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Abstract

For successful trading in financial markets, it is important to develop financial

models where one can identify different states of the market for modifying one’s actions.

In this paper, we propose to use probabilistic fuzzy systems for this purpose. We con-

centrate on Takagi–Sugeno (TS) probabilistic fuzzy systems that combine interpret-

ability of fuzzy systems with the statistical properties of probabilistic systems. We start

by recapitulating the general architecture of TS probabilistic fuzzy rule-based systems

and summarize the corresponding reasoning schemes. We mention how probabilities

can be estimated from a given data set and how a probability distribution can be ap-

proximated using a fuzzy histogram technique. We apply our methodology to financial

time series analysis and demonstrate how a probabilistic TS fuzzy system can be

identified, assuming that a linguistic term set is given. We illustrate the interpretability

of such a system by inspecting the rule bases of our induced models.
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1. Introduction

Complex systems such as financial markets are characterized by changing

process dynamics, which manifest themselves in various ways like regime shifts

and volatility variations. In the specific case of financial markets, it is impor-

tant to recognize the �state-of-the-market’, so that the market participants’

decisions (e.g. trading decisions) can be adapted to the prevailing market

conditions in order to safeguard success in the markets. Consequently, many

financial models try to capture the changes in the market conditions. An ex-

ample of such a model is the so-called Generalized Auto Regressive Condi-
tional Heteroskedasticity (GARCH) model [1], which assumes that the current

volatility of market returns is dependent on a weighted sum of the long-run

volatility, of estimated recent volatilities and of observed recent market re-

turns. More details are given below.

The GARCH model is an example of a probabilistic model. This type of

models is almost always used in the world of finance. Probabilistic models deal

with probabilistic uncertainty regarding the market developments (e.g. return

series). There are, however, often other types of uncertainty present, such as
fuzziness in the definitions of concepts and the linguistic uncertainty, which are

related to the perception of market participants. These other types of uncer-

tainty should best be modelled explicitly by using paradigms other than

probabilistic modelling. Financial models should then ideally combine different

paradigms in order to deal with different types of uncertainty. The advantages

of such an approach are two-fold. First, explicit modelling of different types of

uncertainty separates quantities that are conceptually different. This improves

the interpretability of the models, since conceptually different quantities are
treated separately. Second, the adaptability of the models can be improved,

since different types of information can be dealt with during the model in-

duction process.

In this paper, we propose to use probabilistic fuzzy systems as a general tool

for modelling of financial problems, and, more particularly, for the analysis of

financial time series. We examine an artificially generated noisy time series

following a GARCH process, and a real-world high frequency returns series.

Fuzzy systems (FSs) are widely applied in fields like classification, decision
support, process simulation, and control [2,3]. Financial and marketing ap-

plications have also been reported regularly [4,5]. Original applications of FSs

have concentrated on their design from expert knowledge [6,7]. In the past

decade, however, data-driven techniques for designing FSs have gained much

attention, partly due to the availability of large amounts of data from modern

sensory, measurement and computer systems. One important advantage of

fuzzy inference systems is their linguistic interpretability, whereby the results

from the data-driven approach can be combined with or compared to the
knowledge available from experts. When applying FSs, one usually focusses on
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this aspect by modelling fuzziness and linguistic vagueness using membership

functions. However, one has often ignored the probabilistic uncertainty, which
is often also present. Probabilistic fuzzy systems (PFSs) combine both types of

uncertainty in order to provide ‘‘the best of the two worlds’’.

The advantage of PFSs over probabilistic systems is that they combine in-

terpretability of fuzzy systems with the statistical properties of probabilistic

systems. We consider PFSs where the rules describe a stochastic mapping from

the antecedent space to the consequent space [8–11]. These PFSs can be con-

sidered as a generalization of deterministic rule-based fuzzy systems. In this

paper, we concentrate on probabilistic Takagi–Sugeno fuzzy systems and their
design from data. We demonstrate how these systems can be applied to fi-

nancial time series modelling and illustrate how the resulting model can be

analyzed and interpreted assuming that a linguistic term set concerning the

financial returns is given. The emphasis is put on how fuzzy and probabilistic

uncertainties can be simultaneously dealt with. The issue of optimal design is

not considered.

