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Common piezoelectric resonators such as quartz resonators have a very high Q and ultra stable resonant
frequency. However, due to small material nonlinearities in the quartz crystal, the resonator is drive level
dependent, that is, the resonator level of activity and its frequency are dependent on the driving, or exci-
tation, voltage. The size of these resonators will be reduced to one fourth of their current sizes in the next
few years, but the electrical power which is applied will not be reduced as much. Hence, the applied
power to resonator size ratio will be larger, and the drive level dependency may play a role in the reso-
nator designs.

We study this phenomenon using the Lagrangian nonlinear stress equations of motion and Piola–Kir-
chhoff stress tensor of the second kind. Solutions are obtained using COMSOL for the AT-cut, BT-cut, SC-
cut and other doubly rotated cut quartz resonators and the results compared well with experimental
data. The phenomenon of the drive level dependence is discussed in terms of the voltage drive, electric
field, power density and current density. It is found that the drive level dependency is best described in
terms of the power density. Experimental results for the AT-, BT- and SC-cut resonators in comparison
with our model results are presented. Results for new doubly rotated cuts are presented. The effects of
spurious modes, quality factor and air damping on DLD are presented.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The future requirements of frequency control devices are that
they be smaller and more stable at higher frequencies. However,
with the increasing demand of smaller size it becomes more diffi-
cult to design high precision frequency control devices. One of the
main causes of frequency instability is the role played by the
intrinsic nonlinearities of quartz resonators. These intrinsic nonlin-
earities are responsible for the coupling between the ultrasonic
wave and external or internal quasistatic perturbations. The
dependence of the resonator frequency on its drive levels is one
of the phenomena caused by the material nonlinearities of quartz.
We call this dependency the drive level dependency (DLD).

The drive level dependency corresponds to the amplitude–fre-
quency and the intermodulation effects. The amplitude–frequency
effect corresponds to the dependence of the frequency of a resona-
tor on the drive level and appears as a distortion of the amplitude
and phase resonance curves. As the drive level (the current through
a crystal) increases, the crystal’s amplitude of vibration also in-
creases and the effects due to the nonlinearities of quartz become
more pronounced. In oscillators the amplitude modulation noise is
transformed into short term frequency noise. For the long term all
drifts of driving power are converted into frequency drifts; for the
ll rights reserved.

).
same kind of resonators in case of power variations of 1%, to
achieve a theoretical frequency stability of more than parts per
million, the mean driving power has to be almost as low as a few
mW (Gagnepain et al., 1977). Thus, non-linear amplitude–fre-
quency effect is a limiting factor for their use at high drive level
in oscillators and resonators.

When the driving signal is composed of two nearby frequencies,
intermodulation is generated by the crystal nonlinearities if the
driving powers are moderately high. It also appears that intermod-
ulation can also be attributed to some surface effects correspond-
ing to mechanical and electrical defects. The nonlinearities are
also responsible for the coupling between different vibration
modes of the resonator. This is a phenomenon which can lead to
‘‘activity dips”, and must be distinguished from linear coupling
due to piezoelectric excitation and thermal sensitivities of different
modes. The sensitivity of mode coupling to power level is charac-
teristic of non-linear coupling.

Several experiments have been carried in order to investigate
the nonlinear resonance of AT-cut quartz resonators by Warner
(Warner, 1959), and Wood and Seed (Wood and Seed, 1967) by
using amplitude-resonance curve methods. However, the limita-
tions of the method involved in determining the amplitude–fre-
quency effect did not gave an accurate picture of how the
nonlinearities affected the drive-level of the resonators. Later work
was carried out by Tiersten (Tiersten, 1974; Tiersten, 1975;
Tiersten, 1975) who derived the nonlinear differential equations
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and boundary conditions containing terms up to cubic in the small
field variables from general nonlinear electrostatic equation. The
equations were helpful in determining the fourth order elastic con-
stant C6666 which gives a good approximation of the theoretical re-
sults to that of the experimental results. Further, these equations
proved that the amplitude–frequency effect in quartz resonators
is due to the intrinsic material nonlinearities. For the past few
years extensive research has been carried out in determining the
drive level dependence of quartz oscillator, but due to the assump-
tions used in order to simplify the cumbersome nonlinear equa-
tions, it becomes increasingly difficult to obtain valid analytical
results for comparison with the experimental results.

