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a b s t r a c t

Thiswork deals with themodeling of large systems of interacting entities in the framework
of themathematical kinetic theory for active particles. The contents are specifically focused
on the modeling of nonlinear interactions which is one of the most important issues
in the mathematical approach to modeling and simulating complex systems, and which
includes a learning–hiding dynamics. Applications are focused on themodeling of complex
biological systems and on immune competition.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Recent developments ofmathematical sciences have been devoted to themodeling of complex living systems. An account
of the literature in the field is offered by paper [1], which reports on the mathematical approach of the so-called kinetic
theory for active particles, for short KTAP theory, that has been specifically developed for modeling complex systems. This
method has been applied in several fields of natural and applied sciences such as immune competition (see [2,3], which
refer to [4]), epidemics [5], wound healing and diseases [6], social dynamics [7,8], and psychological interactions [9].
The state of the art witnesses several different mathematical approaches in competition toward a common aim—among

others, derivation of master equations for agents [10] and suitable developments of spin glass theory [11]. A deeper
understanding of this topic could contribute to refinement of the present state of the art in various modeling approaches
such as those concerning criminality [12–15], social dynamics [16–18], crowd modeling [19,20], and animal behaviors
[21–23], which are treated by approaches technically different from that presented in this work.
The aim of this work is the modeling of nonlinear interactions which is one of the most important issues in the

mathematical approach to modeling and simulating complex systems. The contents are related to the mathematical
structure derived in [24], which was proposed as a general paradigm for modeling hiding and learning processes in a
large system of interacting entities, called active particles. Active particles are grouped into subsystems, called functional
subsystems, consisting of entities which collectively express the same function, called the activity, described by the scalar
variable u ∈ Du ⊆ R, where Du is a bounded domain that can be taken, after appropriate normalization, equal to [−1, 1]. In
some cases it is convenient to consider the whole real line Du = (−∞,∞).
This work specifically deals with systems such that space and velocity variables have no relevant physical meaning. This

happens if the behavior of the system is uniform in space and the velocity distribution is constant in time, or even when
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both space and velocity do not have a relevant meaning in the modeling approach. That, for instance, is the case for several
systems in social sciences when particles interact via devices, such as media, where the localization does not play a relevant
role in the interactions.
We assume that there are only interactionswhichmodify themicroscopic state of the particles. Interactions involve three

kinds of particles: candidate, test, and field. The interaction rule is as follows: candidate particles can acquire, in probability,
the state of the test particles, after an interaction with field particles, while test particles lose that state after interactions.
Moreover, the overall state of the ith functional subsystem is described by the probability distribution

fi = fi(t, u) : [0, T ] × Du → R+, for i ∈ {1, 2, . . . , n}, (1.1)
where n is the number of functional subsystems, while the time evolution of the distribution function fi is obtained by the
balance of particles in the elementary interval [u, u+ du] of the microscopic state, as follows:

∂t fi(t, u) = Ji[f](t, u) =
n∑
j=1

Jij[fi, fj](t, u)

=

n∑
j=1

∫
Du×Du

ηij(u∗, u∗)Bij(u∗ → u|u∗, u∗)fi(t, u∗)fj(t, u∗) du∗ du∗

− fi(t, u)
n∑
j=1

∫
Du
ηij(u, u∗)fj(t, u∗) du∗, (1.2)

where:
f = (f1, f2, . . . , fn) is the vector of the probability distributions;
ηij = ηij(u∗, u∗) is the rate of encounters between the candidate particle, with state u∗, of the ith functional subsystem and
the field particle, with state u∗, of the jth functional subsystem;
Bij = Bij(u∗ → u|u∗, u∗) is the probability density for a candidate particle, with state u∗, of the ith functional subsystem
ending up in the state u of the test particle of the same functional subsystem after the interaction with the field particle,
with state u∗, of the jth functional subsystem;Bij satisfies, for all i, j ∈ {1, 2, . . . , n}, the following condition:∫

