF. See [8,12,13]. | 

For the standard quadratic rational Bdzier curve r,  put  s := r(1/2)  and m := (b0 + b2)/2. We 
call s a shoulder point of r. It is well known (refer to [8]) that  s lies on the line b l m ,  and 

S = 1 - - - ~ m  q- b l .  

Note that  the tangent line of r(t)  at s is parallel to the line b0b2. Using this fact and the following 
proposition, we can prove Proposition 2.5. 

PROPOSITION 2.4. The quadratic rational Bdzier curve r is symmetr ic  i? and o n l y / / [ [ A  b0[[ = 
[[A bl  [[, where A bi = bi+l - b~, i = 0, 1. Furthermore, a quadratic rational Bdzier curve r(t)  is 

a circular arc i f  and only i f  # < 1 and 

bl = b~ := m + ~ - #_____~2 llbo - ml[ n, (2.1) 

where n is a un/t normal vector to A bo 2 := b2 - bo. 

PROOF. See [13,18,19]. 1 

For # > 1, b~ does not exist (b~'s are not collinear), and for # < 1, b~ satisfies tha t  Z b ~ m b 0  
is a right angle and # = c o s ( / b ~ b 0 m ) .  

PROPOSITION 2.5. The curvature to(t) has a local extremum at t = 1/2 i f  and only ff IIA bo[[ = 
HAbl[[. Furthermore, for bi  ~t b~,  to(t) has a local ex t remum only at t = 1/2 in (0,1) i f  and 

only if IIAboll = IIAblll. 
PROOF. If IlAb0[[ = I IAbl l l ,  then r is symmetric, so is ~(t). Since the curvature s( t)  is differ- 
entiable, k ' (1/2)  -- O. By Proposition 2.3, s(1/2)  is a local extremum. 

Conversely, by Proposition 2.2, r (1/2)  lies on a symmetric axis, say X, of the conic containing r. 
Thus X 2_ r~(1/2), and so X A_ b0b2, as shown in Figure 1. Thus, the two points b0 and b2 are 
mutually symmetric with respect to X, and m = (b0 + b2)/2 E X and s = r(1/2)  E )~ imply 

b l  E X. Hence, HAb0H = [[Abl[[. 

I d I ~''~ 1 

/ / ' "  i ~ ' ~  

kz , ."  b~ = s ~ "',~ 
~I [ i-' 

b~ = bo m b2 

Figure 1. The left subdivision curve r I plotted by a thick line and the right subdivi- 
sion curve r r plotted by s thin line are obtained by subdividing r(t) at t = 1/2. 
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bl  

Figure 2. i < ~2 < c¢. 

bl  

exists 

1 

Figure 3. 1/2 _< ~2 < 1. 

local maximum exists 

Y_ Y 
Figure 4. 0 < ~2 < 1/2. 

Let r be not a circular arc. Assume that ~(t) has another local extremum at t l ¢  1/2 in the 
open interval (0, 1). Then ~(1 - t l)  is also a local extremum, and the curvature ~(t) has local 
ex'trema at three distinct places, t l ,  1/2, 1 - tl E (0, 1), which contradicts Proposition 2.3. | 

It is a well-known fact that  (refer to [11,12]) 

~(i) = ,4 (Aboblb2)  for i = O, 1, (2.2) 
~2[[A bi[[3 ' 

where A ( A b o b l b 2 )  is the area of the triangle Aboblb2 .  Thus, for i , j  E {0, 1} and i ~ j ,  

~(i) > ~(j), if and only if I[A b~[[ < IIA bj  II. (2.3) 
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To evaluate ~(I/2), we subdivide r(t) at t = 1/2, then we have two quadratic Bdzier curves, 

say rt(t) and rr(t), as shown in Figure 1 by a subdivision of r at t = i/2, i.e., 

r '( t)  = r ( 2 )  and rr(t)  = r  ( 1  + t ) ,  

for t E [0,1]. By equat ion (2.2), ~(1/2) = A(Ab~ob~b~)/(#~llAb~xlla), where b~, i = 0, 1, 2, are 
the control points and #t is the fullness factor of left subdivision curve r t (t). Since A(&b0blb2)t t t = 
(#/2(1 + # )2 )A(Aboblb2) ,  #t = 1v / l - -~ /v~  and [lAbel I = [[bo - ml[/(1 + #), (see Figure 1) 

n ( 1 )  = #A (Ab0blb2)  (2.4) 
Ilbo - mll 3 

Using the above propositions and equation (2.4), we characterize whether the local extre- 
mum n(1/2) of the curvature of symmetric quadratic Bdzier curve is its local maximum or not in 
the following proposition. 

