
Article
Insights into Collagen Upt
ake by C-type Mannose
Receptors from the Crystal Structure of Endo180
Domains 1–4
Graphical Abstract
Highlights
d Domains 1–4 of the endocytic receptor Endo180 form an

L-shaped structure

d The fibronectin type II domain (domain 2) is crucial for

collagen/gelatin binding

d The first C-type lectin domain (domain 3) also contributes to

collagen binding

d Collagen binding to Endo180 domains 1–4 is not reduced by

low pH or Ca2+ depletion
Paracuellos et al., 2015, Structure 23, 2133–2142
November 3, 2015 ª2015 The Authors
http://dx.doi.org/10.1016/j.str.2015.09.004
Authors

Patricia Paracuellos, David C. Briggs,

Federico Carafoli, Tan Lon�car, Erhard

Hohenester

Correspondence
e.hohenester@imperial.ac.uk

In Brief

Endo180 is an endocytic receptor that

clears collagen from the extracellular

space. Paracuellos et al. have determined

crystal and solution structures of the

collagen-binding head of Endo180 and

show that the presumed collagen release

in endosomes is not regulated by

changes within the head.
Accession Numbers
5AO5

5AO6

mailto:e.hohenester@imperial.ac.uk
http://dx.doi.org/10.1016/j.str.2015.09.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.str.2015.09.004&domain=pdf


Structure

Article
Insights into Collagen Uptake by C-type Mannose
Receptors from the Crystal Structure
of Endo180 Domains 1–4
Patricia Paracuellos,1,2 David C. Briggs,1,2 Federico Carafoli,1 Tan Lon�car,1 and Erhard Hohenester1,*
1Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
2Co-first author

*Correspondence: e.hohenester@imperial.ac.uk
http://dx.doi.org/10.1016/j.str.2015.09.004

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
SUMMARY

The C-type mannose receptor and its homolog
Endo180 (or uPARAP, for urokinase plasminogen
activator receptor-associated protein) mediate the
endocytic uptake of collagen bymacrophages and fi-
broblasts. This process is required for normal tissue
remodeling, but also facilitates the growth and
dissemination of tumors. We have determined the
crystal structure at 2.5 Å resolution of the N-terminal
region of Endo180, consisting of a ricin-like domain,
a fibronectin type II (FN2) domain, and two C-type
lectin (CTL) domains. The L-shaped arrangement of
these domains creates a shallow trench spanning
the FN2 and CTL1 domains, which was shown by
mutagenesis to bind triple-helical and denatured
collagen. Small-angle X-ray scattering showed that
the L-shaped structure is maintained in solution at
neutral and acidic pH, irrespective of calcium ion
loading. Collagen binding was equally unaffected
by acidic pH, suggesting that collagen release in en-
dosomes is not regulated by changes within the
Endo180 N-terminal region.

INTRODUCTION

Collagens are a major component of extracellular matrix and are

essential for tissue stability. Fibrillar collagens, such as type I

collagen, are found in interstitial matrices and form highly or-

dered suprastructures in the cornea, skin, tendon, and bone.

The non-fibrillar type IV collagen is an invariant and abundant

component of basement membranes (Kadler et al., 2007). Regu-

lated breakdown of collagen is required for morphogenesis, tis-

sue remodeling, and repair. Perturbed collagen homeostasis is

associated with a range of diseases, including organ fibrosis,

scarring, and arthritis. Furthermore, malignant tumor cells

need to breach collagen-rich matrices to disseminate and

form metastases (Bonnans et al., 2014). The triple-helical struc-

ture and large size of collagens necessitate unique degradation

mechanisms. Collagenolytic matrix metalloproteinases (MMPs)

initially cleave fibrillar collagens at a single site three-quarters

from the N terminus of the triple helix (Fields, 2013). The triple
Stru
helices of the resulting fragments unfold at body temperature

(Danielsen, 1987; Gross and Nagai, 1965), and the denatured

collagen fragments are further degraded by a variety of extracel-

lular proteinases or internalized by macrophages and fibroblasts

for lysosomal degradation (Everts et al., 1996; Madsen et al.,

2011).

The major route of non-phagocytic collagen clearance is

through endocytosis by the C-type mannose receptor (MR)

and its homolog Endo180 (also called urokinase plasminogen

activator receptor-associated protein or uPARAP) (East et al.,

2003; Engelholm et al., 2003; Martinez-Pomares et al., 2006;

Wienke et al., 2003). Cultured cells expressing MR or Endo180

take up labeled collagen and route it to lysosomal compartments

for degradation. Cleaved or heat-denatured collagen (gelatin) is

taken up more avidly than intact collagen (Madsen et al.,

2007), and this preference is also observed in binding studies

with purified MR and Endo180 proteins (Martinez-Pomares

et al., 2006; Wienke et al., 2003). The size of fibrillar collagens

far exceeds that of typical endocytic vesicles, and it is unclear

whether intact collagen actually can be endocytosed. Phagocy-

tosis of collagen fibrils is an established phenomenon, however

(Everts et al., 1996).