We have developed an accurate 3-D finite element model,
which can predict the drive level dependence of a quartz resonator.
The drive level dependency of AT-cut, SC-cut, BT-cut obtained from
the FE model compares well with the experimental results. Also,
the drive level dependencies of different cuts are also predicted.
Here, we also show that the drive level expressed as the power
density, rather than say the voltage drive level, is the most suitable
parameter for describing the effects of the DLD.

Further, the DLD effect is studied with respect to energy dissipa-
tion due to the support mountings and material dissipation. The ef-
fect of DLD on the quality factor of quartz resonators could be found.

2. Nonlinear governing equations

The crystal is referred to a Cartesian coordinate system x1, x2, x3,
with the x2-axis normal to the major surface of the rotated quartz
cuts. The governing equations which define the effects of intrinsic
nonlinearities on the thickness shear vibrations of a piezoelectric
resonator with material losses corresponding to the mechanical
damping and resistance in current conduction (Yong et al., 2007)
are as follows:

Non-linear strain-displacement relationships:

Eij ¼
1
2
ðUi;j þ Uj;i þ Uk;iUk;jÞ ð1Þ

Non-linear stress-strain relationships:

Tij ¼ CijklEkl þ
1
2

CijklmnEklEmn þ epij/;p þ gijkl
_Ekl ð2Þ

Linear electrostatics relationships:

Di ¼ eiklEkl � eip/;p; Ji ¼ �rik/;k ð3Þ

Non-linear stress equation of motion:

ðTij þ TjkUi;kÞ;j ¼ q€Ui ð4Þ

Charge equation of electrostatics:
_Di;i þ Ji;i ¼ 0 ð5Þ

In the above set of equations, Eij is the strain tensor, Tij is stress ten-
sor, Cijkl and Cijklmn are the second and third order elastic constants,
respectively, epij is the piezoelectric coefficient, eip is the dielectric
permittivity, gijkl is the acoustic viscosity tensor, rik is the electric
conductivity, Ji is the conduction current, Di is the electric displace-
ment, and /;p is the electric field intensity vector. Eqs. (4.1) to (4.5)
form a system of 25 equations with 25 unknowns (6Tij, 6Eij, 3Ui,
3/;p, 3Di, 3Ji and 1/pÞ. It should be noted that the viscosity tensor
gijkl has the same symmetry as the elasticity tensor Cijkl, and the con-
ductivity tensor rik the symmetry as the permittivity tensor eip

(Lamb and Richter, 1966). The material parameters Cijkl, epij and eip

for quartz are obtained from (Hellwedge and Hellwedge, 1966),
gijkl, Cijklmn and rik are obtained from (Lamb and Richter, 1966; Thur-
ston et al., 1966; Lee et al., 2004), respectively. These constants are
rotated about the respective axes to obtain the numerical values for
different cuts (e.g. AT-Cut).
In the case in which the bounding surface S is in contact with
free space, the boundary conditions are:

niTij ¼ t̂j or uj ¼ u
_

j
; ð6Þ

ni½ _Di þ Ji� ¼ _qi or ½/� ¼ /̂ ð7Þ
where, ni is the outward unit normal of S, t̂j and ûj are the specified
traction and displacement, respectively. For the unelectroded
quartz surfaces, _qi ¼ 0. In the case in which the surface S is in con-
tact with a shorted electrode
½/� ¼ 0 ð8Þ
After a solution of the governing Eqs. (1)–(5) is obtained, the surface
current density _qi at S under the electrode can be computed by:

ni½ _Di þ Ji� ¼ _qi ð9Þ

In order to define the nonlinear effect due to the drive level, it was
necessary to develop a model which incorporates the quasistatic
deformations coupling with that of the higher order elastic con-
stants. However, it was not possible to directly establish a relation-
ship between the higher order nonlinear strain terms and the third
order elastic constants. Thus the theoretical analysis can be simpli-
fied by considering that the wave has small amplitude. Therefore
only the modification of the wave characteristics by the predefor-
mation are considered and the influence of the wave on the prede-
formation can be neglected. This will linearize the nonlinear
governing equations.