The rest of the paper is structured as follows. In Section 2, we recapitulate

the general architecture of TS probabilistic fuzzy rule-based systems and
summarize the corresponding reasoning schemes. In Section 3, we mention

relevant results from the theory of mathematical statistics on fuzzy sets in order

to be able to estimate probabilities on fuzzy sets. We also illustrate how a

probability distribution can be approximated by a fuzzy histogram. In Section

4, we apply the proposed methodology for financial time series analysis and

demonstrate how a probabilistic TS fuzzy system can be identified, assuming

that a linguistic term set is given. We illustrate the interpretability of such a

system by inspecting the rule bases of our models. Finally, the conclusions and
a short discussion are given in Section 5.

2. Probabilistic fuzzy systems

For the scope of this paper, we concentrate on zero-order Takagi–Sugeno

PFSs, although extensions to other types of fuzzy systems are also possible.

The heart of a zero-order Takagi–Sugeno probabilistic fuzzy system consists of
a probabilistic fuzzy rule-base which is made up of a set of probabilistic fuzzy

rules, together with an appropriate inference mechanism for reasoning. The

probabilistic fuzzy rules have the general form [10]:

Rule Rq : If x is Aq then y ¼ yq1 with Prðyq1jAqÞ and
y ¼ yq2 with Prðyq2jAqÞ and

..

.

y ¼ yqN with PrðyqN jAqÞ;

ð1Þ
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where x ¼ ðx1; x2; . . . ; xMÞ 2 X is an M-dimensional input vector, Aq is an an-

tecedent linguistic value defined by a fuzzy membership function lqðxÞ, y is the
stochastic consequent variable being equal to one of the values yq1; yq2; . . . ; yqN .
The selection of this consequent value is done proportionally to the conditional

probabilities Prðyq1 jAqÞ; . . . ;PrðyqN jAqÞ, with 8j : PrðyqjjAqÞ ¼ Prðy ¼ yqjjx is

AqÞ.
In this paper, we use fuzzy rules (1), where the consequent values yqj are the

same for all rules. Mathematically expressed, we assume that

8j; q; q0 : yqj ¼ yq0j ¼ yj: ð2Þ

Hence, each rule describes a probabilistic mapping from a fuzzy antecedent to

the same set of crisp consequents. The rules differ in the probabilistic mapping

that they describe. This assumption is not restrictive if the consequents are

chosen such that they can be used to characterize the whole system output (or

equivalently consequent) space.

The reasoning in probabilistic systems essentially performs an interpolation

as in many fuzzy systems. The following paragraphs summarize two reasoning
schemes.

2.1. Probabilistic fuzzy reasoning I

In this scheme, we begin by estimating the conditional probabilities Prðyj jxÞ
for arbitrary x and then calculate the regression hyperplane y on x. First, the

conditional probabilities Prðyj jxÞ are calculated by using a weighted sum of
conditional probabilities Prðyj jAqÞ

Prðyj jxÞ ¼
XQ
q¼1

/q Prðyj jAqÞ ¼
PQ

q¼1 PrðAqÞlqðxÞPrðyj jAqÞPQ
q¼1 PrðAqÞlqðxÞ

ð3Þ

with /q ¼ PrðAqÞlqðxÞ=
PQ

q¼1 PrðAqÞlqðxÞ. The weight factors /q take into

account both the membership lqðxÞ to the fuzzy antecedent Aq (often termed

the �firing rate’ [3]) and the probability of the fuzzy event Aq. Note that (3)

actually implements a stochastic mapping X ! Y : for each arbitrary input

vector x, the conditional probability distribution Prðyj jxÞ, ðj ¼ 1; 2; . . .Þ is

given by (3).
In practice, one often wants to know the expected behavior as described by a

regression curve, i.e. the regression hyperplane of y on X . This is defined as the

location of the mathematical expectations Eðy jxÞ [12], and it can be calculated

according to

y ¼ Eðy jxÞ ¼
XN
j¼1

yj Prðyj jxÞ: ð4Þ

Note that (4) reduces (3) to a crisp mapping.
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2.2. Probabilistic fuzzy reasoning II