Mice lacking a functional Endo180 are phenotypically normal,

but fibroblasts derived from these animals are incapable of

collagen uptake (East et al., 2003; Engelholm et al., 2003). The

impaired collagen turnover in Endo180-deficient mice was

shown to reduce tumor growth in a mammary adenocarcinoma

model (Curino et al., 2005). Analysis of MR-deficient mice is

complicated by the additional roles of MR in glycoprotein uptake

and immunity (Lee et al., 2002; Martinez-Pomares, 2012). A

recent study used in vivo imaging to demonstrate MR-depen-

dent uptake of injected labeled collagen by macrophages (Mad-

sen et al., 2013).

MR and Endo180 share a common domain structure with

two other receptors that are not believed to internalize

collagen, phospholipase A2 receptor (PLA2R) and DEC-205

(East and Isacke, 2002). The large extracellular region of each

of these receptors consists of an N-terminal ricin B-like domain,

followed by a fibronectin type II (FN2) domain and eight (MR,

Endo180, PLA2R) or ten (DEC-205) C-type lectin (CTL) do-

mains. The cytoplasmic regions are short and contain endocy-

tosis motifs. FN2 domains in fibronectin and MMPs mediate

gelatin binding (Banyai et al., 1994; Murphy et al., 1994; Pick-

ford et al., 2001), and the same function has been demon-

strated for the FN2 domains of MR (Napper et al., 2006) and
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Table 1. Crystallographic Statistics of the Endo180 D1-4

Structure

Crystal Form Monoclinic Trigonal

Synchrotron beamline Diamond IO4-1 Diamond IO4

Wavelength (Å) 0.92 0.98

Space group C2 P3221

Unit cell

a, b, c (Å) 126.37, 92.37,

127.65

86.99, 86.99,

321.1

a, b, g (�) 90, 100.31, 90 90, 90, 120

Solvent content (%) 62 59

Resolution range (Å)a 62.8–2.48

(2.54–2.48)

75.3–3.36

(3.45–3.36)

Rmerge 0.049 (0.481) 0.181 (0.970)

Completeness (%) 97.8 (98.4) 99.4 (99.4)

Multiplicity 3.3 (3.4) 5.5 (5.6)

<I/s(I)> 15.4 (2.2) 10.8 (2.3)

CC1/2 0.994 (0.783) 0.989 (0.635)

Unique reflections 50,150 20,824

Protein atoms 6,960 6,833

Solvent atoms 163 H2O, 4 Na+, 4 SO4
2–

Rwork 0.194 (0.282) 0.220 (0.320)

Rfree 0.244 (0.314) 0.306 (0.409)

Rmsd bonds (Å) 0.006 0.005

Rmsd angles (�) 0.90 0.98

Ramachandran favored (%)b 95.8 93.4

Ramachandran outliers (%)b 0 0
aValues in parentheses are for the highest-resolution shell.
bCalculated with MolProbity (Chen et al., 2010).

Figure 1. Crystal Structure of Endo180 D1-4

(A) Domain organization of Endo180. The plasma membrane is indicated by a

gray bar and the crystallized D1-4 region is colored.

(B) Cartoon representation of the Endo180 D1-4 structure with the ricin-like

domain shown in blue, the FN2 domain in orange, the CTL1 domain in pink,

and the CTL2 domain in green. Disulfide bonds and sodium ions are shown as

yellow sticks and cyan spheres, respectively. The N and C termini are labeled.

The disordered CTL1-CTL2 linker (residues 364–378) is indicated by a

broken line.

See also Figures S1 and S2.
Endo180 (Wienke et al., 2003). Why PLA2R and DEC-205 do

not bind and internalize collagen is not entirely clear. A study

using chimeric proteins indicated that they lack critical determi-

nants not only in FN2 but also in the neighboring domains (Jü-

rgensen et al., 2014).

The ricin-like domain of MR binds sulfated carbohydrates

(Fiete et al., 1998). The structural basis for this activity, which is

not shared by Endo180 (East et al., 2002), has been revealed

by X-ray crystallography (Liu et al., 2000). Of the eight CTL do-

mains present in MR and Endo180, only CTL4 in MR and CTL2

in Endo180 appear to bind carbohydrates (East et al., 2002; Fein-

berg et al., 2000; Jürgensen et al., 2011). Endo180 binds Ca2+-

dependently to mannose, fucose, and N-acetylglucosamine,

but not to galactose (East et al., 2002). This lectin activity has

been shown to augment the binding of glycosylated collagens

to Endo180 (Jürgensen et al., 2011).