PROPOSITION 2.6. Assume IlAb01l = IIAblll and t E (0,1). For # > 1, a(t) has its local 
maximum only at t = 1/2 and has not any local minimum. For # < 1, 

(i) lib1 - roll > IIb~ - ro l l / / ' and  only i fa ( t )  has its 1ocaJ maximum only at t = 1/2 and has 
not any local minimum; 

(ii) Ilbl - rnll -- IIb~ - rol l / / ' and only i fn( t )  = X/1 - #2/#llAboll;  
(iii) IIb~ - roll < IIb~ - roll i f  and only f in( t )  has its local minimum only at t = 1/2 and has 

not any local maximum. 

PROOF. For # > 1, by Proposition 2.5, n(t), t E (0, 1) has its local extremum only at t = 1/2, 
and by Proposition 2.3, the local extremum n(1/2) is its unique local maximum. 

For # < 1, by Proposition 2.5, n(1/2) is a unique local extremum in (0, 1) unless r is a circular 
arc. By equations (2.1) and (2.4), 

(;)__ 
iib  _ b o l l  

and by equation (2.4), 

- = IIb  _ b ° l l  3 

1) 
iiAboll 3 • 

Thus, s (1/2)  - ~ ( 0 )  > 0 if and only if IIA b o l l -  IIb~ -b011 > 0, so that  ~(1/2) is the unique local 
maximum if and only if lib1 - roll > [[b~ - roll. Hence, we get (i). 

Also, ~(1/2) - ~(0) = 0 if and only if s(t) is a constant. By equations (2.1),(2.2), we have that 
lib1 - m[[ = [[b~ - mll if and only if s(t)  ~ V ~ -  #2/#[[Ab0[I. Thus, we get (ii), and since the 
remaining case is unique, (iii) can be obtained similarly to (i). II 

3. R E L A T I O N  B E T W E E N  T H E  C O N T R O L  P O L Y G O N  
A N D  T H E  L O C A L  E X T R E M A  O F  T H E  C U R V A T U R E S  

We first give our main theorems and present Figures 2-4 for easier understanding. As shown in 
Figure 2, we define C~, i = 0, 1, by the circle with center ci = b~ + (b2-2~ - b i ) /4#  2 with radius 
IIA bo2[I/4# 2, and denote the interior of C~ by Int C~ and the union of Int C~ and its boundary 

by Int C~. 

THEOREM 3.1. Let # > 1 (refer to Figure 2). The curwture ~(t) is monotone if and only if 
bl  E In tC°  O IntC~. I f  bl ¢ In tC°OIn tC~,  then thereexiststA E (0,1) such that ~(tA) is the 
unique local maximum in (0, 1) and ~( t) is monotone in each of subintervals [0, t A) and (t A, 1]. 



76 Y . J .  AHN AND H. O. KIM 

THEOREM 3.2. Let 0 < # < 1 (refer to Figures 3 and 4). 

(i) I f  bl  ¢ Int C ° U Int C 1, then a(t) has the unique local maximum at tA E (0, 1) and is 
monotone in [0, tA) and (tA, 1]. 

(ii) I f  bl  E I n t C  ° A IntC~, then n(t) has the unique local minimum at ta E (0,1) and is 
monotone in [0, t s )  and (tB, 1]. 

(iii) / [  1/v/2 _< # < 1 and b t  E D~,, where D~ = (Int C o U lnt C~ 1) - ( I n t  C o N Int C~1), then n(t) 

is monotone in [0, 1]. For 0 </Z < 1/vf2, i f b l  E D~, then a(t) has a local maximum only 
at tA and loca] minimum only at tB in (0, 1), and if bl  lies on the boundary of D~, and 

be: bl  q~ { ~ }, then n(t) has a local maximum or a local minimum in (0, 1), but not both. 
b ± (iv) I f  bl  E { ~ }, then r is a circular arc. 

bo b2 

Figure 5. The left subdivision curve rlc(t) of r(t) at c has the control points b0, 
bl(c), and r(c), in order. 

