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In this paper, a scheme is developed to study numerical solution of the space- and time-
fractional Burgers equations with initial conditions by the variational iteration method
(VIM). The exact and numerical solutions obtained by the variational iteration method are
compared with that obtained by Adomian decomposition method (ADM). The results show
that the variational iteration method is much easier, more convenient, and more stable
and efficient than Adomian decomposition method. Numerical solutions are calculated for
the fractional Burgers equation to show the nature of solution as the fractional derivative
parameter is changed.
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1. Introduction

In the last past decades, directly seeking for exact solutions of nonlinear partial differential equations has become one of
the central theme of perpetual interest in Mathematical Physics. Nonlinear wave phenomena appear in many fields, such as
fluid mechanics, plasma physics, biology, hydrodynamics, solid state physics and optical fibers. These nonlinear phenomena
are often related to nonlinear wave equations. In order to better understand these phenomena as well as further apply them
in the practical life, it is important to seek their more exact solutions. Many powerful methods had been developed such as
Backlund transformation [1,2], Darboux transformation [3], the inverse scattering transformation [4], the bilinear method [5],
the tanh method [6,7], the sine–cosine method [8,9], the homogeneous balance method [10], the Riccati method [11], the
Jacobi elliptic function method [12] and the extended Jacobi elliptic function method [13], etc.

The fractional differential equations (FDE) appear more and more frequently in different research areas and engineering
applications. The fractional derivative has been occurring in many physical problems such as frequency dependent damp-
ing behavior of materials, motion of a large thin plate in a Newtonian fluid, creep and relaxation functions for viscoelastic
materials, the P IλDμ controller for the control of dynamical systems, etc. Phenomena in electromagnetics, acoustics, vis-
coelasticity, electrochemistry and material science are also described by differential equations of fractional order. Bagley
and Torvik [14–16] provided a review of work done in this area prior to 1980, and showed that half-order fractional dif-
ferential models describe the frequency dependence of the damping materials very well. Other authors have demonstrated
applications of fractional derivatives in the areas of electrochemical processes [17,18], dielectric polarization [19], colored
noise [20], viscoelastic materials [21] and chaos [22]. Mainardi [23] and Rossikhin and Shitikova [24] presented survey of
fractional derivatives, in general to solid mechanics, and in particular to modeling of visco elastic damping. Magin [25] pre-
sented a three part critical review of applications of fractional calculus in bioengineering. Application of fractional derivatives
in other fields, related mathematical tools and techniques could be found in [26–30].
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Fractional calculus has been used to model physical and engineering processes that are found to be best described by
FDEs. For that reason we need a reliable and efficient technique for the solution of FDEs. Atanackovic and Stankovic [31]
have analyzed lateral motion of an elastic column fixed at one end loaded at the other, in terms of a system of
FDE. Shawagfeh [32] has employed Adomian decomposition method in case of the nonlinear FDE. Daftardar-Gejji and
Babakhani [33] have presented analysis of system of FDE. They have studied existence, uniqueness and stability of solu-
tions of a system of FDE. Recently, Daftardar-Gejji and Babakhani [34] have used to obtain solutions of a system of FDEs
by Adomian decomposition method. They have discussed convergence of the method with some illustrative examples. More
recently, Daftardar-Gejji and Babakhani [35] have presented an iterative method for solving nonlinear functional equations.
Most recently, Momani [36] has presented nonperturbative analytical solutions of the space- and time-fractional Burgers
equations by Adomian decomposition method.

In this paper, we consider nonperturbation analytical solutions of the generalized Burgers equation with time- and space-
fractional derivatives of the form [36]:

∂αu

∂tα
+ εu

∂u

∂x
− ν

∂2u

∂x2
+ η

∂βu

∂xβ
= 0, t > 0, 0 < α, β � 1, (1)

where ε,ν,η are parameters and, α and β are parameters describing the order of the fractional time- and space-derivatives,
respectively. The function u(x, t) is assumed to be a causal function of time and space, i.e., vanishing for t < 0 and x < 0.

