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Abstract

We give an explicit upper bound for the degree of reducible generalized Hermite–Laguerre polynomials
in some particular cases.
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1. Introduction

For any integer n ≥ 1, we denote by P(n), the greatest prime factor of n with P(1) = 1, ω(n),
the number of distinct prime divisors of n with ω(1) = 0 and π(n), the number of primes ≤ n
with π(1) = 0. Let u ≥ −1, v > 0,m > 0 be integers with gcd(u, v) = 1. Let a j ∈ Z and
b j ∈ Z for 0 ≤ j ≤ m. We consider

f (x) = f (x, u, v) =

m−
j=0

(vm + u) . . . (v( j + 1)+ u) x j (1)

and

g(x) = g(x, u, v, {a j }) =

m−
j=0

a j (vm + u) . . . (v( j + 1)+ u) x j . (2)
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Two special families of orthogonal polynomials are Hermite and Laguerre polynomials denoted
by Hm(x) and Lm(x). These are related to g(x) as follows:

H2m(x) = g


x2,−1, 2,


m

j


2 j


,

H2m+1(x) = xg


x2, 1, 2,


m

j


2 j


,

Lm(x) = g


x, 0, 1,


m

j


j !


,

L∗
m(x) = g


x, u, v,


m

j


j !


, u ≥ 0, (3)

the last being called generalized Laguerre polynomial. Thus we see that irreducibility questions
concerning these classical polynomials can be answered by considering the polynomial g(x).
Note that f (x) is a special case of g(x) with a0 = · · · = am = 1. As it turns out, (see
Lemma 2.1), information on factors of g(x) can be obtained from the factors of f (x). Schur
[16,17] proved the irreducibility of some of these polynomials using algebraic tools. Following
a paper by Coleman [4], Newton polygons became an integral part of the method to study the
irreducibility of these polynomials as shown by Filaseta and his co-authors, see [1,2,8,9] to cite
a few. Another important tool used is results on greatest prime factor of

∆k = ∆k(u, v) = (vm + u) . . . (v(k + 1)+ u) .

This has been extensively studied and applied in a sequence of papers recently, for example
see [11–13,18]. In particular, these papers address the question of large factors of g(x).

In [10], Filaseta and Lam showed that for all but finitely many positive integers m, the
polynomial L∗

m(x) is irreducible over the rationals. Our aim in this paper is to make the result
explicit, i.e., to give an explicit lower bound for m in some particular cases. We say that a
polynomial of degree m is almost irreducible if it may be written as a linear factor times an
irreducible polynomial of degree m − 1.

Theorem 1.1. The polynomial g(x) with |a0| = |am | = 1 and v ∈ {1, 2, 4} is almost irreducible
for all m ≥ m0 where

m0 = exp{10(vµ+ u)2(1.65)(vµ+u)
} (4)

with

µ =


u if v = 1, 2
max(600, 10u) if v = 4.

Further the number of integers m for which g(x) may fail to be almost irreducible is at most

n0 = 2(vµ+ u)2π(vµ+u)
+ θ, (5)

where

θ =

11 if v = 1
1 if v = 2
0 if v = 4.



Sh. Akhtari, N. Saradha / Indagationes Mathematicae 21 (2011) 127–137 129

In the next theorem, we restrict to a j =


m
j


b j , i.e., the case of generalized Hermite–

Laguerre polynomials. Here linear factors can also be included. We show

Theorem 1.2. The polynomial g(x) with a j =


m
j


b j for 0 ≤ j ≤ m, |b0| = |bm | = 1 and

v ∈ {1, 2, 4} is irreducible for all m ≥ m0 and the number of m for which it fails to be irreducible
is at most n0, where m0 and n0 are as given in (4) and (5).

In the case v = 3, we are able to give only ineffective result as follows.

Theorem 1.3. The polynomial g(x) with |a0| = |am | = 1 and v = 3 is almost irreducible except
for n1 number of values of m where

n1 = 8 × 5π(3µ1+u)

with

µ1 = max(500, 4u).