We prove the above theorems using the following lemmas and propositions. For each parameter 
c E [0, 1], the left subdivision curve r~: [0, 1] --* R 2 defined by 

r~(s) := r(~s), 0 < s < 1, 

whose endpoints are r(0) and r(c). As shown in Figure 5, the subdivision curve r~(s) is also 
a quadratic rational Bdzier curve with the control points bo, b01(c), and r(c), where bl(c)  := 
((1 - c)bo + c/zbl)/((1 - c) + c/z), and the weights 

1, u(c) := (1 - c) + c/z, and w(c) := Bo(c) +/ZBI(c) + B2(c), 

in order. (See [8] for a wealth of information about subdivision curves.) Since the quadratic 
rational Bdzier curve r~(s) is not a standard form, the shoulder point of r~ is not equal to r~(1/2) 
but equal to r(t) with t = c / ( x / ~ +  1). We define a map To: [0, 1] ~ [0, 1/2] by 

c 
to(c) = ~ + 1' 

Then T0(0) = 0 and v0(1) = 1/2. Since 

rg(~) = 2w(~) + 2 v z S ~  - ~ ' ( c )  
2 ~ ( ~ +  1) ~- 

the map r0 is bijective and strictly increasing. For 
means that  the point r(t) is the shoulder point of 

the curve r~(s), c E (0, 1), is symmetric if and only 
at t = To(c) E (0, 1/2). We define a map F0 : [0, 1] 

Fo(=) := [tbo - bA(~)[[ 2 

For c E (0, 1), Fo(c) = 0 if and only if the curvature 

= (_1_- c_) +e/z + v ~  >0 ,  

each t e [0, 1/2], the map r~ ' l :  [0,1/2] ---, [0, 1] 
quadratic rational Bdzier curve rl.o_l(t ). Thus, 

if the curvature n(t) of r has a local extremum 
--* R by 

- l i b , ( c ) -  r(c)ll  ~ . (3.5) 

n has a local extremum at t = r0(c) E (0, 1/2). 
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By the fact that  rCc ) = bl  + ( -B0(c)A b0 + B2(c) A bl)/wCc ), we have 

c [ 2 c - 1  ] 
r(c) - b~(c) = ~ [ p ~ A  bo - cA b~j . 

Since Ilbo - b~(c)Jl  = c / , l lA  b011/u(c) ,  u s i n g  w ( c )  2 - (2c - 1) 2 --  4c(1  - c ) u ( c ) u ( 1  - c),  we get 

c 3 

Fo(c) = u(c)w(c) 2 ho(c), 

where 

(3.6) 

ho(c) := 4~2(1 - c)u(1 - c ) l iA  boll 2 ÷ 2~(2c - 1)A bo.  A b o  2 - cuCc ) IIA bo~ll 2 . (3.7) 

LEMMA 3.3. For c E (0, 1), the following statements axe equivalent: 

(i) ho(c) = 0; 
(ii) the subdivision curve r~c is symmetric; 

(iii) the curvature s(t) o f t  has a local extremum at t = v0(c) e (0, 1/2). 

PROOF. By equation (3.6), F0(c) = 0 if and only if ho(c) = O. Thus, equation C3.5) yields that  (i) 
is equivalent to (ii). By Proposition 2.5, (ii) and (iii) are equivalent. | 

In the above lemma, we characterized whether sCt ) has a local extremum in (0, 1/2) or not 
by using a quadratic polynomial hoCc). By using the following lemma, we can also characterize 
when s(t) has a local extremum in (1/2, 0). Let 2 be the quadratic rational Bdzier curve with 
control points b0, 2m - bl ,  and bg., as shown in Figure 6. 

b l  

~ ' ( t )  
b o ~  b2 

Figure 6. l)(t) having the control points bo, 2m -bl, and b2, in order. 

LEMMA 3.4. The curvature ~(t) o f t ( t )  has a local max/mum (or minimum) at to E (0, 1) f fand  
only ff the curvature of2Ct ) has a local max/mum (or m/n/mum, respectively) at 1 - to e (0, 1). 