Low-resolution structures of MR and Endo180 have been ob-

tained by electron microscopy (Boskovic et al., 2006; Rivera-

Calzada et al., 2003), but atomic structures of the collagen-bind-

ing regions have been lacking. Here, we present the crystal and

solution structures of domains 1–4 (D1-4) of Endo180 and a

mutational analysis of collagen binding. The FN2 domain is re-

vealed to be integrated into an L-shaped structure that extends

the collagen-binding trench of the FN2 domain into the neigh-

boring CTL1 domain. The overall structure and collagen binding
2134 Structure 23, 2133–2142, November 3, 2015 ª2015 The Author
are maintained at pH 5.5 and in the absence of Ca2+, suggesting

that ligand release in endosomes is not regulated by changes

within the D1-4 region of Endo180.

RESULTS

Crystal Structure of Endo180 D1-4
We chose the D1-4 region of Endo180 for our crystallization tri-

als, as it contains both the collagen- and carbohydrate-binding

sites of this receptor (East et al., 2002; Jürgensen et al., 2011).

We obtained two crystal forms of the natively glycosylated

D1-4 region, one of which diffracted to 2.5 Å resolution and

allowed the structure to be determined (Table 1). The overall

structure of Endo180 D1-4 is the same in both crystal forms

(the root-mean-square deviations [rmsd] between the four crys-

tallographically independent copies range from 1.2 to 1.4 Å) and

only the high-resolution structure is described in the following.

The Endo180 D1-4 region adopts an L-shaped structure with a

short arm (�60 Å length) consisting of the ricin-like and FN2 do-

mains, and a longer arm (�80 Å length) consisting of the two CTL

domains (Figure 1). The corner of the L is flattened and presents

a contiguous FN2-CTL1 surface that includes FN2 residues pre-

dicted to be involved in collagen binding (Wienke et al., 2003).

There is no electron density for residues 101–104 and 137–155

in the ricin-like domain and residues 364–378 in the CTL1-

CTL2 linker. The relative arrangement of the two CTL domains

shown in Figure 1B is the only plausible one given the limitations

imposed by the length of the linker. Furthermore, the same over-

all structure is seen in two independent crystal forms and also in

solution (see below). The inter-domain interfaces are sizable

(ricin-FN2, 552 Å2; FN2-CTL1, 674 Å2; CTL1-CTL2, 662 Å2), sug-

gestive of a stable arrangement with limited inter-domain
s



Figure 2. Comparison of the Ricin-like Domains of Endo180 and MR

The ricin-like domains of (A) Endo180 and (B) MR (Liu et al., 2000) are shown in

the same orientation. The disordered loop regions in Endo180 are indicated by

dotted lines. The 4-SO4-GalNAc molecule bound to MR is shown in atomic

detail.

Figure 3. C-Type Lectin Domains 1 and 2 of Endo180

(A) Superposition of CTL2 of Endo180 (green) with rat mannose-binding pro-

tein bound to an oligomannose ligand (wheat) (Weis et al., 1992). The Endo180

CTL1 domain is shown in pink. Sodium and calcium ions are shown as cyan

and wheat-colored spheres, respectively.

(B) The CTL1-CTL2 interface in Endo180. CTL1 and CTL2 are shown in pink

and green, respectively. Selected residues are shown as sticks.
flexibility. The D1-4 region contains five predicted N-linked

glycosylation sites. We observed weak electron density for the

glycans at Asn69 and Asn497; the glycosylation sites at

Asn102, Asn140, and Asn364 are located in the disordered

loop regions mentioned above.

The ricin-like domain of Endo180 (residues 41–174) consists

of eight antiparallel b strands arranged in two sheets. The six

cysteines form three disulfide bonds: 54–68, 93–112, and

123–168. Compared with the regular b trefoil of the homologous

domain in MR (Liu et al., 2000), the ricin-like domain of Endo180

lacks four b strands corresponding to one leaf of the trefoil (Fig-

ure 2). Their space is taken up by an orthogonal a helix, which

contributes three critical leucines (Leu126, Leu130, and

Leu134) to the hydrophobic core. The structural differences be-

tween MR and Endo180 in this region are intriguing given that

the two domains share 29% sequence identity (Figure S1).

The ricin-like domain of MR binds sulfated carbohydrates, and

a co-crystal structure with 4-SO3-GalNAc revealed that the

galactose ring stacks against Trp117 (Liu et al., 2000). This res-

idue is replaced by Ser155 in Endo180. MR residues interacting

with the sulfate group are also not conserved in Endo180, ex-

plaining the lack of sulfated carbohydrate binding to Endo180

(East et al., 2002).

The FN2 domain, the most conserved domain among mem-

bers of the C-type MR family, spans residues 175–231 and con-

tains four cysteines forming two disulfide bonds: 187–213 and

201–228. The FN2 fold consists of two perpendicular b sheets,

each made from two antiparallel strands, and a number of

loops. These elements form a solvent-accessible depression

rich in aromatic residues, which in other FN2-containing pro-

teins have been demonstrated to be involved in gelatin binding

(Figure S2) (Briknarova et al., 1999; Erat et al., 2013; Xu et al.,

2009). Additional binding determinants are provided by the pro-

truding loop connecting the two b sheets (Jürgensen et al.,

2014).