The influence of the intermodulation effects due to fourth order
elastic constants was neglected in our current study. Also, the drive
level effect of quartz resonators was predominantly affected by the
higher order mechanical nonlinearities rather than those of the
piezoelectric constants. Hence, the higher order piezoelectric con-
stants are not taken into account.

An iterative algorithm is developed in order to model the drive
level effect as follows:

STEP 1: Obtain the stresses and strains eT ij; eUi;j at the thickness
shear mode of interest using the forced vibrations fre-
quency response solution to the linear governing equa-
tions below. The damping in the forced vibration model
is taken into account by the acoustic viscosity tensor.
The resonance frequency of interest is first identified in
a linear eigenvalue problem solution.

eEij ¼
1
2
ðeUj;i þ eUi;jÞ

eT ij ¼ Cijkl
eEkl þ epij/;p þ gijkl

_Ekl

Di ¼ eikl
eEkl � eip/;p

eT ij;j ¼ q €
eUi

_Di;i þ Ji;i ¼ 0

ð10Þ

STEP 2: Substitute the stresses and strains eT ij; eUi;j from STEP 1 into
the nonlinear governing equations below. Please note
however that the nonlinear parts of the equations are
replaced by the stresses and strains eT ij; eUi;j from STEP 1.
Solve for the forced vibrations frequency response and
obtain the response stresses and strains bT ij; bUi;j.

bEij ¼
1
2
ðbUj;i þ bUi;j þ eUk;i

eUk;jÞ

bT ij ¼ Cijkl
bEkl þ

1
2

Cijklmn
bEkl
eEmn þ epij/;p þ gijkl

_
bEkl

Di ¼ eikl
bEkl � eip/;p

ðbT ij þ eT jk
eUi;kÞ;j ¼ q €

bUi

_Di;i þ Ji;i ¼ 0

ð11Þ
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STEP 3: Use the stresses and strains bT ij; bUi;j and substitute into the
nonlinear governing equations below. Solve for the forced
vibrations frequency response stresses and strains T

^

ij;U
^

i;j.

E
^

ij ¼
1
2
ðU
^

j;i þ U
^

i;j þ bUk;i
bUk;jÞ

T
^

ij ¼ Cijkl E
^

kl þ
1
2

Cijklmn E
^

kl
bEmn þ epij/;p þ gijkl

_
E
^

kl

Di ¼ eiklEkl � eip/;p

ðT
^

ij
þbT jk

bUi;kÞ;j ¼ q
€
U
^

i

_Di;i þ Ji;i ¼ 0

ð12Þ

STEP 4: Iterate between STEP 2 and STEP 3 until a stable reso-
nance frequency is obtained.

3. Finite element simulation and comparison with
experimental results

There are different commercially available finite element soft-
ware’s such as ANSYS, ANSOFT, ABAQUS, and the list continues.
ANSYS is one of the most commonly used finite element software
used in the industry. However, the disadvantage of the above men-
tioned finite element software package’s is their inability to let the
user modify the equation of motion so as to introduce the nonlin-
ear iterative algorithm mentioned above. COMSOL 3.3 is a finite
element software package which evolved from the partial differen-
tial toolbox in MATLAB to a full finite element software package,
gives user the flexibility to write their own partial differential
equations and modify the equations of motion. Thus, the above
iterative algorithm was implemented in COMSOL 3.3 to simulate
the drive level effect in various quartz resonators by using fre-
quency response analysis. FE calculations for different drive levels
varying from 0.0001 to 10 V shows that the number of iterations
required in obtaining a stable resonance frequency increases with
the increment in the drive level. The number of iterations required
depends on the convergence criteria. The convergence criterion
here is defined as a function of the shift in the resonance frequency.
The FE solution is converged when the frequency shift in the reso-
nance frequency between any consecutive iteration is less than
0.5 Hz. Thus, for a 40 MHz resonator the maximum allowable dif-
ference in the resonance frequency shift between consecutive iter-
ations is less than 0.0125 ppm. The number of iterations required
to obtain the DLD at the various drive level is shown in Table 1.