The fractional derivatives are considered in the Caputo sense. We refer to Eq. (1) as to the time-fractional Burgers and to
the space-fractional Burgers equation in the cases 0 < α � 1, η = 0 and 0 < β � 1, α = 1, respectively. The space-fractional
Burgers equation describes the physical processes of unidirectional propagation of weakly nonlinear acoustic waves through
a gas-filled pipe. The fractional derivative results from the memory effect of the wall friction through the boundary layer.
The same form can be found in other systems such as shallow-water waves and waves in bubbly liquids [36]. Biler et al. [37]
studied local and global in time solutions to a class of multidimensional generalized Burgers-type equations with a fractal
power of the Laplacian in the principal part and with general algebraic nonlinearity. Biler et al. [38] presented the existence
and uniqueness of the source solution to the fractal Burgers equation in the critical case. Mann and Woyczynski [39] pre-
sented asymptotic properties of solutions and the Monte Carlo type approximation algorithms of the fractal Burgers–KPZ
equations. Recently, Stanescu et al. [40] worked a numerical method based on the interacting particles approximation for
the solution of a large class of evolution problems involving the fractional Laplacian operator and a nonlocal quadratic-type
nonlinearity.

The aim of this paper is to extend the variational iteration method by He [41–45] to derive the numerical and exact
solutions of the space- and time-fractional Burgers equations and comparison with that obtained previously by the Adomian
decomposition method [36].

2. Basic definitions

Definition 2.1. A real function f (x), x > 0, is said to be in the space Cα, α ∈ � if there exists a real number p (> α), such
that f (x) = xp f1(x) ∈ C[0,∞]. Clearly Cα ⊂ Cβ if β � α.

Definition 2.2. A function f (x), x > 0, is said to be in the space Cm
α , m ∈ N ∪ {0}, if f (m) ∈ Cα.

Definition 2.3. The left sided Riemannian–Liouville fractional integral of order μ � 0, of a function f ∈ Cα, α � −1, is
defined as

Iμ f (x) = 1

	(μ)

x∫
0

f (t)

(x − t)1−μ
dt, μ > 0, x > 0, I0 f (x) = f (x). (2)

Definition 2.4. Let f ∈ Cm−1, m ∈ N. Then the Caputo fractional derivative of f is defined as [36,47]:

Dμ f (x) =
{ [Im−μ f (m)(x)], m − 1 < μ � m,

dm

dtm f (t), μ = m,
(3)

Iμ Iν f = Iμ+ν f , μ,ν � 0, f ∈ Cα, α � −1,

Iμxy = 	(γ + 1)

	(γ + μ + 1)
xγ +μ, μ > 0, γ > −1, x > 0. (4)

Lemma 2.1. If m − 1 < α � m, and f ∈ L1[a,b], then

Jαa f (x) = 1

	(α)

x∫
(x − t)α−1 f (t)dt, Dα

a Jαa f (x) = f (x), (5)
a
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and

Jαa Dα
a f (x) = f (x) −

m−1∑
k=0

f (k)(0+)
(x − a)k

k! , x > 0. (6)

Definition 2.5. The fractional derivative of f (x) in the Caputo sense is defined as

Dα f (x) = Jm−α Dm f (x) = 1

	(m − α)

x∫
0

(x − t)m−α−1 f (m)(t)dt, (7)

for m − 1 < α � m, m ∈ N, x > 0.

Definition 2.6. For m to be the smallest integer that exceeds α, the Caputo time-fractional derivative operator of order
α > 0 is defined as

Dα
t u(x, t) = ∂αu(x, t)

∂tα
=

⎧⎨
⎩

1
	(m−α)

∫ t
0 (t − τ )m−α−1 ∂mu(x,t)

∂tm dτ , for m − 1 < α < m,

∂mu(x,t)
∂tm , for α = m ∈ N,

(8)

and the space-fractional derivative operator of order β > 0 is defined as

Dα
x u(x, t) = ∂βu(x, t)

∂tβ
=

⎧⎨
⎩

1
	(m−β)

∫ x
0 (t − θ)m−β−1 ∂mu(θ,t)

∂tm dθ, for m − 1 < β < m,

∂mu(x,t)
∂tm , for β = m ∈ N.