PROOf. Let k(t) be the curvature of 2(t). It follows from 2'(1 - t )  = r ' ( t)  and 2"(1 - t )  = - r " ( t )  
that  

k ( 1  - t )  = ][2'(1 - t )  × 2 " ( 1  - Oil II-r'(0 x r"(011 = ~ ( 0 .  ( 3 , 8 )  ! 
l l 2 ' ( 1  - 011 s = Ilr'(01] s 

We can define a map hi : [0, 1] ~ R so that  hi is to 2 what h0 is to r. It is easily seen from 
equation (3.7) that  

h,(c) = 4#2(1 - c)u(1 - c ) I I A  b, II 2 + 2p(2c - 1 ) A b , .  Ab2o - cuCc ) IIA bo211, (3.9) 

for i = 0,1. B y  L e m m a  3.4, we can see tha t  the curvature s ( t )  has a local ex t remum at 1 - to(c) 

if hi(c) -- 0 for some c E ( 0, 1). Thus, it is reasonable that  we define a map 7"1 : [0 ,  1] --* [1/2, 1] 
by rl(C) = 1 - vo(C). Hence, by Lemmas 3.3 and 3.4, we can find a quadratic polynomial hi(c), 
i = 0,1, such that  hi(c) has a zero in ( 0,1) if and only if ~(t) has an extremum in ( 0, 1/2)U(1/2, 1). 
Combining this fact and Proposition 2.5, we obtain the following proposition. 
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PROPOSITION 3.5. ~¢(1/2) is a local ex tremum if  and o n l y / f  []AboJ[ = [IAbl[[, and ~(t) has a 

local ex t remum in (0, 1/2) or (1/2, 1) i f  and only i f  ho(c) or hi(c) has a zero in (0, 1), respectively. 

If [[Ab0[[ < [[Abl[[, then we can guess tha t  s( t )  > s(1 - t )  for t E [0,1). The following 
proposition confirms our guess and will be used in the proof of Proposit ion 3.7. 

PROPOSITION 3.6. Let  [[Ab0][ ~ [[Abl[[. For c E [0, 1/2), 

(IIA boll - IIA b i l l ) ( ~ ( c )  - ~(1 - c)) < o. 

PROOF. By equation (3.8), it suffices to show tha t  if IlAboll < IIAblll, then  s(c) > ~(1 - c) for 
c e [0 ,1 /2) .  

Assume tha t  [[Abo[[ < HAbI[[ and c e [0, 1/2). We define a subdivision curve re(s) of r such 
tha t  re(0) = r(c), re( l )  = r(1 - c), i.e., re(s) = r(c + (1 - 2c)s). Then re(s) is a quadratic 
rational Bdzier curve, with control points b~ = r(c), b~ = r(1 - c), and b~ is the intersection of 
two tangent  lines of r at r(c) and r(1 - c), as shown in Figure 7. 

b l  

bo b2 

Figure 7. The subdivision curve re(s) of r(t) on [c, 1 - c] for some c E (0, i/2) has 
its control points b~, b[, and b~ in order. 

For i = 0, 1 and c ~ [0, 1/2), let b~(c) be the intersection of the line b lb2i  and the tangent  
line of r at  r(c). Then the  four lines b0b2, b01(c)b~(1 - c), b l (1  - c)b~(c), and r(c)r(1 - c) are 
parallel as shown in Figure 7. We then  have 

lib,(c) - b ~ ( 1  - c)[  I _ [ [ A b o [ [  
- - < i ,  

llb~(c) - b~(1 - c)[[ IIA bill 

so that 

It follows from (6) and 

[[bi(c) - b~(c)ll < llbI(1 - c) - b~(1 - c)[ I . 

IIb£ - bSII  _ [[bl - b~(c)[I = [[bi(c)  - bA(c)l[ < 1 
Ilb~ - bill Hbi(l  - c) - b l l  I [[b~(1 - c) - b~( l  - c)ll 

that ~(c) > ~(1 -e). | 

By Propositions 2.3 and 3.6, we can see that if HAb011 < [[Ab1[[ the curvature s(t) can have 

neither any local minima in (0, 1/2) nor any local maxima in (1/2, 1). This fact can be explained 

in detail as in the next proposition. 
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PROPOSITION 3.7. Let i , j  6 {0,1} and i # j ,  and assume that  I[Abil[ < HAbj[[. Hhi (c )  = 0 
and c 6 (0, 1), then the curvature s(t) has a local max imum at ri(c). H #  > 1, then hi(c) cannot 
have any zero in the open interval (0, 1). g ,  < 1, hi(c) = 0, and c 6 (0, 1), then s ( t )  has a local 
min imum at Tj (C). 