It might be of interest to know––for each qth rule––the mathematical ex-

pectation of the output variable y given fuzzy antecedent Aq. This expectation

Eðy jAqÞ can be estimated according to

Eðy jAqÞ ¼
XN
j¼1

yj Prðyj jAqÞ: ð5Þ

Using probabilistic fuzzy reasoning, we can also estimate y as a function of x

by calculating the weighted sum of expectations Eðy jAqÞ, q ¼ 1; 2; . . . ;Q con-

form

y ¼
XQ
q¼1

/qEðy jAqÞ ¼
PQ

q¼1 PrðAqÞlqðxÞEðyjAqÞPQ
q¼1 PrðAqÞlqðxÞ

ð6Þ

with /q ¼ PrðAqÞlqðxÞ=
PQ

q¼1 PrðAqÞlqðxÞ. Hence, (6) calculates the expected

output of the probabilistic fuzzy system by combining the expected output of

all rules. Again, the weight factors /q take into account both the firing rate

lqðxÞ and the probability PrðAqÞ of the fuzzy event Aq. Note that (6) involves an

interpolation procedure, just like (3). Note also that Eqs. (4) and (6) describe

the same hyperplane [10], so probabilistic fuzzy reasoning schemes I and II end

up with the same deterministic mapping.

3. Mathematical statistics on fuzzy sets

In this section, we describe how the probabilities in Section 2 can be com-

puted from data. Furthermore, we discuss the approximation of probability

density functions using so-called fuzzy histograms. The analysis is based on

Zadeh’s definition of the probability of a fuzzy event [13].

3.1. Probability estimation

Given a set of S samples xs; ðs ¼ 1; . . . ; SÞ in a �well-defined’ [8] sample space

X , the probability PrðAcÞ describing the probability of the �fuzzy event’ �x is Ac’,

can be estimated according to

PrðAcÞ � ~fAc ¼
fAc

S
¼ 1

S

X
xs

lAc
ðxsÞ ¼ l̂Ac

: ð7Þ

Here, ~fAc denotes the relative frequency and fAc the absolute frequency of the

fuzzy sample values lAc
ðxsÞ for fuzzy class Ac. In addition, conditional prob-

abilities on fuzzy sets can be assessed according to
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PrðAc jAbÞ ¼
PrðAc \ AbÞ

PrðAbÞ
�

P
xs
lAb

ðxsÞlAc
ðxsÞP

xs
lAb

ðxsÞ
: ð8Þ

In Section 2, we mentioned expressions of type Prðyj jAqÞ describing the

probability of a crisp event y ¼ yj, given the occurrence of fuzzy event x is Aq.

In general, the data regarding a system will have values other than yj. Then,
one needs to define crisp classes Yj (e.g. by discretizing Y ), each of which is

represented by a crisp value yj. In that case, the conditional probability

Prðyj jAqÞ can be calculated from a training set of data pairs ðxs; ysÞ,
s ¼ 1; . . . ; S, by using a modified version of (8)

Prðyj jAqÞ ¼ PrðYj jAqÞ �
P

ðxs;ysÞ vjðysÞlAq
ðxsÞP

xs
lAq

ðxsÞ
; ð9Þ

where vjðyÞ is defined as

vjðyÞ ¼
1 if y 2 Yj;
0 if y 62 Yj:

�
ð10Þ

3.2. Fuzzy histograms

The technique for estimating a probability density function (pdf) using

(crisp) histograms is well-known. By appropriately partitioning the domain of

sample space X in a set of Q disjunct classes Cq, each ‘‘column’’ fqðxÞ,
ðq ¼ 1; 2; . . . ;QÞ of the histogram is defined by the functions

fqðxÞ ¼
PrðCqÞ
cq

ifx 2 Cq;