The CTL domains 1 and 2 of Endo180 are very similar to each

other (rmsd of 1.5 Å for 125 equivalent Ca atoms) and to other

CTL domains (see below). The CTL fold is characterized by

two three-stranded antiparallel b sheets (b1-b2-b6 and b3-b4-

b5) with two flanking a helices inserted between b2 and b3

(Weis et al., 1998). Each Endo180 CTL domain contains the

conserved pair of nested disulfide bonds (266–359 and 335–

351 in CTL1, 410–504 and 481–496 in CTL2) and a third N-termi-
Stru
nal disulfide bond (235–248 in CTL1 and 382–393 in CTL2). The

�40 residues between b3 and b4 are folded into elaborate loop

structures that contain the canonical Ca2+-binding sites of CTL

domains (Weis et al., 1998). No Ca2+ ions were present in our

crystallization solution, but we observed electron density for a

metal ion (most likely Na+) in each CTL domain in a position cor-

responding to the canonical Ca2+ ‘‘site 2’’ (Weis et al., 1998). Na+

binding to a CTL domain has been observed previously (Fein-

berg et al., 2013). The Na+ ions in Endo180 are coordinated by

Gln326, Asp328, Glu333, and Asn348 in CTL1, and by Glu470,

Asn472 and Asp493 in CTL2. Comparison with a typical Ca2+-

loaded CTL domain structure (Figure 3A) suggests that the

Endo180 D1-4 crystal structure is unlikely to change much

upon Ca2+ binding.

The CTL1 and CTL2 domains interact via their elaborate Ca2+-

binding loops. The substantial domain interface (662 Å2) is domi-

nated by hydrophobic residues, most prominently by Leu317,

Leu320, and Trp322 from CTL1 and Phe453, Trp466, Pro471,

and Phe474 from CTL2 (Figure 3B). These residues come from

equivalent regions in the two CTL domains, and the CTL1-

CTL2 arrangement indeed displays approximate two-fold

symmetry.
cture 23, 2133–2142, November 3, 2015 ª2015 The Authors 2135



Figure 4. Small-Angle X-Ray Scattering Analysis of Endo180 D1-4

(A) Experimental data and derived RG and Dmax values at four different buffer

conditions, as indicated. The pH 5.5 + EDTA data are obscured by the pH 7.5 +

Ca2+ data.

(B) Fit of back-calculated curves to the pH 7.5 + Ca2+ data. The cyan and

orange curves were computed, respectively, from the crystal structure and an

all-atom model with added loops and glycans (Guttman et al., 2013).

(C) Best-fit model from (B) superimposed on the ab initio bead model (Franke

and Svergun, 2009) calculated from the pH 7.5 + Ca2+ data. The two views are

related by a 90� rotation about the vertical axis.

Figure 5. Collagen Binding by Endo180 D1-4

(A) Solid-phase assay of D1-4-Fc binding to immobilized type I collagen and

gelatin (heat-denatured type I collagen). The data shown are representative of

five independent experiments carried out in duplicate. For derived KD values,

see the text. Endo180 D1-4-Fc binding to an uncoated control surface is

negligible.

(B) SPR analysis of D1-4-Fc (dimer) and D1-4-His (monomer) binding to im-

mobilized type I collagen and gelatin. The data shown are representative of two

independent experiments. For derived KD values, see the text.

Unless indicated otherwise, the experiments were done at pH 7.5. See also

Figure S3.
Solution Structure of Endo180 D1-4
Given that we did not observe electron density for the CTL1-

CTL2 linker in the Endo180 D1-4 crystal structure, we wanted

to confirm the domain arrangement in solution. Because pH-

dependent conformational changes in the Endo180 D1-4 region

were observed by electron microscopy (Boskovic et al., 2006),

we performed small-angle X-ray scattering (SAXS) experiments

with Endo180 D1-4 at pH 7.5 and 5.5, in the presence and

absence of Ca2+. The scattering curves obtained at these condi-

tions were very similar, as were the derived RG and Dmax values

(Figure 4A). A SAXS curve back-calculated from the crystal

structure using FoXS (Schneidman-Duhovny et al., 2010) did

not give a good fit to the experimental data, but an excellent fit

was obtained once the missing loops and glycans were added

to the model (Guttman et al., 2013) (Figure 4B). The resulting

model of glycosylated Endo180 D1-4 agrees well with the low-

resolution shape reconstructed ab initio from the SAXS data (Fig-

ure 4C). The SAXS experiments demonstrate that the Endo180

D1-4 crystal structure is representative of the solution structure

at physiological pH and in the presence of Ca2+. Moreover,

they failed to detect any large conformational changes between

pH 5.5 and pH 7.5.