PROOF. Since [IAbi[[ < IlAbj[[, the quadratic rational Bdzier curve is not a circular arc and 
~(1/2) is not a local extremum. Let hi(c) = 0 for c 6 (0, 1). By Lemma 3.3 and equation (2.3), 
we obtain 

~(i) = ~(c) > ~(j) ,  

and the curvature a(t) has a local extremum at ri(c) which lies between i and 1/2. Assume 
a(ri(c)) is a local minimum. By Proposition 2.2, a(vi(c)) is the unique minimum in [0, 1], which 
contradicts to Proposition 3.6 which contains the fact ~(1 - Ti(c)) < a(~-i(c)). Hence, ~(t) has a 
local maximum at Ti(C). 

By a similar method, we obtain that  a(t) has a local minimum at ~-j (c) if # < 1, hj (c) = 0, 
and c 6 (0, 1). But  if # > 1, then hi(c) cannot have any zero in (0, 1), since g(t) cannot have a 
local minimum. | 

By Proposition 2.3, the quadratic polynomial hi(c), i = 0, 1, has at most one zero in (0, 1). In 
the following lemma, we make clear the reason why the multiplicity of zero of hi(c) is at most 
one. 

LEMMA 3.8. Eazh function hi(c) has at most one zero including multiplicity in the open inter- 

va/(0,  1). 

PROOF. By Propositions 2.3 and 3.7, the quadratic polynomial hi(c) cannot have two distinct 
zeros in (0, 1). Suppose that  hi(c) has a zero, say at co 6 (0, 1), with multiplicity two. By 
Proposition 3.5, ~(i) = ~(co), and by equation (2.3) and since for all sufficiently small ¢ > 0, 

h (co + E) h(c0 - E) = (h (co + e) - h(co)) (h (co - ~) - h(CO)) > O, 

we have 

(~ (co + c) - ~(0) (~ (co - e) - ~(0) = (~ (co + c) - ~(co)) (~ (co - ¢) - ~(co)) > 0, 

so that the curvature ~ has a local extremum at co as well as at ri(co). This is impossible for 

/~ > 1. If r lies on an ellipse, then r(i), r(co), and r(ri(co)) are the vertices of the ellipse, which 

is also a contradiction. | 

By Lemma 3.8, we can see that,  for each i, hi(c) has a zero in (0, 1) if and only if hi(0)hi(1) < 0. 
By equation (3.7), we have 

{ - - 1  Ab2  2} { ( b l - m ) ' ( b 2 - m ) } '  ho(0)ho(1) = 16 .  4 lib1 - c0[[ 2 - 4 .  2 0 

From equation (3.9), we can easily obtain 

{ 12 } hi(0)hi(1) = 16 ,  4 lib1 - cil[ 2 - 1----Ab2 {(bl - m ) .  (b2-2i - rn)} (3.10) 
4#~ 

for i = 0, 1. N o t e  t h a t  lib1 - ei[[ 2 < (1 /16#2 ) [ [b2  - b0[[ 2 if and  on ly  if b l  lies in the  circle C~. 

REMARK. 

(i) 

I 
¢, if # > I, 

{m}, if. = 1, 

1 
C~°nC~ -- {b~}, if#<1,.# N, 

1 
C °, if.= N '  
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(ii) I n t C  ° N IntC~ ~ ¢ if and only if # < 1, and D~ = ¢ if and only if # = 1 /v~ .  

(iii) b2-2~ E Int C~ if and only if # < l/v/2. 

Now, we characterize whether the quadratic rational Bdzier curve r(t) has the local extremum 
of the curvature n(t), t E (0, 1), or not in terms of the control points bi of r. 

PROOF OF THEOREM 3.1. Let # > 1. If II A b011 = II A bl  II, then a(t) has a unique local maximum 
at t = 1/2 in (0,1) by Proposition 2.6. Let IIAb~ll < I IAbj l l ,  for i , j  E {0,1} and i # j .  By 
Propositions 3.6 and 3.7 and equation (3.10), hi(c) has a unique zero at a point CA E (0, 1) and 
hi(c) has no zeros in (0, 1) if and only if 

{(bl - m). (b2-2i - m)} llbl - cdl 2 - 41z2 < 0. 