0 ifx 62 Cq;

8<
: ð11Þ

where the probability PrðCqÞ is estimated in the usual way (using the relative

frequency of samples xs 2 Cq) and where the scaling scalar cq equals the size of
class Cq (which in the one-dimensional case, equals the length of the interval

Cq). The pdf f ðxÞ is approximated by a summation of the functions fqðxÞ ac-
cording to

f ðxÞ � fappðxÞ ¼
X
q

fqðxÞ: ð12Þ

Pdfs defined on a sample space X that is fuzzily partitioned can also be esti-

mated, this time by using a �fuzzy histogram’. To do so, we need a general-
ization of the above-given crisp approach. Let X be fuzzily partitioned in a set

of Q fuzzy classes Aq described by membership functions lAq
ð Þ, then the (fuzzy)

column fqðxÞ for fuzzy class Aq can be estimated according to
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fqðxÞ ¼
PrðAqÞlAq

ðxÞR1
�1 lAq

ðxÞdx
; ð13Þ

with
R1
�1 · dx representing an M-fold integral. It is assumed that this integral

exists. Eq. (13) is a generalized version of (11): the numerator in (13) describes a

probability weighted with membership function lAq
ðxÞ, the denominator of

(13) is a scaling factor representing the fuzzified size of class Cq (which in the

one-dimensional continuous case, equals the fuzzy length of the interval Cq).
The complete pdf f ðxÞ is again approximated by a summation of the functions

fqðxÞ

f ðxÞ � fappðxÞ ¼
X
q

fqðxÞ ¼
X
q

PrðAqÞlAq
ðxÞR1

�1 lAq
ðxÞdx

: ð14Þ

Due to the overlap of the fuzzy sets, in practice, fuzzy histograms approximate

probability distributions better. Fig. 1 shows this phenomenon where a normal
probability density function is approximated using both a crisp and a fuzzy

histogram. In both cases, seven classes have been used.

Finally, we mention here that definition (14) guarantees that, like in the crisp

case, the approximation fappðxÞ is properly defined in the sense thatZ 1

�1
fappðxÞdx ¼ 1: ð15Þ

The proof of this observation is obtained by using (14), so thatZ 1

�1
fappðxÞdx ¼

Z 1

�1

X
q

PrðAqÞlAq
ðxÞR1

�1 lAq
ðxÞdx

dx

¼
X
q

PrðAqÞ
R1
�1 lAq

ðxÞdxR1
�1 lAq

ðxÞdx
¼

X
q

PrðAqÞ ¼ 1: ð16Þ

Membership values

A1

A2

A3

A4

A5

A6

A7

Approximations of normal distribution

pdf normal
distribution

crisp histogram

fuzzy histogram

Fig. 1. (left) A fuzzy histogram better approximates a pdf than a crisp histogram, due to (right)

overlapping membership functions.

J. van den Berg et al. / Internat. J. Approx. Reason. 35 (2004) 291–305 297



4. Analysis of financial time series

In this section, we give examples of the analysis of financial time series by

using probabilistic fuzzy systems. In Section 4.1 an artificial time series gen-

erated by a GARCH system is studied. It is shown that a probabilistic TS

system can be used to discover some basic properties of the underlying data

generating system without making extensive assumptions about the structure

of this system. Afterwards, we study high frequency Dow Jones data and

discuss the results of our proposed method.

4.1. GARCH modelling

GARCH models are often used in financial literature to describe the vola-

tility behavior of asset return series [1]. Being able to infer something about the

volatility of tomorrow from today’s volatility has important implications for
the valuation of many financial contracts, more particularly for so-called de-

rivatives like �futures’ and �options’. Typically, the value of such contract

depends on the probability that the price S of some underlying asset attains a

pre-specified level. We define the asset return uðtÞ at time t as the instantaneous
relative price change: 8t : uðtÞ ¼ lnðSðtÞ=Sðt � 1ÞÞ. Then rðtÞ is the volatility at

time t of the return uðtÞ, i.e. the standard deviation over a given previous pe-

riod. This local volatility rðtÞ is assumed to move around the constant global

volatility r, so in the long run, a GARCH model recognizes that the local
volatility reverts to the overall mean value. This property is known as �mean

reversion’.