Identification of the Collagen-Binding Site
Previous studies established that Endo180 binds not only to tri-

ple-helical collagens, but also to denatured collagen (gelatin)

(Martinez-Pomares et al., 2006; Wienke et al., 2003). Endo180

binding to native or denatured type collagen I does not require

Ca2+, whereas there is a Ca2+-dependent enhancement of bind-
2136 Structure 23, 2133–2142, November 3, 2015 ª2015 The Author
ing to the more highly glycosylated type IV collagen (Jürgensen

et al., 2011). We performed solid-phase binding experiments

with immobilized type I collagen, with and without heat denatur-

ation of the collagen prior to coating. In the solid-phase assay, a

dimeric Fc-tagged Endo180 D1-4 construct bound to gelatin

substantially better than to native collagen (gelatin: KD = 0.42 ±

0.03 mM, Bmax = 1.90 ± 0.03 optical density [OD]; collagen:

KD = 2.5 ± 0.25 mM, Bmax = 0.34 ± 0.02 OD) (Figure 5A), and

this behavior was the same in the presence or absence of Ca2+

(Figure S3). In surface plasmon resonance (SPR) experiments,

the dimeric D1-4-Fc construct bound to gelatin and collagen

with essentially identical KD values of 4.5 ± 0.65 and 4.0 ±

0.60 mM, respectively, and a monomeric His-tagged construct

also discriminated little between gelatin and collagen (KD values

of 17 ± 3.5 and 13 ± 2.4 mM, respectively) (Figure 5B). Thus, the

parameters of the interaction are sensitive to the mode of ligand

presentation, as might be expected for a complex ligand such as

(denatured) collagen. The relatively weak collagen binding
s



Figure 6. Mapping of the Collagen-Binding Site of Endo180 D1-4

(A) Solid-phase assay of Fc-tagged Endo180 proteins binding to immobilized gelatin. All proteins were tested at a fixed concentration of 1 mM. The data are

mean ± SE (n = 3). The Coomassie blue-stained SDS-PAGE gel shows the proteins used in the assay, with the positions of the 100- and 60-kDamarkers indicated

on the left.

(B) SPR analysis of Fc-tagged Endo180 proteins binding to immobilized gelatin. Raw sensorgrams are shown for five concentrations (2, 1, 0.5, 0.25 and 0.125 mM)

and a buffer injection.

(C) Solid-phase assay of Endo180D3-4-Fc binding to immobilized type I collagen and gelatin. TheKD values derived from the fits are 3.7 ± 0.43 and 2.2 ± 0.15 mM,

respectively. Endo180 D3-4-Fc binding to an uncoated control surface is negligible.

(D) Point mutations mapped onto the Endo180 D1-4 crystal structure (domains colored as in Figure 1B): red, mutation to alanine reduces collagen binding;

magenta, mutation to an N-linked glycosylation site reduces collagen binding; gray, mutation to alanine has no effect on collagen binding; orange, mutation to

alanine abolished protein secretion.

See also Figure S4.
observed in SPR is consistent with previous qualitative observa-

tions (Jürgensen et al., 2014; Martinez-Pomares et al., 2006;

Napper et al., 2006; Wienke et al., 2003). Finally, we used SPR

to show that Endo180 D1-4-Fc binds to gelatin equally well at

neutral pH and at pH 5.5, a condition representing the acidic

environment within endosomes (Figure 5B).

Previous studies showed that the D1-3 region of Endo180

contains all the binding determinants for type I collagen (Jürgen-

sen et al., 2011). To assess the contributions of individual

Endo180 domains to collagen/gelatin binding, we successively

deleted domains from the N terminus. For these experiments
Stru
we used Fc-tagged constructs because of their higher sensi-

tivity, and to allow comparison between the two binding assays.

Deletion of the ricin-like domain (D2-4-Fc construct) did not

affect binding in the solid-phase assay (Figure 6A) or in SPR (Fig-

ure 6B). Deletion of both the ricin-like and FN2 domain (D3-4-Fc

construct) reduced binding, but did not abolish it, indicating a

contribution of CTL1 to collagen binding. Notably, the D3-4-Fc

construct showed slower on and off rates in SPR compared

with the step profiles observed with D1-4-Fc (Figure 6B), and it

discriminated less between collagen and gelatin in the solid-

phase assay (Figure 6C).
cture 23, 2133–2142, November 3, 2015 ª2015 The Authors 2137



To identify collagen/gelatin-binding residues in the context of

an intact Endo180D1-4 structure, we generated 11mutants (Fig-

ure 6D). Five mutations targeted residues in the FN2 domain

whose counterparts in other FN2 domains are known to be

important for gelatin binding (Briknarova et al., 1999; Mikhailova

et al., 2012; Xu et al., 2009): Y193A, R206A/D208A, Y219A,

W225A, and F227A (R206 and D208 were mutated together, as

they form a salt bridge). The first three mutants were secreted

by HEK293 cells, indicating correct folding. In support of this

notion, mutation of residues analogous to Tyr193 and Arg206

did not perturb the FN2 fold in MMP-2 (Xu et al., 2009). Gln179

was targeted, as it is located within a loop of the Endo180 FN2

domain close to the interface with CTL1; this residue was

mutated to Ala and to a sequon for N-linked glycosylation

(Q179N/N181T). Finally, wemutated three hydrophobic residues

in the CTL1 domain that are on the same face of the Endo180

structure as the presumed gelatin-binding site in the FN2

domain: F253A, L288A, and Y292A. We also introduced a se-

quon for glycan N-linked glycosylation at position 292 (Y292N/

S294T). The engineered glycans at position 179 and 292 were

indeed incorporated, as evidenced by a shift to higher mass on

SDS-PAGE (Figure 6A).