Here, the FE simulation is carried out by including the material
losses for all the different rotated cut angles of quartz resonator
(Lamb and Richter, 1966) and the gold electrodes (International
critical tables of numerical data, 1929). Also, the electrical conduc-
tivity for each rotated quartz cuts is considered (Lee et al., 2004).
Thus, the FE simulations for predicting DLD are carried out only
for the intrinsic losses in quartz and electrodes. No external damp-
ing parameters and loss factors are taken into account.
Table 1
No. of iterations required to obtain a stable solution.

Drive level (V) No. of iterations required

0.0001 0
0.001 0
0.01 1
0.10 1
0.30 2
1.0 3
5.0 6
8.0 10

10.0 12
3.1. DLD in various AT-Cut quartz resonators

Frequency response analyses for various AT-cut resonators are
carried out for the dimensions shown in Fig. 1. The ‘‘small sample”
and ‘‘large sample” mentioned in Fig. 1 are abbreviated as ‘‘SS” and
‘‘LS” in Figs. 5–8. Fig. 2 shows the mesh plot used for AT-cut quartz
resonators. The element distribution consists of two layers of ele-
ment through the thickness. An aspect ratio rule for the number
of elements along the width and length is used. This rule came
from our observations that the largest number of half waves of res-
onant modes follow a/b and c/b ratios. (2a = length, 2b = thickness,
2c = width). If a/b ratio is 10, then the number of flexural half
waves is about 10. We have used two or more elements per half
wave. The element type used for the 3-D FEM analysis is the 27-
node brick element. The same aspect ratio rule is followed for
the finite element mesh for different cut angles of quartz resona-
tors mentioned in this paper. Fig. 3 shows a typical thickness shear
mode obtained for the resonators. Fig. 4 shows the displacement
amplitude at a material point located at the electrode center versus
the driving frequency. The curve is obtained by a linear frequency
response analysis at a drive level of 0.0001 V. When the drive level
is increased, not only does the peak response increase in magni-
tude, the frequency at the peak response also changes. This is the
DLD effect on the resonance frequency.

The simulation and the experimental results obtained for the
flat blank resonators are shown in Figs. 5–8. Drive level depen-
dency can be described in terms of the frequency change versus
drive levels. The drive level can be expressed either as the voltage
drive, electric current density, electric field, or power density. A
useful drive level expression should be one which takes into ac-
count the resonator parameters such as its size, electrode dimen-
sions and resonator Q because we have found experimentally
that these parameters affects the resonator DLD.

(a) Voltage drive level:The graph in Fig. 5 shows the DLD of AT-
cut resonators with respect to the voltage drive level (volts).
It can be seen that the FE simulated curves follow the same
trend as the experimental results for different samples of the
resonators. In order to take into account the resonator resis-
tance and dimensions, we further plot the DLD in terms of
the electric field, current density and power density.

(b) Electric field drive level:The graph shown in Fig. 6 shows the
frequency shift in ppm versus electric field (V/m) drive level
for both the FE simulated results and experimental results.
We see that the experimental curves and FE curves behave
similarly. These curves give a better representation of the
DLD because the thickness of these resonators is taken into
account.

(c) Current density drive level:Another representation of the DLD
is in terms of the current density drive level in A/m2. The
current density drive level is calculated by integrating the
surface current density over the electrode region for a fixed
drive level voltage. The current density calculated for differ-
ent drive level voltage was then plotted against the shift in
the frequency for each respective drive level voltage. Thus,
the DLD in terms of current density drive level represent
the shift in the resonant frequency with respect to the elec-
tric field generated due to an applied drive level voltage. The
graph shown in Fig. 7 shows the comparison of experimental
curves with the FE simulated curves. The comparison shows
a good agreement of the FE simulation results with the mea-
sured data.