(9)

3. Variational iteration method

Variational iteration method (VIM) was first proposed by the Chinese mathematician He [41–45]. This method has been
employed to solve a large variety of linear and nonlinear problems with approximations converging rapidly to accurate
solutions. This technique is used in [46] for solving nonlinear Jaulent–Miodek, coupled KdV and coupled MKdV equations.
In [47] the applications of the present method to Shock-peakon and shock-compacton solutions for K (p,q) equation are
provided. The variational iteration technique is employed to solve the nonlinear dispersive equation, a nonlinear partial
differential equation which arise in the process of understanding the role of nonlinear dispersion and in the forming of
structures like liquid drops and exhibits compactons [48]. Also this method is applied in [49] for solving KdV and mKdV
equations with initial conditions and in [50] for obtaining numerical doubly-periodic solution of the (2 + 1)-dimensional
Boussinesq equation. Author of [51] employed VIM for determining exact and numerical solitons with compact support
for the K (m, p) equations. This technique is also employed in [52] to solve the Fokker–Planck equation. The linear and
nonlinear cases are discussed in their work and several test examples are given to show the efficiency of this procedure.
Draganescu [53] applied VIM to nonlinear oscillator with fractional damping and then [54] to nonlinear viscoelastic models
with fractional derivatives. Odibat and Momani [55] applied the method to nonlinear differential equations of fractional
order with great success. This method is successfully and effectively applied to delay differential equations [56], Cauchy
reaction–diffusion problem [57], a differential equation arising in astrophysics [58], a biological population model [59],
etc. The convergence of He’s variational iteration method is investigated in [60]. Author of [61] employed VIM for solving
the quadratic Riccati differential equation. A modified VIM is introduced to eliminate the shortcomings and in [62] the
Padé technique was successfully linked with this modification. The idea of VIM is constructing a correction functional by a
general Lagrange multiplier. The multiplier in the functional should be chosen such that its correction solution is superior
to its initial approximation (trial function) and is the best within the flexibility of trial function, accordingly we can identify
the multiplier by variational theory. The initial approximation can be freely chosen with possible unknowns, which can be
determined by imposing the boundary/initial conditions.

To illustrate its basic concepts of the variational iteration method, we consider the following differential equation:

Lu + Nu = g(x), (10)

where L is a linear operator, N a nonlinear operator and g(x) an inhomogeneous term.
According to the variational iteration method, we can construct a correct functional as follows

un+1(x) = un(x) +
x∫

0

λ
{

Lun(τ ) + Nũn(τ ) − g(τ )
}

dτ , (11)

where λ is a general Lagrangian multiplier [63] which can be identified optimally by the variational theory, the subscript n
denotes the nth-order approximation, and ũnis considered as a restricted variation [64], i.e. δũn = 0. For linear problems,
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the exact solution can be obtained by only one iteration step due to the fact that the Lagrange multiplier can be exactly
identified. In nonlinear problems, in order to determine the Lagrange multiplier in a simple manner, the nonlinear terms
have to be considered as restricted variations. Consequently, the exact solution may be obtained by using

u(x, t) = lim
n→∞ un(x, t).

The convergence of the VIM has been investigated in [65]. He obtained some results about the speed of convergence of this
method.

To illustrate the above theory, two examples of special interest such as the space-fractional Burgers equation and the
time-fractional Burgers equation are discussed in details and the obtained results are exactly the same with that found by
the Adomian decomposition method [36].

4. Applications

4.1. The space-fractional Burgers equation

We consider the space-fractional Burgers equation with the following initial value problem [36]:⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
+ η

∂βu

∂xβ
= 0, x, t > 0, 0 < β � 1,

u(0, t) = 0, ux(0, t) = 1

t
− π2

2νt2
.

(12)

To solve Eq. (12) by means of the variational iteration method, we construct a correction functional which reads

un+1(x, t) = un(x, t) +
t∫

0

λ(τ )

{(
∂un(x, τ )

∂τ

)
t
+ (

ũn(x, τ )
)(∂ ũn(x, τ )

∂τ

)
x
− ν

(
∂ ũn(x, τ )

∂τ

)
xx

+ η

(
∂ ũn(x, τ )

∂τ

)
β

dτ

}
, (13)

where δũnis considered as a restricted variation, u0(x, t) is its initial approximation or trial function. Making the above
correction functional stationary and noticing that δũn = 0, we obtain

δun+1(x, t) = δun(x, t) +
t∫

0

δλ(τ )

{(
∂un(x, τ )