Since (bx - m) • (b2-2~ - m) < 0, n(t) has a local maximum at  Ti(CA) if and only if 

] ^ 
I Ib l - c i l [  > A-~,2Ab~ , 

i.e., b l  ¢ Int Cj,, as shown in Figure 2. By the symmetry, we can see that  ~(t) is monotone in [0, 1] 

if and only if b l  E Int C ° t3 Int C~ 1. Hence, if b l  ~ Int C ° U Int C~, we can define tA E (0, 1) as 

1 

tA = 2' 
if IIA boll = IIAblll, 

otherwise, 
(3.11) 

where cA E (0,1) is the unique zero of the quadratic polynomial h~(c) so that  we deduce that  s(t) 
has the unique local maximum at tA E (0, 1) if and only if b t  ~ Int C ° U Int C~. Thus, we obtain 
the assertions (refer to Figure 2). | 

PROOF Of THEOREM 3.2. Let 0 < # < 1. If [[A b0[I = [[Abl[[, by Proposition 2.6, we have 

(i) ~(1/2) is the unique local maximum, for b t  ¢ Int C ° t2 Int C~, 
(ii) a(t) is a constant for b t  = C O n C~, 

(iii) ~(1/2) is the unique local minimum for bl  E Int C ° MInt C~. 

Let [IAbi[[ < [[Abj[[, for i , j  E {0,1} and i ~ j .  Then hi(c) has a unique zero at a point 
CA E (0, 1) if and only if { 2} 

{(bl-m).(b2#-m)} IIbl-cill a -  A--~.2Ab 2 <0, 
a/z [I 

and hi(c) has a unique zero at a point cB E (0, 1) if and only if 

1 b 2 2 
{ ( b l - m ) ' ( b 2 ~ - m ) , { , ] b l - c j " 2 -  ~-/~-~#2A 01 } < 0 .  

Since (bx - m) -  (b2j - m) < 0 and (bl  - m ) .  (b2i - m) > 0, ~(t) has a unique local maximum 
at vi(cA) if and only if 

][bl - c iH  > ~ # 2 A b o  2 , (a.12) 

i.e., by ¢ Int C~, and s(t)  has a unique local minimum at Tj(cs) if and only if 

~Abo 2 lib1 - cj[[ < , (3.13) 
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i.e., b l  e Int C~. The intersection of two regions of b l  bounded by equations (3.12) and (3.13) 

is empty for 1 / v ~  _< # < 1 and equals a component of D~ for 0 < # < 1 /v~ .  By combining this 
with the case IIA boll = IIAblll, ~(t) has a local maximum in (0, 1) if and only if 

b l  ¢ Int C ° U Int C~, 

b l  ¢ Int C ° N Int C~, 

1 
for ~ _ < # < 1  

1 
f o r 0 < # <  ~ ,  

o r  

(3.14) 

and a(t) has a local minimum in (0, 1) if and only if 

b l  • Int C ° n Int 6',1, 

b l  • I n t C  ° U I n t C  1, 

1 
f o r ~ < # < l  

1 
f o r 0 < # <  

o r  

(3.15) 

Hence, if b l  satisfies equation (3.14) we can define tA as in equation (3.11), and if b l  satisfies 
equation (3.15) we can define tB as 

1 
tB = 2 '  if IIAboll = llAblll, 

vj (CB), otherwise, 

where cB • (0, 1) is the unique zero of hi(c). 
Therefore, we can deduce the following facts. If b l  • Int C O n Int C~, then n(t) has a unique 

local minimum only at tB • (0, 1), and if b l  • Int C ° U Int C~, then n(t) has a unique local 
maximum only at tA • (0, 1). If b l  • D , ,  then ~(t) is monotone in [0, 1] for 1 / v ~  <: # < 1 
and n(t) has a local maximum only at tA and local minimum only at tB in (0, 1) for 0 < ~ < 1/vf2, 
as shown in Figures 3 and 4. Thus, we obtain the assertions. | 