(d) Power density:The graph shown in Fig. 8 shows the DLD in
terms of the power density (W/m3). Here, the simulation
results and the experimental results show the same fre-
quency drift, and the simulation results follow the same



Fig. 1. Model and dimensions of various AT-Cut resonators.
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trend as that of the experimental results. The frequency shift
for all the samples except for the ‘‘SS-48 MHz” shows a very
good agreement with the experimental results. The FE model
is simulated using only the acoustic viscosity loss parame-
ters, and energy dissipation due to the mountings is not
taken into consideration. Hence, the magnitude of the power
density simulated is different from the experimental power
density. Since the power density is the product of the cur-
rent density and voltage drive level, the resulting plot give
us a linear representation of the DLD effect. The DLD curve
plotted with respect to power density helps us in generaliz-
ing the DLD for various resonator size having different fre-
quency spectrums. It serves as a universal parameter for
the DLD as it takes into account all the resonator parameters.

3.2. DLD in SC-Cut quartz resonators

Circular SC-cut quartz resonators are studied. Fig. 9 shows the
dimensions for the resonator. The simulation and the experimental
results obtained for DLD are plotted (Fig. 10) as a function of the
universal parameter: power density. Here, the FE simulation curve
shows the same trend as the experimental curve.

3.3. DLD in BT-Cut quartz resonators

The DLD in a BT-cut quartz resonator is also studied and com-
pared with the experimental data. The dimensions of resonator
used for the experimental and analytical analyses are shown in
Table 2.

The DLD versus power density is shown in Fig. 11. The DLD
curves for both the FE simulation and experiment follow a negative
slope with a good agreement. The FE-simulation could predict both
positive DLD with respect to power density (AT- and SC-cut reso-
nators) and, now, negative DLD with respect to power density. This
further demonstrates the validity of the FE model.

3.4. DLD in doubly rotated quartz resonators

We now use our FE model for the study of DLD in various dou-
bly rotated cut in order to seek a cut which yields a small DLD, and
simultaneously retains the desirable frequency–temperature (f–T)
behavior of the AT-cut resonators. Hence, the quartz crystal cuts
are rotated about the x3-axis with an angle varying from 0� to
22� while the angle rotated with respect to the x1-axis is kept rel-
atively fixed at about 34.93�. The dimensions used for these doubly
rotated cuts are given in Table 3.

The first set of data corresponds to quartz crystal rotated about
x3-axis at an angle of 9� and 12�, and the x1-axis rotated at 34.91�
and 34.73�, respectively. The simulation results and the experi-
mental results are shown in the DLD versus power density graphs
below. Fig. 12 shows that a doubly rotated cut having an angle of
x3 = 12.0� has a very low DLD response.

Three figures (Figs. 13–15) shows the simulated DLD versus
power density curves for double rotated cuts of quartz with phi
varying from 0� to 22� for theta equal to 34.93�. The aspect ratio



Fig. 2. 3-D FE mesh plot for AT-Cut resonator.

Fig. 3. Thickness shear mode for 40 MHz AT-Cut resonator.
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selected for these cut angles is based on the frequency spectrum
analysis carried out in Section 4. Figs. 13–15 show the DLD curves
with the cut angle phi varying from 1� to 7�, 8� to 14� and 15� to
22�, respectively. The graphs show that the cut angles of phi equal
to 8� and 9�, and theta equal to 34.93� have the lowest DLD. It has
also been shown experimentally that the cut angle with phi equal



Fig. 4. Displacement amplitude plot in the vicinity of thickness shear mode frequency for AT-Cut resonator.

Fig. 5. DLD versus voltage drive level for AT-Cut resonators.
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to 8� and theta equal to 34.93� is also a temperature stable cut. The
most DLD sensitive cut is for phi equal to 19.0� and theta equal to
34.93�.