∂τ

)
t
+ (

ũn(x, τ )
)(∂ ũn(x, τ )

∂τ

)
x
− ν

(
∂ ũn(x, τ )

∂τ

)
xx

+ η

(
∂ ũn(x, τ )

∂τ

)
β

dτ

}

= δun(x, t) + λ(τ )δun(x, τ ) +
t∫

0

δun(x, τ )λ′(τ )dτ = δun(x, t)
(
1 + λ(τ )

) +
t∫

0

δun(x, τ )λ′(τ )dτ = 0

which produces the stationary conditions:

λ′(τ ) = 0, (14a)

1 + λ(τ )|τ=t = 0, (14b)

where Eq. (14a) is called Lagrange–Euler equation and Eq. (14b) natural boundary condition.
The Lagrange multiplier, therefore, can be identified as λ = −1, and the following variational iteration formula can be

obtained

un+1(x, t) = un(x, t) −
x∫

0

{
(un)t + (ũn)(ũn)x − ν(ũn)xx + η(ũn)β

}
dτ . (15)

We start with an initial approximation u0 = u(0, t) + xux(0, t) given by Eq. (12), by the above iteration formula (15), we
can obtain directly the other components as

u0(x, t) =
(

1

t
− π2

2νt2

)
x, (16)

u1(x, t) = π4x3

24ν3t4
− ηx3−β

(3 − β)(β − 2)	(2 − β)ν
, (17)

u2(x, t) = − π6x5

240ν5t6
+ η(−π2 + 2νt)x5−β

2(5 − β)(β − 3)(β − 2)	(β − 2)ν3t2
+ η	(4 − β)x5−2β

2(5 − 2β)(β − 3)(β − 2)2	(β − 2)	(3 − 2β)ν
, (18)

u3(x, t) = π8x7

40320ν7t8
+ · · · , (19)

and so on, in the same manner the rest of components of the iteration formula (15) were obtained the Mathematica Package.
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Consequently, we have the solution of (12) in a series form

u(x, t) =
(

1

t
− π2

2νt2

)
x + π4x3

24ν3t4
− ηx3−β

(3 − β)(β − 2)	(2 − β)ν
− π6x5

240ν5t6
+ η(−π2 + 2νt)x5−β

2(5 − β)(β − 3)(β − 2)	(β − 2)ν3t2

+ η	(4 − β)x5−2β

2(5 − 2β)(β − 3)(β − 2)2	(β − 2)	(3 − 2β)ν
+ π8x7

40320ν7t8
+ · · ·

which are exactly the same as obtained by Adomian decomposition method [36]. If we take β = 1
2 in (19), then we get the

solution of [66] as follows:

u(x, t) =
(

1

t
− π2

2νt2

)
x + π4x3

24ν3t4
− π6x5

240ν5t6
+ π8x7

40320ν7t8
+ · · · . (20)

The exact solution, for the special case η = 0, is given by

u(x, t) = x

t
− π

t
tanh

[
πx

2ν

]
. (21)

4.2. The time-fractional Burgers equation

We now consider the one-dimensional time-fractional Burgers equation with the following initial value problem [36]:⎧⎨
⎩

∂αu

∂tα
+ εu

∂u

∂x
− ν

∂2u

∂x2
= 0, t > 0, 0 < α � 1,

u(x,0) = g(x).

(22)

To solve Eq. (22) by means of the variational iteration method, we construct a correction functional which reads

un+1(x, t) = un(x, t) +
t∫

0

λ

{(
∂un(x, τ )

∂τ

)
α

+ (
ũn(x, τ )

)(∂ ũn(x, τ )

∂τ

)
x
− ν

(
∂ ũn(x, τ )

∂τ

)
xx

}
dτ , (23)

where δũnis considered as a restricted variation. u0(x, t) is its initial approximation or trial function. Making the above
correction functional stationary and noticing that δũn = 0, we get

δun+1(x, t) = δun(x, t) +
t∫

0

δλ(τ )

{(
∂un(x, τ )

∂τ

)
α

+ (
ũn(x, τ )

)(∂ ũn(x, τ )

∂τ

)
x
− ν

(
∂ ũn(x, τ )