Four Endo180 mutations essentially abolished binding to

gelatin in the solid-phase assay: Y193A, R206A/D208A,

Y219A, and Q179N/N181T (Figure 6A). They include FN2 resi-

dues suspected to be involved in binding (Tyr193, Arg206,

Asp208, Tyr219), as well as a residue closer to the adjoining

CTL1 domain, Gln179. Given that a bulky glycan at position

179 was required to abolish gelatin binding (the Q179A mutant

did bind to gelatin), Gln179 is unlikely to make an essential direct

contact with the collagen chain(s), unlike the aforementioned

residues. Of the mutations in the CTL1 domain, only the engi-

neered glycan at position 292 reduced gelatin binding. Very

similar results were obtained with SPR, both for gelatin (Fig-

ure 6B) and native collagen (data not shown). From the collective

data, we conclude that collagen/gelatin binds primarily to the ca-

nonical ligand-binding site of the FN2 domain, but that additional

contacts are likely to be made with the extended FN2-CTL1 sur-

face (Figures 6D and S4). The effect of the engineered glycan at

position 292 could be due to sterical hindrance of collagen bind-

ing exclusively to the FN2 domain, but this interpretation would

not explain the significant residual collagen binding of the D3-

4-Fc construct, which lacks the FN2 domain.

DISCUSSION

Our crystal structure of the D1-4 region of Endo180 affords the

first detailed view of the collagen-binding site of C-type MRs.

The critical FN2 domain is revealed to be integrated into a seem-

ingly rigid L-shaped structure that allows the adjacent CTL1

domain to participate in collagen binding. This finding is in agree-

ment with a recent biochemical study, which showed that trans-

fer of a functional FN2 domain from Endo180 was not sufficient

to enable collagen internalization by the C-type MR family mem-

bers PLA2R and DEC-205 (Jürgensen et al., 2014). Presumably,

differences within the putative collagen-binding trench in CTL1

(or within the FN2-CTL1 interface) account for the failure of the

chimeric proteins to bind collagen. A comparison of FN2 do-

mains shows that the critical collagen-binding residues of
2138 Structure 23, 2133–2142, November 3, 2015 ª2015 The Author
Endo180 are conserved in MR (Figure S1), consistent with the

established role of MR in collagen uptake (Madsen et al.,

2013). DEC-205 lacks critical collagen-binding determinants of

Endo180 (Tyr193, Arg206, Asp208), but we can see no obvious

reason why PLA2R should not bind collagen. Indeed, collagen

binding by the FN2-CTL1-CTL2 region of PLA2R has been re-

ported in another study (Takahashi et al., 2015). Ca2+-dependent

carbohydrate binding to the CTL2 domain augments binding of

glycosylated type IV collagen to Endo180, whereas this effect

was not observed with the less extensively glycosylated type I

collagen (Jürgensen et al., 2011). Given the large distance be-

tween the binding sites for the collagen backbone and carbohy-

drates in Endo180, the enhanced binding of glycosylated

collagen more likely results from cooperation of multiple recep-

tors than from two-point binding by a single receptor.

MR and Endo180 are unique among FN2-containing proteins

in that they bind not only gelatin but also triple-helical collagen.

MMP-2 contains three FN2 domains that bind gelatin coopera-

tively with aKD of 10 mM (Banyai et al., 1994). The gelatin-binding

sites of the three FN2 domains (Briknarova et al., 1999; Xu et al.,

2009) do not form a contiguous surface in the crystal structure of

pro-MMP-2 (Morgunova et al., 1999), suggesting that a cooper-

ative interaction is only possible with the more flexible single

chains of gelatin and not with the rigid triple helix of native

collagen. The gelatin-binding region of fibronectin consists of

two FN2 domains flanked by fibronectin type I (FN1) domains,
6FN1-1FN2-2FN2-8FN1-9FN1. Structural and biophysical studies

with collagen-derived peptides have shown that a single

collagen chain forms an antiparallel b strand on the outside of

the 8FN1-9FN1 pair (Erat et al., 2009) and may simultaneously

contact the canonical gelatin-binding sites of the 1FN2-2FN2

pair (Erat et al., 2013). As in MMP-2, the ligand-binding mode

is not compatible with a triple-helical collagen structure. In

contrast, the collagen-binding trench spanning the FN2 and

CTL1 domains in Endo180 seems uniquely suited for accommo-

dating triple helices as well as single chains.