The DLD versus power density curves are relatively straight
lines. At a given power density we can find the slope of the curve.
We define this slope as the frequency shift gradient. A graph of the
frequency shift gradient versus the cut angle will allow us to find
the cut angles which yield small DLD effects. The next graph
(Fig. 16) shows a plot of the frequency shift gradient obtained from
the power density curve versus the cut angle phi.
4. Effect of spurious mode on drive level dependence of quartz
resonators

The aspect ratio used for all FE simulation until now for all the
different cut angles is 45.885. This aspect ratio is based on the
experimental work carried out for doubly rotated cut rotated about
the x3-axis with an angle of 9.0� and x1-axis rotated about 34.91�.
However, for different aspect ratios and for different cut angles
the energy of the trapped thickness shear mode varies due to the
interaction of the spurious modes with that of the thickness shear



Fig. 6. DLD versus electric field for AT-Cut resonators.

Fig. 7. DLD versus current density for AT-Cut resonators.
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mode. Since all the FE simulations for DLD discussed in the above
section for doubly rotated cuts were carried out on the basis of one
fixed aspect ratio, a detailed study of the effect of spurious modes
on the drive level dependency in quartz resonators is required.
In order to study to the effect of different spurious modes
on drive level dependency, the first step is to obtain the
acoustic behavior for different doubly rotated quartz cuts with
varying aspect ratio. The aspect ratio is defined here as the



Fig. 8. DLD versus power density for AT-Cut resonators.

Fig. 9. Model of SC-Cut quartz resonator.
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ratio of the resonator length to its thickness dimension. The
acoustic behavior is studied from the frequency spectra ob-
tained by performing free vibration analysis. The frequency
spectrum enables to determine the thickness shear mode
which is affected by the spurious mode for different aspect ra-
tios. Fig. 17 shows one of the frequency spectra obtained for
doubly rotated cut having and with aspect ratio varying from
45.5 to 46.5.

The standard notations used in all the frequency spectrum
graphs are as follows:



Fig. 10. DLD versus power density for SC-Cut resonators.

Table 2
BT-Cut resonator dimensions.

x1 (microns) x2 (microns) x3 (microns)

BT-cut resonator dimension 2800 50 1400
Electrode dimensions 1600 0.1 1000

Table 3
Doubly rotated cut resonator dimensions.

x1 (microns) x2 (microns) x3 (microns)

Doubly rotated cut resonator
dimensions

2000 44 1200

Electrode dimensions 1200 0.1 1000

1864 M.S Patel et al. / International Journal of Solids and Structures 46 (2009) 1856–1871
(a) ‘‘Square” notation is used to represent the modal branch
with high energy and current i.e. the fundamental thickness
shear mode.
Fig. 11. DLD versus power density
(b) ‘‘�” notation is used to represent the modal branch with high
current only.

(c) ‘‘D” notation is used to represent the modal branch with
high energy only.
for BT-Cut quartz resonators.



Fig. 12. Comparison of experimental versus FE results for Cut-9 and Cut-12.

Fig. 13. DLD versus power density curves for doubly rotated cut of quartz with phi varying from 1� to 7�.
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(d) ‘‘�” notation is used to represent the modal branch for other
modes.

The top graph in the frequency spectrum shows the resonant
frequencies versus the aspect ratio. We see that there is an interac-
tion of the spurious mode with that of the thickness shear mode for
an aspect ratio of 45.92.The middle graph shows the electrode cur-
rent relative to unit eigenvectors of the eigenvalue analyses. It can
be observed on comparison the top and the bottom graph that
there is a drop in the electrode current relative to unit eigenvectors
(eigen modes) at the same aspect ratio of 45.92. Also, there is a
drop in the electrode current for an aspect ratio of 45.885 indicat-
ing the presence of spurious mode. The bottom graph represents
the ratio of trapped thickness shear mode energy to total energy
which shows that there is an energy drop for aspect ratio of
45.92 and 45.885. Thus, the previous DLD analysis carried out in



Fig. 14. DLD versus power density curves for doubly rotated cut of quartz with phi varying from 8� to 14�.

Fig. 15. DLD versus power density curves for doubly rotated cut of quartz with phi varying from 15� to 22�.
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the previous section for this cut angle is affected by the spurious
mode. The frequency spectra thus help in the selection of a clean
aspect ratio of 45.80 which is not affected by the spurious modes.