Du
Bij(u∗ → u|u∗, u∗) du = 1, ∀u∗, u∗ ∈ Du. (1.3)

Interactions, modeled by the terms Bij, are called stochastic games since the microscopic state of the active particles
is known in probability and the output is identified by a probability density. Moreover, if migrations in the network or
proliferative/destructive events do not occur, the probability distributions fi can be normalized with respect to the number
of active particles within each functional subsystem. Therefore

Pi(u ∈ A ⊆ Du; t) =
∫
A
fi(t, u) du, with

∫
Du
fi(t, u) du = 1 (1.4)

denotes the probability that u belongs, at time t , to the A subset of Du.
The pth-order moment is computed as follows:

Ep[fi](t) =
∫
Du
upfi(t, u) du. (1.5)

The physical meaning is related to the specific real system under consideration. The main interest is focused on the first-
order and second-ordermoments, namely themean activation and activation energy, that correspond inmechanics to linear
momentum and kinetic energy.
The contents are organized as follows: Section 2 presents the main result of this work, namely the modeling of multiple

interactions and the derivation of the evolution equation. Section 3 shows how the approach of the preceding section can
be further developed and applied in a number of case studies.

2. Modeling nonlinear interactions

This section deals with various modeling aspects related to the class of equations proposed in the preceding section. The
analysis is focused on the modeling of the terms ηij andBij that define in Eq. (1.2) the interactions involving active particles.
• On the concept of the functional subsystem: The systems under consideration have been subdivided into functional
subsystems, which are constituted by active particles that collectively express a certain strategy, called the activity,
identified by the scalar variable u. If the particles are distributed on the nodes of a network, these nodes contribute to
identifying the functional subsystems through a specific characterization. Namely, several different functional subsystems
can be localized at the same node as long as each of them develops a different activity. On the other hand, the same function
can be expressed via different functional subsystems if they are localized at different nodes. Therefore, the characterization
is due to both localization and the activity which is expressed.
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An important concept that is useful to the analysis developed in what follows is the definition of a distance αij between
the active particles of the ith and the jth functional subsystems. The following hierarchy, that corresponds to increasing level
of sophistication, is proposed:

(i) αij = η0ij ∈ R is simply a real constant that depends on the interacting functional subsystems.
(ii) αij = αij(u∗i , u

∗

j ) depends on the difference among the microscopic states of the interacting particles:

αij(u∗i , u
∗

j ) = |u∗i − u
∗

j |.

(iii) αij = αij[fi, fj](t) depends on the distance among the overall states of the interacting functional subsystems:

αij[fi, fj](t) =

√∫
Du
[fi − fj]2(t, u) du.

Of course additional examples can be selected according to the specific characteristics of the system under consideration.
However, the analysis is restricted, with tutorial aims, to the three simple examples given above, where the difference is that
the distance, respectively, is a constant, depends on the state of the interacting pairs, and is a functional of the probability
distributions that characterize the two interacting functional subsystems.
• The encounter rate: The modeling of the encounter rate introduced by Eq. (1.2) can be achieved in such a fashion that
increasing values of the distance αij correspond to decreasing values of the encounter rate ηij. According to the previous
hierarchy we define the encounter rate as follows:

(i) The encounter rate is a constant simply given by

ηij = η
0
ij. (2.1)

(ii) The encounter rate is related to the difference among the microscopic states of the interacting particles as follows:

ηij = ηij(u∗i , u
∗

j ) = η
0
ije
−cα2ij (u∗i ,u

∗
j ), (2.2)

where c is a positive real constant.
(iii) The encounter rate is related to the distribution functions of the interacting functional subsystems:

ηij = ηij(t|fi, fj) = η0ije
−cα2ij [fi,fj](t) = η0ije

−c(
∫
Du [fi−fj]

2(t,u) du)
. (2.3)

Remark 2.1. The simple model given by (2.1) can be regarded as a particular case of (2.2) obtained by taking c = 0, while
the model given by (2.2) is obtained with (2.3) approximating the distributions fi by delta functions over the states of the
interacting pairs.