For purposes of our study, we generate data according to a GARCH(1,1)

process [1], which is characterized as follows:

(1) Each return uðtÞ is drawn from a normal distribution with a constant mean

l and with a standard deviation equal to the local volatility rðtÞ :
uðtÞ � Nðl; rðtÞÞ.

(2) Each period, the local volatility estimate is updated by using

r2ðtÞ ¼ cr2 þ au2ðt � 1Þ þ br2ðt � 1Þ: ð17Þ
(3) The parameter values used are in line with those found empirically in stock

return series: r ¼ 0:03, c ¼ 0:02, a ¼ 0:2 and b ¼ 0:78. The series is initi-

ated with rð0Þ ¼ r.

From (17) we observe that for GARCH(1,1) the local volatility is determined

by the long-run volatility r, by the observed most recent return (uðt � 1Þ), and
by the estimation of the most recent local volatility (rðt � 1Þ).

In Fig. 2 we show simulation results for 1000 consecutive samples. The re-

turn series in the left graph exhibit volatility clusters that are typical for the
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process (because of the relatively high value of the autocorrelation parameter

b). The right graph shows the price development that, starting with Sð0Þ ¼ 100,
is calculated from the instantaneous return as SðtÞ ¼ Sðt � 1ÞeuðtÞ.

4.1.1. Characterizing the input space

The left panel of Fig. 3 shows a scatter plot of the product space

uðt � 1Þ � uðtÞ of the antecedents and the consequent. In the probabilistic fuzzy

rule base, we consider three antecedent linguistic values Aq, defined by fuzzy

membership functions lAq
ðuÞ; q ¼ 1; 2; 3, (see the right panel of Fig. 3). The

corresponding linguistic values �Low’, �Average’ and �High’, respectively, de-
scribe return values in linguistic terms. Using (7), we have estimated the cor-

responding probabilities yielding Pr(uðt � 1Þ is �Low’)¼ 0.0594, Pr(uðt � 1Þ is

�Average’)¼ 0.8722, and Pr(uðt � 1Þ is �High’)¼ 0.0684.

We can also approximate the pdf f ðuÞ by using a fuzzy histogram based on

the fuzzy partition of uðt � 1Þ as shown in Fig. 3. In the left panel of Fig. 4, the

fuzzy histogram on the input space, computed according to (13), is presented.

The calculations can be summarized as

f1 ¼
0:0594 � lA1

ðuÞ
0:0625

; f2 ¼
0:8722 � lA2

ðuÞ
0:0750

; f3 ¼
0:0684 � lA3

ðuÞ
0:0625

;

ð18Þ

Fig. 2. (left) Return path and (right) price path from a simulated GARCH process.

Fig. 3. (left) Scatter of uðt � 1Þ against uðtÞ and (right) membership functions for uðt � 1Þ.
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where the membership functions lAq
ðuÞ are given by the functions in the right

panel of Fig. 3. In the right panel of Fig. 4, the fuzzy approximation of the pdf
f ðuÞ, defined on the input space according to (14), is shown. Note that the

antecedent space is partitioned very roughly in only three partitions, but the

approximation is already indicative of the distribution observed in Fig. 3. This

result is in line with the observations on fuzzy histograms as given in the

previous section.

4.1.2. Characterizing the output space

In order to keep this illustrative example simple, we choose (without fur-

ther optimization) five equidistant crisp consequent values u1 ¼ �0:050,
u2 ¼ �0:025, u3 ¼ 0:000, u4 ¼ 0:025, u5 ¼ 0:050 to describe the future returns.