Similar assertion is true for irreducible generalized Hermite–Laguerre polynomials.

Remark 1. The particular cases v = 1, u ≤ 30; v = 2, u < 29, u odd; v = 3, u = 1, 2 and
v = 4, u = 1, 3 have been treated in [18,11–13], respectively.

The following theorem is on small factors of g(x) for arbitrary u and v.

Theorem 1.4. Let 2 ≤ k ≤
m

e2.5(v+1) . Let α = max(e2.5(v+1), u). Then g(x) with |a0| = |am | = 1
has no factor of degree k except perhaps for

M = 2 × (3ω(v) + 1)5π(vα+v) (6)

number of values of m. This assertion is true for 1 = k in the case of generalized Hermite–
Laguerre polynomials.

Apart from the usage of Newton polygon, the proof in [10] depends on three ingredients, viz.,

(i) Prime Number Theorem for Arithmetic Progressions.
(ii) A combinatorial argument due to Erdős.

(iii) Finiteness of the number of solutions to Thue equations.

Explicit results in (i) are known only for restricted values of v, by the works of Ramaré and
Rumley [15] and Dusart [5,6]. The second ingredient (ii) works well when the degree k of a
factor of g(x) is large compared to u and v. A Theorem of Evertse [7] gives an upper bound for
the number of solutions of Thue equations. Although effective methods are known for finding
the solutions of Thue equations, they give generally very large bounds which are complicated for
explicit computations.

Let v ∈ {1, 2, 4}. A lower bound δ(u) for k in terms of u is obtained in Lemmas 4.1 and 4.2.
Then we consider k ≤ δ(u). We resort to Pell’s equations of the form

X2
− DY 2

= E

and we need to find solutions in (X, Y ) where both X and Y belong to a set of integers composed
of primes from a given set. In 1960, Cassels [3] had shown that these solutions can be obtained
in a finite number of steps. In 1962, Lehmer [14] considered the particular cases E = 1 and
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4 in connection with a problem of Störmer. Using divisibility properties of Lucas sequences
he showed that all the required solutions can be obtained in finite number of steps and further
these solutions can be explicitly bounded from the bounds for the fundamental solution. Thus for
v = 1, 2, 4 we get explicit results as given in Theorems 1.1 and 1.2.

2. Lemmas

2.1. Lemmas based on Newton polygons

We begin with the following useful lemma from [8].

Lemma 2.1. Let k and l be integers with k > l ≥ 0. Suppose F(x) =
∑m

j=0 f j x j
∈ Z[x] and

p is a prime such that p - fm, p| f j for all j ∈ {0, 1, . . . ,m − l − 1}, and the right most edge
of the Newton polygon for F(x) with respect to p has slope less than 1

k . Then for any integers
g0, g1, . . . , gm with |g0| = |gm | = 1, the polynomial G(x) =

∑m
j=0 f j g j x j cannot have a

factor with degree in the interval [l + 1, k]. In fact, the assertion is even true if only p does not
divide g0gm .

Remark 2. Let

∆ j = (vm + u) · · · (v( j + 1)+ u). (7)

By Lemma 2.1, it is enough to study factors of f (x) =
∑m

j=0 ∆ j x j given by (1) in order to
know the factors of (2). Further we can restrict to factors of degree k with 1 ≤ k ≤

m
2 . We shall

always assume this restriction on a generic factor of degree k for f (x) without any mention.

The following lemma is an application of Lemma 2.1.

Lemma 2.2. Suppose there exists a prime p > vk + u such that p divides ∆m−k . Then f (x) has
no factor of degree k.

Proof. Let νp(n) denote the order of p in any positive integer n. The last slope of the Newton
polygon of f (x) with respect to p equals

L = max
1≤ j≤m

νp(∆0)− νp(∆ j )

j
. (8)

Suppose

L <
1
k
. (9)

Since p|∆m−k , we see that p|∆ j for 0 ≤ j ≤ m −k. Then by (9) and Lemma 2.1 with l +1 = k,
we see that f (x) has no factor of degree k, by taking F(x) = f (x) and g j = 1 for 0 ≤ j ≤ m.
Now we show inequality (9). If 1 ≤ j < k, then νp ((u + v) . . . (u + v j)) = 0. Hence

vp(∆0)− νp(∆ j )

j
= 0 <

1
k
.