The binding site(s) for Endo180 in collagen are unknown.

Given that Endo180 appears to function as a clearance receptor

for cleaved and denatured collagen (see Introduction), it intui-

tively seems more likely that it recognizes some generic feature

of a collagen-derived polypeptide rather than a specific

sequence. Indeed, binding studies provide some evidence for

multiple Endo180-binding sites in type I collagen. In our SPR ex-

periments with immobilized collagen, we observed relatively

weak Endo180 binding with fast on and off rates, likely repre-

senting a monovalent interaction with single sites. In contrast,

when Endo180 is immobilized at high density and collagen is

flowed over this surface (Jürgensen et al., 2011; Madsen et al.,

2007), the interaction is characterized by slower kinetics and

apparent affinities in the nanomolar range, likely representing a

multivalent interaction of a single triple helix with several recep-

tors. Libraries of triple-helical collagen-derived peptides have

been invaluable in defining binding sites for other collagen re-

ceptors, e.g. the discoidin domain receptors (Carafoli et al.,

2009; Konitsiotis et al., 2008). Interrogating such libraries with

Endo180 may not identify the physiologically relevant binding

sites in denatured collagen, however.

Previous single-particle reconstructions of negatively stained

Endo180 concluded that the ricin-like domain interacts with
s



CTL2 at neutral pH, and that this interaction is broken at pH 5.4

(Boskovic et al., 2006; Rivera-Calzada et al., 2003). This interpre-

tation is not consistent with our crystal structure and solution

SAXS data, which reveal a more open structure that does not

substantially change with pH. A recent cryoelectron microscopy

structure of DEC-205 at pH 6 revealed an interaction of the ricin-

like domain with CTL3 (Cao et al., 2015). Inspection of the

Endo180 density obtained from electron microscopy (Rivera-

Calzada et al., 2003) suggests that the domains may have

been incorrectly assigned and that it is CTL3 which interacts

with the ricin-like domain also in Endo180. A single-particle

reconstruction of MR revealed a globular head and an S-shaped

tail, but the resolution was not sufficient to unambiguously

assign the D1-4 region within the head (Boskovic et al., 2006).

Amore extendedMR structure was inferred from analytical ultra-

centrifugation experiments (Napper et al., 2001). DEC-205 and

the avian MR homolog FcRU adopt compact structures at pH

6 and become more extended at higher pH (Cao et al., 2015;

He and Bjorkman, 2011). Conformational changes thus appear

to be a recurring theme in the C-type MR family. Although we

cannot exclude that the inter-domain interfaces in our Endo180

D1-4 structure might be broken under certain conditions, we

think it more likely that the D1-4 region behaves as a rigid

collagen-bindingmodule inMR and Endo180, with the remaining

six CTL domains providing the flexibility for any large-scale

structural changes. Limited trypsin digestion of MR indicated

stable association of CTL1-2, CTL4-5, and CTL7-8 (Napper

et al., 2001). It is tempting to speculate that these stable pairs

resemble the head-to-head arrangement of CTL1-2 in our

Endo180 crystal structure and that the pairs are linkedmore flex-

ibly by the intervening domains, CTL3 and CTL6.

Structural changes in the MR and Endo180 ectodomains may

be relevant for the mechanism of collagen release within endo-

somes, which is unknown. Endocytosed receptors that bind

ligand tightly, such as epidermal growth factor receptor, are

often degraded together with the ligand (Goh and Sorkin,

2013). In contrast, recycling receptors, such as MR and

Endo180, must release their ligand before returning to the

plasma membrane. Commonly the release is accomplished by

mechanisms that disfavor ligand binding at the acidic pH and

low Ca2+ concentration of late endosomes (Andersen and

Moestrup, 2014). For instance, the low-density lipoprotein re-

ceptor structure at low pH revealed an autoinhibited conforma-

tion in which the N-terminal ligand-binding region is folded

back against the membrane-proximal domains (Rudenko et al.,

2002). Collagen binding to MR and Endo180 is not Ca2+-depen-

dent (Jürgensen et al., 2011; Martinez-Pomares et al., 2006), and

we found that collagen binding to Endo180 D1-4 is not dimin-

ished at pH 5.5. Therefore, if there is pH-dependent regulation

of ligand binding to Endo180, it would have to involve regions

outside of D1-4. How collagen is released from internalized

Endo180 is an important question for further study.
EXPERIMENTAL PROCEDURES

Expression Vectors

Coding sequences were amplified from a full-length cDNA of human Endo180

(a kind gift from Dr. Clare Isacke, Institute of Cancer Research, London, UK)

and cloned intomodified pCEP-Pu vectors (Kohfeldt et al., 1997). All pCEP-en-
Stru
coded proteins contain a vector-derived APLA sequence at the N terminus,

and are either untagged or have hexahistidine or immunoglobulin G2 (IgG2)

Fc tags at the C terminus (Hussain et al., 2006). The D1-4 construct comprises

Endo180 residues 35–513 (UniProt: Q9UBG0), the D2-4 construct comprises

residues 172–513, and the D3-4 construct comprises residues 231–513. Point

mutations were introduced with strand-overlap extension PCR. All expression

vectors were verified by DNA sequencing.