For reasons of interpretability, we label these arithmetic values with the lin-
guistic terms �very low’, respectively �low’, �average’, �high’, �very high’. Then,

each return value from the time series is classified according to the nearest

prototype value using the Euclidian norm. By simply counting all u-values and
determining the relative score, we make an estimate of the (unconditional)

output probability distribution of PrðujÞ ¼ PrðuðtÞ ¼ ujÞ, j ¼ 1; 2; . . . ; 5. The
results of these calculations are shown in the (emphasized) row labelled All in

Table 1.

4.1.3. Characterizing the probabilistic fuzzy input–output mapping

By using (9), we can also calculate Prðuj jAqÞ, j ¼ 1; 2; 3; 4; 5; q ¼ 1; 2; 3. It
concerns probabilities like �the probability that the future return is high given

that the current return is Low’. These conditional probabilities are summarized
in Table 1.

To analyze the results, we compare the probability distribution conditional

on current returns to the overall probability distribution indicated by the all

row of Table 1. It becomes clear that for low current returns, the probability

fuzzy approximation  f_ app (u)
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Fig. 4. (left) Fuzzy histogram and (right) fuzzy approximation fappðuÞ following (16): the area under
the curve equals 1.0.
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for very high or very low future returns is higher than the same probabilities for

the overall returns. A similar conclusion can also be drawn for high current
returns. For low or high current returns, the deviation of low and high future

returns from the overall probability distribution is also visible, although to a

lesser extent. If we attach linguistic values to the magnitude of the difference

between the conditional probability and the overall probability like �more than

5%’ is �very likely’ and �more than 2%’ is �rather likely’, then the above results

can thus be summarized as

If current return is Low or the current return is High, then low or high
future returns are rather likely, and very low or very high future returns

are very likely.

This is a pretty good intuitive description of the GARCH process that has

generated the data, where periods of high returns are correlated to periods of

high volatility.

Finally, we show two additional results. First, we have plotted the regression

line of uðtÞ on uðt � 1Þ (estimated according to (4)) in the right panel of Fig. 5.
As expected for this problem, we found that uðtÞ � 0. In the left panel of the

same figure, we show the difference between the conditional probabilities

Prðuj juðt � 1ÞÞ and the unconditional probability PrðujÞ, for j ¼ 1; 2; 3; 4; 5. If
current returns are Average, we observe that all conditional probabilities are

almost equal to the unconditional one. However, if current returns are Low or

High, we observe differences in the probability distribution of the future re-

turns uðtÞ, i.e. average future returns are less dominating under those condi-

tions, while lower and higher future returns are more probable, indicating a
high volatility regime.

4.2. Analysis of high frequency return series

In this section, we apply a similar analysis as in Section 4.1 to a real return

time series. The goal is to illustrate what kind of information the probabilistic

Table 1

Unconditional and conditional probabilities PrðujÞ and Prðuj jAqÞ
Current

return

Future return Probability

very low

()0.05)
low

()0.025)
average

(0)

high

(0.025)

very high

(0.05)

All 0.0550 0.2265 0.4435 0.2140 0.0610 1.0000

Low 0.1271 0.2084 0.2954 0.2302 0.1390 0.0594

Average 0.0437 0.2293 0.4666 0.2136 0.0468 0.8722

High 0.1374 0.2077 0.2808 0.2063 0.1679 0.0684
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TS fuzzy models can provide when the underlying process that has generated

the data is not known.

The data consists of half-hourly samples of the most recent tick of the Dow

Jones index of the New York Stock Exchange. The samples run from 31.12.95

19:30 to 31.12.96 19:00, in total 17567 individual data points. Of these, we have

used only the samples from the opening hours of the market, which has re-

duced the number of data points to 3843. The half-hourly returns and the index

values are depicted in Fig. 6.
We have studied the behavior of one-step ahead returns uðtÞ conditional on

uðt � 1Þ. The scatter plot of uðtÞ against uðt � 1Þ is depicted in the left panel of

Fig. 7. The right panel of Fig. 7 shows the fuzzy partitioning of the antecedent

space uðt � 1Þ, where the five fuzzy classes sets are placed evenly over the an-

tecedent space, each one of which is defined by a smooth membership function.