Now suppose j ≥ k. We observe that

νp(∆0)− νp(∆ j )

j
=
νp ((u + v) . . . (u + v j))

j
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≤
νp((u + v j)!)

j

<
u + v j

j (p − 1)
≤

u + v j

j (u + vk)
≤

1
k
.

This completes the proof of the lemma. �

2.2. A lemma on estimates

Lemma 2.3. We have

(i) π(n) ≤
n

log n


1 +

1.2762
log n


, for n > 1,

(ii)
∏
p≤x

p ≤ (2.72)x ,

(iii) νp(k!) ≥
k − p

p − 1
−

log(k − 1)
log p

, for k > 1 and p ≤ k,

(iv) k! <

(2πk)e−kkke

1
12k , for k > 1.

The first estimate (i) and (ii) are due to Dusart [5,6] and (iii) is a classical result due to
Legendre. The estimate (iv) is obtained from the well known Stirling’s approximation.

2.3. Lemmas based on a method of Erdős

The following lemma is fundamental in finding large prime factors of ∆m−k . This is available
in various forms in many of the papers on this problem mentioned in References. From the proof
of Lemma 4 in [11] the following lemma can be easily derived. Let πv(n) denote the number of
primes not exceeding n and co-prime to v.

Lemma 2.4. Let k ≥ 2, c0 > 1, c1 > 0 and k − πv(c0k) ≥ 1. Let

Λ = n(n + v) . . . (n + (k − 1)v)

with gcd(n, v) = 1 and n ≥ c1kv and P(Λ) ≤ c0k. Then

(c1vk)k−πv(c0k)
≤ (k − 1)!

∏
p|v

p−νp((k−1)!). (10)

Now we apply the estimates in Lemma 2.3 together with Lemma 2.4 to derive the following
result.

Corollary 2.5. Let k ≥ 2, c0 > 1, c1 > 0. Suppose p is a prime dividing v and p < c0k. Assume
that k − πp(c0k) ≥ 1 and n ≥ c1kv. If P(Λ) ≤ c0k, then

1
p − 1

−
p + 1

k(p − 1)


log p ≤


1 +

1.2762
log k


c0 −


1 −

c0

log k
−

1.2762c0

(log k)2


log c1.
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Proof. Since the conditions of Lemma 2.3 are satisfied and πv(c0k) ≤ π(c0k)−1 we get by (10)
and Lemma 2.3 (iii) that

(k − π(c0k)) log(c1k) ≤ (k − π(c0k)) log(c1vk)

≤ (k − 1) log k −


k − 1 − p

p − 1
−

log(k − 2)
log p


log p

≤ k log k −


k

p − 1
−

p + 1
p − 1


log p.

Now we apply Lemma 2.3(i), to get

(log p)


k

p − 1
−

p + 1
p − 1


≤ π(c0k) log k − (k − π(c0k)) log c1

≤ c0k


1 +

1.2762
log k


− k


1 −

c0

log k
−

1.2762c0

(log k)2


log c1.

Dividing by k, we get the inequality in the corollary. �

Let c0 and c1 be fixed. It is easy to see that the function on the right hand side of the inequality
in Corollary 2.5 is a decreasing function of k while the left hand side is an increasing function
of k. Thus if for some value of k = k0, the right hand side function becomes ≤ 0, while the left
hand side function is >0, then we get a contradiction for all k ≥ k0. Then we conclude that

P(Λ) > c0k for k ≥ k0.

Now we set c0 = v + 1 and c1 = e2.4(v+1). Let k = k0 = e2.5(v+1). We see that for v ≥ 2 the
right hand side expression does not exceed

(1.171)(v + 1)− (1.27)(v + 1) = −(0.9)(v + 1) < 0

and the left hand side remains positive since p|v. Thus for the chosen values of c0 and c1, we
have P(Λ) > c0k for k ≥ k0. Let us now consider ∆m−k . The smallest term of this product is

u + (m − k + 1)v.