∂τ

)
xx

}
dτ ,

δun+1(x, t) = δun(x, t) + λ(τ )δun(x, τ ) +
t∫

0

δun(x, τ )λ′(τ )dτ = δun(x, t)
(
1 + λ(τ )

) +
t∫

0

δun(x, τ )λ′(τ )dτ = 0

which produces the stationary conditions:

λ′(τ ) = 0, (24a)

1 + λ(τ )|τ=t = 0, (24b)

where Eq. (24a) is called Lagrange–Euler equation and Eq. (24b) natural boundary condition.
The Lagrange multiplier, therefore, can be identified as λ = −1, and the following variational iteration formula can be

obtained

un+1(x, t) = un(x, t) −
x∫

0

{
(un)α + (ũn)(ũn)x − ν(ũn)xx

}
dτ . (25)

We start with an initial approximation u0 = u(x,0) given by Eq. (22), by the above iteration formula (25), we can obtain
directly the other components as

u0(x, t) = g(x) = μ + σ + (σ − μ)exp(γ )

1 + exp(γ )
, (26)

u1(x, t) = [νg′′ − εgg′] tα

	(α + 1)
, (27)

u2(x, t) = [
2ε2 gg′ 2 + ε2 g2 g′′ − 4ενg′ g′′ − 2ενgg′′ + ν2 g(4)

] t2α

	(2α + 1)
, (28)

and so on, in the same manner the rest of components of the iteration formula (25) were obtained the Mathematica Package.
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Table 1
The numerical results for 10 iterations in comparison with the exact solution u(x, t) = x

t − π
t tanh[ πx

2ν ] when
ν = 0.1 for the space-fractional Burgers equation with initial conditions of Eq. (12)

t/x 0.1 0.2 0.3 0.4 0.5

0.1 2.9329E–15 2.8755E–14 2.8198E–14 2.7656E–13 2.7131E–12
0.2 7.3462E–14 7.2729E–13 7.2007E–13 7.1295E–13 7.0593E–12
0.3 3.2328E–14 3.2109E–13 3.1893E–13 3.1678E–12 3.1466E–11
0.4 1.7885E–14 1.7792E–13 1.7700E–13 1.7609E–12 1.7519E–11
0.5 1.1196E–14 1.1148E–13 1.1101E–13 1.1054E–12 1.1008E–11

Consequently, we have the solution of (22) in a series form

u(x, t) = μ + σ + (σ − μ)exp(γ )

1 + exp(γ )
+ [νg′′ − εgg′] tα

	(α + 1)

+ [
2ε2 gg′ 2 + ε2 g2 g′′ − 4ενg′ g′′ − 2ενgg′′ + ν2 g(4)

] t2α

	(2α + 1)
+ · · · (29)

which are exactly same as obtained by Adomian decomposition method [36] and where γ = μ
ν (x − λ) and the parameters

μ,σ ,λ and ν are arbitrary constants.
If we take α = 1 in (29), then we get the solution of [67] as follows:

u0(x, t) = μ + σ + (σ − μ)exp(γ )

1 + exp(γ )
, (30)

u1(x, t) = 2μσ 2 exp(γ )

[1 + exp(γ )]2ν
t, (31)

u2(x, t) = [μ3σ 2 exp(γ )][exp(γ ) − 1]
[1 + exp(γ )]3ν2

t2, (32)

u3(x, t) = [μ4σ 3 exp(γ )][1 − 4 exp(γ ) + exp(γ )]
3[1 + exp(γ )]4ν3

t3, (33)

and so on, in the same manner the rest of components of the iteration formula (25) were obtained the Mathematica Package.
Thus, we have the solution of (22) in a series form for α = 1,

u(x, t) = μ + σ + (σ − μ)exp(γ )

1 + exp(γ )
+ 2μσ 2 exp(γ )

[1 + exp(γ )]2ν
t + [μ3σ 2 exp(γ )][exp(γ ) − 1]

[1 + exp(γ )]3ν2
t2

+ [μ4σ 3 exp(γ )][1 − 4 exp(γ ) + exp(γ )]
3[1 + exp(γ )]4ν3

t3 + · · · , (34)

where γ = μ
ν (x − λ) and in a close form solution by

u(x, t) = μ + σ + (σ − μ)exp[μ
ν (x − σ t − λ)]

1 + exp[μ
ν (x − σ t − λ)] , (35)

which are exactly same as obtained by Adomian decomposition method [67].