The fuzzy approximation for the distribution of the half-hourly returns is

depicted in Fig. 8. Note the �fat-tail-like’ phenomenon observed in the figure.

We also observe the smoothness of the approximation as resulting from the use
of smooth membership functions.

For the consequent space, we use five discrete values, )0.01 (�very low’),

)0.005 (�low’), 0 (�average’), 0.005 (�high’) and 0.01 (�very high’). Assuming that

each half-hourly return is classified to the nearest discrete value, we can

compute the unconditional probability distribution PrðujÞ ¼ PrðuðtÞ ¼ ujÞ,

Fig. 5. (left) Prðuj juðt � 1ÞÞ � PrðujÞ and (right) regression line of uðtÞ on uðt � 1Þ.
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Fig. 6. (left) Half-hourly returns and (right) corresponding Dow Jones index.
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j ¼ 1; 2; . . . ; 5. The results of these calculations are shown in the (emphasized)

row (labelled All) of Table 2. The conditional probability distributions are

computed by using (9), and they are also shown in Table 2.

The resulting model can be interpreted by studying the deviations in the

rows of Table 2 from the first row of Table 2. We observe the following. At

Low current return values uðt � 1Þ, we have a somewhat higher probability of

(very) low future return values uðtÞ. This may indicate some GARCH-like

behavior, although the probability of high subsequent values is not increased
and the picture is different for High current return values. Far more striking is

the behavior at Very Low and Very High current return values. Here, we

observe a clear reversal in the sense that Very Low current values have an

increased probability to be followed by very high values. For Very High values

there is even a greater probability of a subsequent very low value. Such reversal

behavior has been reported in literature for different sample rates, mostly for

long term sampled data such as weekly, monthly or yearly data [14].
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5. Conclusions and discussion

In this paper, we have described zero-order Takagi–Sugeno (TS) probabi-

listic fuzzy systems, which implement a stochastic input–output mapping. If

desired, the stochastic mapping can be converted in a deterministic input–output

mapping describing the expected behavior. For both types of mappings, ap-

propriate reasoning schemes are presented, which, unlike classical fuzzy sys-

tems, take the statistical properties of the data explicitly into account. Further,
we have shown a technique for representing fuzzy histograms. We illustrated

our theoretical observations by analyzing a simulated GARCH type of fi-

nancial time series data and by analyzing high-frequency Dow Jones index

data.

The findings presented in this paper constitute only a first step. Nevertheless,

we already believe that the PFSs as presented in this paper will turn out to be a

very fruitful paradigm for combining fuzzy and statistical uncertainty and that

this framework provides tools for getting �the best of the two worlds’. This also
enhances the adaptation power of our models to different types of uncertainty

present in real-world problems. Extensions of the proposed approach are under

construction, such as the design of appropriate probabilistic fuzzy reasoning

schemes for other types of FSs. For an example, we refer to [15], where

probabilistic fuzzy reasoning schemes are introduced for probabilistic Mam-

dani-type of fuzzy systems having fuzzy rules with both fuzzy antecedents and

fuzzy consequents. In addition, the issue of optimal design is an interesting and

challenging next step. At the same time, we are working on applications, most
importantly in the area of financial time series analysis.
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Table 2

Conditional probabilities Prðuj jAqÞ for the Dow Jones data

Current

return

Future return

very low

()0.01)
low

()0.005)
average

(0)

high

(0.005)

very high

(0.01)

All 0.004 0.073 0.839 0.081 0.003

Very low 0.000 0.056 0.683 0.220 0.041

Low 0.010 0.083 0.828 0.076 0.003

Average 0.004 0.071 0.840 0.081 0.003

High 0.001 0.079 0.846 0.074 0.000

Very high 0.062 0.127 0.774 0.037 0.000
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