This exceeds c1kv = e2.4(v+1)kv provided

m − k + 1 > e2.4(v+1)k.

It suffices that

m > e2.5(v+1)k.

From the above discussion we conclude the following proposition.

Proposition 2.6. Let m > e2.5(v+1)k ≥ e2.5(v+1) max(e2.5(v+1), u). Then

P(∆m−k) > vk + u.

Remark 3. In [10], c1 is taken as (log k)2 for large k and hence m > k(log k)2. In the above
proposition this condition is weakened to m > e2.5(v+1)k.

For application to small values of v, we need a more precise version of Corollary 2.5. We use
the inequality (iv) of Lemma 2.3 in (10) to get the following result. As the derivation is similar
to Corollary 2.5, we omit the proof.
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Corollary 2.7. Let k ≥ 2, c0 > 1, c1 > 0. Suppose p is a prime dividing v and p < c0k. Assume
that k − πp(c0k) ≥ 1 and n ≥ c1kv. If P(Λ) ≤ c0k, then

log


c1vep
1

p−1


≤ c0


1 +

1.2762
log c0k

 
log c1vk

log c0k


+

1
k


1 +

1
2

log 2π +
1

12(k − 1)
+

p + 1
p − 1

log p


.

2.4. A theorem of Evertse

A result due to Evertse [7] gives an upper bound for the number of solutions of Thue equations.
The following lemma is a particular case of his result for cubic Thue equations.

Lemma 2.8. LetN x3
− My3

 = v

with N and M given positive integers. Then the above equation has at most

4 × 3ω(v) + 3

solutions in positive integers (x, y).

3. Proof of Theorem 1.4

By Proposition 2.6 and Lemma 2.2, we conclude that f (x) has no factor of degree k ≥ α,
where α = max(e2.5(v+1), u). Let us now consider the case 2 ≤ k < α. We take

∆2 = (mv + u) ((m − 1)v + u) .

We may assume by Lemma 2.2 that

P(∆2) ≤ vk + u < vα + u =: β.

Let 2 = p1 < p2 < · · · < pπ(β) be the sequence of all the primes ≤ β. Then

mv + u = pa1
1 . . . p

aπ(β)
π(β) and (m − 1)v + u = pb1

1 . . . p
bπ(β)
π(β) , (11)

with ai ≥ 0, bi ≥ 0 for 1 ≤ i ≤ π(β). Since gcd(u, v) = 1, these two integers have no common
factors. We reduce the powers ai and bi modulo 3. Then we get a cubic equationAx3

− By3
 = v (12)

with gcd(Ax3, By3) = 1. For any prime p ≤ pπ(β), we have

νp(A), νp(B)


∈ {(0, 0),

(1, 0), (2, 0), (0, 1), (0, 2)}. Thus totally we have 5π(β) choices for A and B. Since we consider
only absolute value on the left hand side of (12), we get (5π(β) − 1)/2 number of distinct cubic
equations in (12). Now by Lemma 2.8, Eq. (12) has at most 4 × 3ω(v) + 3 solutions in (x, y).
Thus the number of m for which (11) holds is at most

4 × 3ω(v) + 3
 

5π(vα+u)
− 1


/2 < 2(3ω(v) + 1)5π(vα+u).

This proves the first assertion of Theorem 1.4. �
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3.1. A lemma on generalized Laguerre polynomials

We include possible linear factors of g(x) with a j =


m
j


b j . For this we need the following

lemma.

Lemma 3.1. Let k ≥ 1. Suppose there exists a prime p > vk + u dividing m. Then g(x) with

a j =


m
j


b j has no factor of degree k.

Proof. Consider
m

j


=
( j + 1) . . .m
(m − j)!

, 0 ≤ j ≤ m − 1.