5. Numerical results

In this section, we consider the space- and time-fractional Burgers equations for numerical comparisons. In order to
verify numerically whether the proposed methodology lead to higher accuracy, we can evaluate the approximate solution
using the n-term approximations (15) and (25). Tables 1–3 show the difference of the exact and numerical solutions of the
absolute errors. The graphs of the exact and approximate solutions are depicted in Figs. 1 and 2. It is to be note that 10
terms only were used in evaluating the approximate solutions. We achieved a good approximation with the exact solutions
of the equations by using 10 terms only of the variational iteration method. It is evident that the overall errors can be made
smaller by adding new terms of the series (20) and (34).

6. Conclusions

In this paper, we have presented a scheme used to obtain numerical and exact solutions of the space- and time-
fractional Burgers equations with initial conditions using by the variational iteration method. The results show that the
present method is a powerful mathematical tool for finding other numerical and exact solutions of many nonlinear frac-
tional differential equations with initial and boundary conditions. It may be concluded that the VIM and the ADM are very
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Table 2
The numerical results for 5 iterations in comparison with the exact solution u(x, t) = x

t − π
t tanh[ πx

2ν ] when ν = 3
for the space-fractional Burgers equation with initial conditions of Eq. (12)

t/x 0.1 0.2 0.3 0.4 0.5

0.1 3.5570E–08 3.5585E–08 3.5401E–08 3.5219E–08 3.5038E–08
0.2 7.9651E–08 7.9422E–08 7.9195E–08 7.8969E–08 7.8743E–08
0.3 2.9931E–07 2.9868E–07 2.9805E–07 2.9742E–07 2.9680E–07
0.4 1.4201E–07 1.4178E–07 1.4155E–07 1.4132E–07 1.4109E–07
0.5 8.2596E–07 8.2508E–07 8.2420E–07 8.2333E–07 8.2246E–07

Table 3

The numerical results for 5 iterations in comparison with the exact solution u(x, t) = μ+σ+(σ−μ)exp[ μ
ν (x−σ t−λ)]

1+exp[ μ
ν (x−σ t−λ)]

when ν = 0.1, μ = 1, σ = 0.9 and λ = 0.4 for the time-fractional Burgers equation with initial condition of
Eq. (22)

t/x 0.1 0.2 0.3 0.4 0.5

0.1 7.4250E–11 6.2058E–13 4.6082E–13 2.6843E–11 5.2917E–07
0.2 1.4023E–09 2.9744E–11 1.1711E–11 7.0830E–10 1.1307E–06
0.3 1.0542E–08 1.4908E–10 7.8477E–11 4.4604E–09 9.2668E–06
0.4 5.4003E–08 6.2471E–10 3.7936E–10 1.9815E–08 4.2411E–05
0.5 1.3301E–07 2.8958E–09 1.1608E–09 6.1020E–08 1.4161E–05

(a) (b)

Fig. 1. The surface shows the solution u(x, t) for Eq. (12): (a) exact solution; (b) approximate solution when ν = 1 for the space-fractional Burgers equation.

(a) (b)

Fig. 2. The surface shows the solution u(x, t) for Eq. (12): (a) exact solution; (b) approximate solution when ν = 0.1, μ = 0.3, σ = 0.4 and λ = 0.8 for the
time-fractional Burgers equation.



M. Inc / J. Math. Anal. Appl. 345 (2008) 476–484 483
powerful and efficient techniques in finding an acceptable solution for wide classes of nonlinear problems. The VIM requires
the evaluation of the Lagrangian multiplier, λ. However, the ADM requires the evolution of the Adomian polynomials. Thus,
the evaluation of the Adomian polynomials for every nonlinear terms mostly requires tedious algebraic calculations. The
main advantage of VIM is to overcome the difficulty arising in calculating Adomian’s polynomials in ADM. We can inte-
gration the equation directly without use calculation of Adomian polynomials by the VIM. This work show that the VIM
is easier than the ADM. Furthermore, VIM needs relative less computational work than ADM. The behavior of the solution
obtained by the variational iteration method is shown for different values of times in Figs. 1 and 2.

The numerical solutions of fractional differential equations obtained by the semi-analytic methods can be found in
[68–72].
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