In the second step, DLD analysis is performed using the iterative
procedure mentioned in Section 2 for the clean aspect ratio of
45.80 and for aspect ratio of 45.92 which is affected by the spuri-
ous modes. The graph in Fig. 18 shows the comparison of the
DLD curves in terms of power density for aspect ratio of 45.80
and 45.92. It can be observed that there is significant increase in
the drive level sensitivity for aspect ratio of 45.92 (affected by spu-
rious mode) as compared to that for clean aspect ratio of 45.80.
Thus, it can be concluded that the presence of spurious mode does
change the drive level dependence of the quartz resonators. How-
ever, it should be noted that the effect of spurious modes on the



Fig. 16. Frequency shift gradient due to DLD versus cut angle phi.
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drive level dependency for different cuts is different. Thus, in order
to characterize the effect of aspect ratio on the DLD for different
cuts, frequency spectrum analysis is carried out for all the cut an-
gles varying for 0�, 3�, 6�, 9�, 10�, 12�, 15�, 18�, 19�, 20� and 21�.
Based on the frequency spectrum analysis a clean aspect ratio of
45.88, 45.86, 45.70, 45.88, and 45.90 is selected for cut angles of
3�, 6�, 9�, 12�, and 15� degrees, respectively. Drive level depen-
dency of all these cut angles for clean aspect ratio is carried out.
Figs. 13–15 shows the drive level dependency of all these cut an-
gles with respect to the clean aspect ratio. It can be now seen from
Fig. 16 that the predicted DLD for cut angle having 9 and 12 de-
grees is in good agreement with the measured results when com-
pared with the FE predicted results in Fig. 12. Thus, one of the main
reasons in the discrepancy between the FE predicted results and
the experimental results can be attributed to the effect of aspect
ratio.

5. Drive level dependency and quality factor

The quality factor Q is one of the important factors in deciding
the stability of quartz resonators. In order to obtain a relationship
between the Q and the drive level dependence of a quartz resona-
tor, an ‘‘energy sink approach” is integrated into the DLD FE model
(Yong et al., 2005). This approach takes into consideration the en-
ergy losses due to the mountings by assuming a semi-infinite
boundary at the mountings. The relationship between the quality
factor and the drive level dependence helps us understand the
resistance which changes the DLD curve and the quality factor.
As the quality factor decreases, the resistance increases. Since the
power density takes into consideration the resistance, it is the
most suitable parameter for describing the DLD effect in quartz
resonators.

A FE simulation is carried out with respect to the experimental
setup used in determining the quality factor of the AT-cut quartz
resonator as a function of the position of a point probe.
The experimental setup is shown in Fig. 19 along with the loca-
tions of the point probe (numbered 1–4). When the point probe is
moved from locations 1–4, it interferes with the displacement dis-
tribution of the resonator; energy is dissipated via the probe, and
the resonator Q drops.

The dimensions of the AT-Cut quartz resonator used are given in
Table 4:

The simulation results are carried out by considering a semi-
infinite boundary condition at the probe position; hence all the en-
ergy dissipated from the quartz resonator is being absorbed at this
particular boundary interface. The drop in Q due to the increase in
the resistance obtained from experimental and simulation results
is shown in graph of Fig. 20. The graph shows that the motional
resistance increases (with a corresponding decrease in Q) as the
position of the probe is moved towards the electrode region of
the resonator.

Fig. 21 shows the simulation results and the experimental Q for
the resonator at different probe positions. The simulation results
gives the lowest possible Q for the 20 MHz AT-Cut quartz resonator
mounted on supports because of the semi-infinite boundary condi-
tions assumed at the mountings and at the probe. The semi-infinite
boundary conditions absorb all energy incident upon them. In the
experiment, some energy is reflected back from the mountings and
the probe.