Hence p|


m
j


if m − j ≤ p − 1, i.e., if j ≥ m − p + 1. Now

∆ j = (vm + u) . . . (v( j + 1)+ u) .

Since this is a product of m − j terms in arithmetic progression with gcd(v, u) = 1, it is divisible
by p if m − j ≥ p, i.e., if j ≤ m − p. Thus

p |


m

j


∆ j for 0 ≤ j ≤ m − 1.

Now we follow the proof of Lemma 2.2, to get the assertion of the lemma. �

Proof of the second assertion of Theorem 1.4. By Lemma 2.1, it is enough to consider g(x)

with a j =


m
j


. By Proposition 2.6, Lemma 2.2, we conclude that g(x) has no factor of degree

k ≥ α where α = max(e2.5(v+1), u). So we assume that 1 ≤ k < α. We take

am−1∆1 = m(mv + u).

By Lemmas 2.2 and 3.1, we may assume that

P(am−1∆1) ≤ vk + u < vα + u = β.

Now we follow the argument in the proof of the first assertion of Theorem 1.4 to get the second
assertion. �

4. The cases of v ∈ {1, 2, 3, 4}

The generalized Hermite–Laguerre polynomials for small values of v has been dealt with
considerably in the papers [11–13,18]. For the purpose of this paper we use Theorem 1.1 of [18]
when v = 1 and Theorem 2 of [13] when v = 2. We state the results as a lemma below in our
notation. For the cases v = 3 and 4, a similar result is not given explicitly in [12,13]. So we state
this case in Lemma 4.2 and give the necessary details.

4.1. Lemmas for large k

Lemma 4.1.

(i) Let v = 1. Suppose k ≥ 2 and 0 ≤ u ≤
3
2 k. If g(x) has a factor of degree k, then

(m, k, u) ∈ {(6, 2, 3), (7, 2, 2), (7, 2, 3), (7, 3, 3), (8, 2, 1),

(8, 3, 2), (12, 3, 4), (13, 2, 3), (22, 2, 3), (46, 3, 4), (78, 2, 3)}.
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(ii) Let v = 2, k ≥ 1, 0 ≤ u ≤ k and a0an ∈ {±2t
: t ≥ 0, t ∈ Z}. Then g(x) is irreducible for

u ≠ 1 and when u = 1 it is almost irreducible.

Lemma 4.2. Let v = 3, 4. Suppose

k ≥


max(500, 4u) if v = 3
max(600, 10u) if v = 4.

Then g(x) cannot have a factor of degree k.

Proof. Let v = 3. Assume that k ≥ max(500, 4u). Suppose further we have the smallest term of
∆m−k viz., X := (m − k + 1)v + u ≤ 10.6 × 3k and X ≥ 6450. Then from Corollary 2.3 [13]
we get

P(∆m−k) > vk + u.

Note that the proof of this part depends on the explicit bounds from the results on primes in
arithmetic progression when the common difference is 3. Now we assume that X > 10.6 × 3k.
We apply Corollary 2.7 with c0 = 3.25 and c1 = 10.6, p = 3 to find that the inequality in
the corollary is not valid. This means that P(∆m−k) > vk + u in this case also. Lastly we
consider 3.25k < X < 6450. Then 500 ≤ k ≤ 1984. We directly check that in this range
P(∆m−k) > vk + u. Now we apply Lemma 2.2 to get the assertion of the lemma.

Let v = 4. Assume that k ≥ max(600, 10u). Suppose further we have X = (m−k+1)v+u ≤

138 × 4k. Then using Corollaries 4.5 and 4.3 of [12] we get

P(∆m−k) ≥ vk + u.

The proof of this part uses results on primes in arithmetic progression when the common differ-
ence is 4. Now we assume that X > 138 × 4k. We apply Corollary 2.7 with c0 = 4.1 and c1 =

138, p = 2 to find that the inequality in the corollary is not valid. This means that P(∆m−k) >

vk + u in this case also. Now we apply Lemma 2.2 to get the assertion of the lemma. �

4.2. Lemma of Lehmer

In order to make the small cases v ∈ {1, 2, 4}, effective, we avoid cubic Thue equations as
done in the proof of Theorem 1.4. We use results of Lehmer on the problem of finding all pairs
(s, s + v) both belonging to a given set. We refer to Theorems 4, 5, 7, 8 and 9 of [14] for the
following lemma.