4. A P P L I C A T I O N  

In a C A D / C A M  system, to find the path of tool with radius d 6 R for the quadratic rational 
B4zier curve r(t), we define an offset curve 

rd(t) = r(t) + d.  n(t), 

where n(t) is the unit normal vector of r at r(t) and its direction is outward from the curve r, as 
shown in Figure 8. For practical use it is required that  the path rd(t) of tool must be regular and 
has the same tangent direction with r at both endpoints. Note that,  since r(t) is convex, i.e., the 
signed curvature always has same sign, rd(t) is regular in [0, 1] for d _> 0. Thus, the necessary 
condition for r d being regular is 

1 
d > - - - { n ( t ) } ,  

max 
te[0,1] 

as shown in Figure 8. Using this fact, we get the following characterization. 

PROPOSITION 4.1. The offset curve rd(t) is regular and rd(t) has the same tangent direction 
with r(t) at  both endpoints f fand only f fd  > - l / n 0 ,  where 

{ nCi), 
n o  = 4#CA IIAbo x (r(cA) - b0)ll 

if hi  • Int C~, 

otherwise, 
(4.16) 
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\ 

Figure 8. The offset curves rd(t) of a quadratic rational B~zier curve r(t) having the 
control polygon [boblb2]. 

where i • {0, 1} such that IlAb~ll = min{l[A boll, IlAblll}, and CA • (0, 1) is the unique zero of 
hi(c) in equation (3.9). 

PROOF. It suffices to show that  n0 = maxte[0,1] ~(t). The curvature ~(t) of any quadratic rational 
B~zier curve is monotone in [0, 1] or has at most one point tA at which n(tA) is a local maximum 
in ( 0, 1). By our main results in Section 4, the curvature nit ) has no local maxima in (0, 1) if 
and only if 

1 1 
b l • I n t C  ° U I n t C ~ ,  f o r # > ~  or b l • I n t C  ° N I n t C ~ ,  f o r # < ~ .  

Then b l  e Int C~ if and only if n(t) has no local maxima in (0, 1), i.e., the maximum of curvature 
is n(i). Otherwise, n has its maximum in [0, 1]. Using (v) in the Remark in Section 3, and the 
facts that  the weight of the subdivision curve at CA in standard form is U ( C A ) / ~  and that 
[[b~ (CA) -- b0 [[ = CA#HA b0 [[/u(c), we obtain that  the maximum value of the curvature n(t) equals 
to equation (4.16). 1 

Using above theorem and the fact that  b l  • IntC~ is equivalent to [[bl - ci[[ _< [[Ab2[[/4# 2, 
we present the following algorithm to find the region of d in R such that the offset curve rd(t) is 
regular and r d has the same tangent direction with r at both endpoints. 

ALGORITHM. 

1. Input the control points b j  and weights wj, for j = 0, 1, 2. 
2. Choose i • {0, 1} such that IlAbi[[ = min{[[Abo[[, HAbl[[}. 
3. Calculate p = (Wl/WV/'W0-~), and ci = (1 - (1/4/z2))bi + (1/4#2)b2_2i. 

. C a s e s .  

(a) If l i b 1 -  cill < IIA b2l l /4~  2, then 

n0 = n(~) = 

(b) Otherwise, find the unique zero CA 

II A b, x A b~[I 
2/~3[[A bill 3 

e (0, 1) of the quadratic polynomial hi(c) in 
equation (3.9), and calculate tA = T~(CA) E (0, 1) and 

t~o = ~(tA) -~ 4/~CA [[Ab0 x (r(CA) -- bo)H 
[[r(cA) -- boll 3 

5. Output the minimum value of d : - i / n o .  

The merit of this algorithm is that  it is easy not only to understand but also to implement. 
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5. C O M M E N T S  

In  this  paper,  we character ized necessary and  sufficient condi t ions  for the  curva ture  of a qua- 

drat ic  ra t iona l  B~zier curve to be monotone  in [0, 1], to have a un ique  local m i n i m u m ,  to have 

a un ique  local m a x i m u m ,  or to have bo th  ex t rema  in (0, 1). We also visualized t hem in three 

figures. 

As an  appl icat ion,  we presented a necessary and  sufficient condi t ion  for the offset curve to be 

regular  and  to have the same t angen t  direct ion wi th  the quadra t ic  ra t ional  B~zier curve, and  

gave a simple a lgor i thm to find it. 
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