Fig. 22 above shows the drop in the power density as the posi-
tion of probe is moved from the resonator edge to the electrode
edge. The drop in the power density corresponds to the drop in res-
onator Q. The result shows a very interesting trend for the DLD and
the Q-factor. It can be observed that for no change in the Q-factor
value the power density requirement for the quartz resonator re-
mains constants. This implies that the slope of the power density
curve from probe position 1 to probe position 2 almost tends to
zero, which indicates that the quartz resonator is DLD stable.
However, once the probe is moved from position 2 to position 4
there was a drop in the Q-factor value indicating that the quartz



Fig. 17. Frequency spectrum for doubly rotated quartz cut having / = 19� and h = 34.93�.
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resonator becomes more unstable. The drop in the Q-factor value is
traced by the power density curve. The slope of the power density
curve increases with the drop in the Q-factor value resulting in a
more sensitive DLD quartz resonator. The power requirements
for a low Q value quartz resonator decrease but at the same time
even a very small fluctuation in the drive level power can make
the resonator more unstable. Thus, the Fig. 22 shows that the
Q-factor and the DLD are linearly dependent on each other.

Also, experimental results show that the soft probe used for the
measurement of Q-factor increases the motional resistance of the
blank. This could be one of the main reason for the difference be-
tween the experimental and FE simulation results. The effect of
the probe size on the Q-factor and the motional resistance is exten-
sively studied in (Yong et al., 2005). The studies shows that even a
small difference in the probe size can affect the motional resistance
of the blank. Hence, a further investigation of the effect of probe
size on the DLD is suggested.

6. Effect of air damping on DLD and Q-factor

The Q of a quartz resonator is greatly affected by air damping
which results in a large difference between the Q in air and vacuum.
Hence experiments are carried out on 48 MHz AT-Cut resonator in or-
der to understand the influence of air damping on DLD and Q. The
dimensions for the 48 MHz AT- Cut resonator are given in Table 5.

The experiments were carried out in a vacuum chamber and in
normal atmospheric conditions with supports to calculate the
change in the DLD and Q.

The measurement results show that the Q measured in vacuum
is almost 1.5 times higher than that measured in normal



Fig. 18. DLD versus power density curves for doubly rotated quartz cut having / = 19� and h = 34.93� for aspect ratios of 45.80 and 45.92.

Fig. 19. Experimental setup for the determination of resonator Q as a function of the position of point probe.
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atmospheric conditions. Although there was a significant drop in
the Q due to air damping, the DLD is observed to be not much
Table 4
AT-cut blank dimensions used for determining relationship between DLD and quality
factors.

x1 (microns) x2 (microns) x3 (microns)

AT-cut blank dimensions 5500 80 1500
Electrode dimensions 2700 0.1 1000
affected by the air damping. The result shows that the Q does
not have significant effects on the DLD.
Table 5
AT-cut blank dimensions.

x1 (microns) x2 (microns) x3 (microns)

Blank 1996 32.2 1150
Gold electrode 1150 0.1 800



Fig. 20. Motional resistance of the resonator as a function of the probe position for the experimental setup of Fig. 22.

Fig. 21. Resonator Q versus the probe position.
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7. Summary

The drive level dependence of the resonance frequency of
quartz resonators (DLD) is caused mainly by the third-order elastic
constants. Any variation for a particular value of third-order elastic
constant necessitates a change in the overall symmetry of the
quartz. Thus, the results obtained for different rotated quartz cut
angles represent the variation of the third order elastic constants
with respect to DLD. The results obtained from the finite element
models for predicting the DLD compare reasonably well with the
experimental data for different crystal cuts of quartz. Hence the
FE models could be employed for predicting the DLD in new cuts
of quartz. The jump in DLD at / = 10� could be mainly due to a
stronger coupling between the third-order elastic constants and
the strain field caused due to the drive level. The FE simulations
for different doubly rotated cuts show that the lowest DLD could
be obtained for cut angle with / = 8� and h = 12�. The study shows
that the power density applied to the quartz resonator best de-
scribes its DLD. The power density is the best parameter for defin-
ing the DLD. The FE predictions of the resonator Q shows the same



Fig. 22. Power density versus probe position.
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trend as the measured Q. A decrease in the resonator Q decreases
the DLD, however the effect is weak.
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