Remark 2.2. The terms η0ij , for i, j ∈ {1, 2, . . . , n}, depend on the kinds of interacting functional subsystems and can be
modeled by taking into account also their localization on the network.

• The transition probability density:As alreadymentioned,Bij represents the probability density for a candidate particle, with
state u∗, of the ith functional subsystem ending up in the state u of the test particle of the same functional subsystem after
interaction with the field particle, with state u∗, of the jth functional subsystem.
A high level of nonlinearity is introduced in systemswhere the encounter rates and also the transition probability density

are conditioned by the distribution functions of the interacting functional subsystems. Accordingly, Eq. (1.2) is rewritten as
follows:

∂t fi(t, u) = Ji[f](t, u) =
n∑
j=1

Jij[fi, fj](t, u)

=

n∑
j=1

∫
Du×Du

ηij(t|fi, fj)Bij(u∗ → u|u∗, u∗,Ep[fi],Ep[fj])fi(t, u∗)fj(t, u∗) du∗ du∗

− fi(t, u)
n∑
j=1

∫
Du
ηij(t|fi, fj)fj(t, u∗) du∗. (2.4)

A phenomenon which has to be taken into account is that, generally, the interaction domain of the candidate particle
with state u∗ is not the whole domain Du but a subsetΩu∗ ⊆ Du, which contains the field particles u

∗
∈ Ωu∗ that are able to

interact with the candidate particle. Thus interactions only occur if the distances, in the space of microscopic states of the
interacting particles, are sufficiently small.
Therefore a positive functionω(u∗, u∗), normalizedwith respect to integration over u∗, is introduced to take into account

such dynamics. This function, which weights the interactions among the active particles, is assumed to have a compact
support in the domain of influenceΩu∗ ⊆ Du of the interactions. Moreover,
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Du
ω(u∗, u∗) du∗ =

∫
Ωu∗

ω(u∗, u∗) du∗ = 1. (2.5)

Accordingly we define the pth-order weighted moment as follows:

Epw[fi](t, u∗) =
∫
Du
(u∗)pω(u∗, u∗)fi(t, u∗) du∗ =

∫
Ωu∗

(u∗)pω(u∗, u∗)fi(t, u∗) du∗. (2.6)

Therefore Eq. (2.4) is rewritten as follows:

∂t fi(t, u) = Ji[f](t, u) =
n∑
j=1

Jij[fi, fj](t, u)

=

n∑
j=1

∫
Du×Du

ηij(t|fi, fj)Bij(u∗ → u|u∗, u∗,Epw[fi],E
p
w[fj])fi(t, u∗)fj(t, u

∗) du∗ du∗

− fi(t, u)
n∑
j=1

∫
Du
ηij(t|fi, fj)fj(t, u∗)du∗. (2.7)

Remark 2.3. The specific characterization of the terms ηij, which appear in (2.7), is obtained by selecting one of the three
cases (2.1)–(2.3), or additional ones, while specific models are obtained by characterization of the term Bij. This matter is
discussed in the next section.

Remark 2.4. The modeling of the termsBij, for i, j ∈ {1, 2, . . . , n}, is based on the idea that the candidate particle interacts
with the field particles within its interaction domain, defined by Ωu∗ , in the space of the activity variables and feels an
action identified by the low order moments of the field of active particles. The action can be also related, whether or not it
is consistent with the specific system under consideration, by the most probable value.

Remark 2.5. The time evolution of the distribution functions fi(t, u), for i ∈ {1, 2, . . . , n}, is obtained by solving the initial
value problem for Eq. (2.7) obtained by adding the initial conditions fi(0, u). Subsequentlymomentsweighted by the variable
u can be computed to obtainmacroscopic information. The qualitative analysis developed in [25] for a relatively simple class
of models needs to be further refined to take into account the higher order nonlinearity of (2.7). Bifurcation may appear, as
documented in [26,27].