Lemma 4.3. Let Nd(t) be the number of pairs of integers (S, S +d) whose product has its prime
factors restricted to a given set of t primes q1 < · · · < qt and let Ld(t) be the largest S for
which such a product exists. Further let

M = max


3,
qt + 1

2


and P = q1 . . . qt .

Then

(a) Nd(t) ≤ M(2t
− 1) if d = 1, 2

(b) N4(t) ≤ (M + 1)2t/3

(c) log L1(t) < M (2 + log(8P))
√

2P

(d) log Ld(t) < M (2 + log(4P))
√

P for d = 2, 4.
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Proof of Theorems 1.1, 1.2 and 1.3. By Lemma 4.1 for v = 1, 2 and Lemma 4.2 for v = 3, 4,
we may assume that

1 ≤ k < k0

where

k0 =


2u

3
if v = 1

u if v = 2
max(500, 4u) if v = 3
max(600, 10u) if v = 4.

We follow the proof of Theorem 1.4. We may assume that

P(∆2) ≤ vk + u < vk0 + u = β.

In Lemma 4.3, we take (m − 1)v + u = S, t ≤ π(β) and qt ≤ β. We have

P = q1 . . . qt ≤

∏
p≤β

p ≤ (2.72)β ,

by Lemma 2.3(ii). Also

M = max


3,
qt + 1

2


≤ 2β.

Applying Lemma 4.3, we get

Nv(t) ≤ 2(vk0 + u)2π(vk0+u).

Further

log Lv(t) ≤ 2β

2 + log(8 × (2.72)β)

 
2(2.72)β

≤ 10(1.65)ββ2.

Thus

log Lv(t) ≤ 10(vk0 + u)2(1.65)vk0+u . (13)

Combining with Lemmas 4.1 and 4.2 we find that the number of integers m for which g(x) is
not almost irreducible is bounded by

2(vk0 + u)2π(vk0+u)
+ θ,

where

θ =

11 if v = 1
1 if v = 2
0 if v = 4.

By (13) when v ∈ {1, 2, 4} the maximum of such m is bounded by exp

10(vµ+ u)2(1.65)vµ+u


.

In the case v = 3, we combine Lemmas 2.8 and 4.2 and the argument in the proof of
Theorem 1.4 to get that the number of m for which g(x) is not almost irreducible is bounded
by 8 × 5π(3µ1+u).

The assertions in Theorems 1.2 and 1.3 regarding generalized Hermite–Laguerre polynomials
are similar to the second half of the proof of Theorem 1.4. �



Sh. Akhtari, N. Saradha / Indagationes Mathematicae 21 (2011) 127–137 137

Acknowledgments

This work was done during the second author’s visit to Max Planck Institute for Mathematics,
Bonn in September–November, 2010. Both authors wish to thank Dr. Pieter Moree and the
institute for the kind invitation and hospitality.

References

[1] M. Allen, M. Filaseta, A generalization of a second irreducibility theorem of I. Schur, Acta Arith. 109 (2003) 65–79.
[2] M. Allen, M. Filaseta, A generalization of a third irreducibility theorem of I. Schur, Acta Arith. 114 (2004) 183–197.
[3] J.W.S. Cassels, On a class of exponential equations, Ark. Mat. Band 4 (17) (1960) 231–233.
[4] R.F. Coleman, On the Galois groups of the exponential Taylor polynomials, Enseign. Math. (2) 33 (3–4) (1987)

183–189.
[5] P. Dusart, Autour de la fonction qui compte le nombre de nombres premiers, Ph.D. Thesis, Université de Limoges,
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[15] O. Ramaré, R. Rumley, Primes in arithmetic progression, Math. Comp. 65 (1996) 397–425.
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