An immediate technical generalization consists in inserting in Eq. (2.7) the modeling of proliferative and/or destructive
events as well as transitions from one functional subsystem to the other. The result is achieved by combining the guidelines
of [1] with those of this present work. The following mathematical framework is obtained:

∂t fi(t, u) = Qi[f](t, u) =
n∑
h=1

n∑
k=1

Qhk[fh, fk](t, u)

=

n∑
h=1

n∑
k=1

∫
Du×Du

η0hke
−cα2hk(t|fh,fk)Bihk(u∗ → u|u∗, u∗,Epw[fh],E

p
w[fk])fh(t, u∗)fk(t, u

∗) du∗ du∗

−

n∑
h=1

n∑
k=1

∫
Du
η0hke

−cα2hk(t|fh,fk)[1− µihk(u∗, u
∗)]fh(t, u∗)fk(t, u∗) du∗ du∗, (2.8)

where the number of particles is no longer constant in time due to the term that models proliferative and/or destructive
events:
µihkmodels the proliferative/destructive rate for particles of the hth functional subsystem, with state u∗, going into the state
u of the ith functional subsystem due to an encounter with the particle (field) of the kth functional subsystem, with state u∗.
In particular, destructive events occur only within the functional subsystem of the field particles.
Moreover, conservative interactions include transitions from one functional subsystem to the other. This dynamics is

modeled by the following term:
Bihk models the probability density for a candidate particle of the hth functional subsystem, and with state u∗, ending up in
the state u of the ith functional subsystem after the interaction with the field particle, with state u∗, of the kth functional
subsystem.

3. Perspectives

This section briefly analyzes some further developments of the approach proposed in Section 2, related tomethodological
issues, with a view to applications. The selection of topics proposed in this section does not claim to be exhaustive, but it is
simply a suggestion of future research perspectives proposed according to the authors’ bias.
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The main contribution of this work consists in the modification of the structures summarized in Section 1, which
were based on linear interactions, to include the modeling of nonlinear interactions. Indeed a variety of papers have been
proposed, based on Eq. (1.2), for modeling complex systems in the life sciences; see Refs. [2,5–7,9], and many others. An
interesting problem consists in analyzing the role of nonlinear interactions, namely how these can modify the output
of the overall collective dynamics. An additional research perspective that is worth bringing to the attention of applied
mathematicians consists in developing the contribution of papers [28,29] devoted to modeling, respectively, the roles of
space dynamics and aggregation/fragmentation phenomena. Moreover, paper [29] shows, following the guidelines of [30],
how macroscopic models can be derived from the underlying description delivered by kinetic type models. This topic has
been treated recently by several authors, as documented in [31] and the bibliography cited therein. However, the analysis
of models which include nonlinear interactions is still an open problem.
Finally, let us remark that the most relevant research perspective consists in modeling the interaction dynamics at the

scale of the active particles, from the underlying description at a lower scale, typical of the systemunder consideration. Some
perspective ideas have been given on this challenging topic, mainly focusing on the modeling of biological systems [32–34].
However, also in this case, the approach is limited to the case of binary additive interactions.
Applications are not limited to the case of living systems. Indeed, a variety of systems in technology and physics can

be modeled by taking advantage of the theory formulated here. The common feature of these systems is that they are
constituted by a large number of interacting entities, whose state includes, in addition to the classical position and velocity
variables, an additional specific state that is heterogeneously distributed and that modifies the interaction rules otherwise
defined by classical conservation laws. Some examples, selected among several, can be given.
A generalized kinetic model of sedimentation of polydisperse suspensions has been proposed in [35]. A challenging

problem, which may be addressed using this theory, is turbulence in superfluids. Indeed, superfluid turbulence is described
as a disordered tangle of quantized vortex lines [36]. The vortex lines are either closed loops or open vortex lines pinned on
thewalls, which interact with each other through breaking and reconnection processes. The approach proposed in this work
can contribute to modeling the time evolution of the statistical properties of vortex loops [37,38], and their thermodynamic
consequences [39].
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