Protein Production

Human embryonic kidney HEK293 c18 cells (American Type Culture Collec-

tion) were used for protein production. The cells were grown at 37�C with

5% CO2 in DMEM/F12 (Invitrogen) containing 10% fetal bovine serum,

2mMglutamine, 10 U/ml penicillin, 100 mg/ml streptomycin, and 250 mg/ml ge-

neticin. Cells were transfected with the expression vectors using Fugene

(Roche Diagnostics) and selected with 1 mg/ml puromycin (Sigma). Trans-

fected cells were grown to confluence in HYPERFlasks (Corning) or 525-cm2

three-layer flasks (BD Biosciences), washed twice with PBS, and incubated

with serum-free medium for up to 3 weeks with two medium exchanges per

week.

For purification of His-tagged Endo180 D1-4, the filtered serum-free cell cul-

ture supernatant was adjusted to a final concentration of 20 mM Na-HEPES

(pH 7.5) and loaded onto a 5-ml HisTrap Excel column (GE Healthcare) using

an Äkta Purifier (GE Healthcare). The column was washed with PBS and the

protein was eluted with PBS containing 500 mM imidazole. Fractions contain-

ing protein were concentrated using a Vivaspin centrifugal device (Sartorius)

and further purified on a Superdex 200 10/300 Gl column (GE Healthcare) us-

ing 20 mM Tris-HCl (pH 7.5) and 150 mM NaCl as the running buffer.

The Fc-tagged Endo180 proteins were purified using 1-ml protein A HP col-

umns (GE Healthcare). The columns were washed with PBS and the proteins

were eluted with 100mMcitrate buffer (pH 3.0). The 1-ml fractions were imme-

diately neutralized by mixing with 100 ml of 1 M Tris-HCl (pH 8.5) and dialyzed

against PBS.

For purification of untagged Endo180 D1-4, the serum-free cell culture su-

pernatant was exchanged into 50 mM Na-HEPES (pH 7.5) using a VIVAFLOW

200 cross-filtration device (Sartorius Stedim Biotech). The concentrated solu-

tion was loaded onto a HiTrap DEAE FF column (5 ml, GE Healthcare) and pro-

tein eluted in a stepwise fashion with 50 mM Na-HEPES (pH 7.5) containing

100, 150, 200, 250, and 500 mM NaCl. The fractions eluted by 150 mM NaCl

were combined and further purified on a Superdex 200 10/300 Gl column

(GE Healthcare) using 20 mM HEPES (pH 7.5), 150 mM NaCl, and 10 mM

EDTA as the running buffer.

Crystallization

Screening was done at room temperature by the sitting-drop vapor diffusion

method using 96-well plates (Greiner) and a range of commercial screens

(Hampton Research, Molecular Dimensions). A Mosquito nanoliter robot

(TTP Labtech) was used to set up 200-nl sitting drops. His-tagged Endo180

D1-4 crystallized under a wide range of conditions, but none of the crystals dif-

fracted to high resolution. The best crystals that could be obtained were grown

from an 8-mg/ml protein solution (in 20 mM Tris-HCl [pH 7.5], 150 mM NaCl)

using 100 mM BIS-TRIS-HCl (pH 6.5) and 18% polyethylene glycol mono-

methyl ether 5000 as precipitant. The crystals were harvested in reservoir

solution supplemented with 25% glycerol and flash-frozen in liquid nitrogen.

Crystals of untagged Endo180 D1-4 were grown from a 10-mg/ml protein so-

lution (in 20 mM HEPES [pH 7.5], 150 mM NaCl, 10 mM EDTA) using condition

H5 of the Morpheus screen (Molecular Dimensions), which contains a mixture

of amino acids and polyethylene glycols buffered at pH 7.5. These crystals

were flash-frozen directly from the sitting drops.

Structure Determination

Diffraction data were collected at 100 K at beamlines IO4 and IO4-1 of the Dia-

mond Light Source, Oxfordshire, UK. The data were indexed, integrated,

scaled, and merged with XIA2 (Winter, 2010). The crystals of His-tagged and

untagged Endo180 D1-4 were found to belong to space groups P3221 and

C2, respectively, and each to contain two copies of Endo180 D1-4 in the asym-

metric unit. Both crystal forms exhibited anisotropic diffraction limits (trigonal

crystals: <3.3 Å along a* and b*, �4.0 Å along c*; monoclinic crystals: <2.5 Å

along b* and c*, �3.0 Å along a*).
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The monoclinic Endo180 D1-4 structure was solved by molecular replace-

ment using the programPHASER (McCoy et al., 2007). Using the CTL of aggre-

can (PDB: 1TDQ) as a search model, four solutions were found, corresponding

to CTL1 and CTL2 of the two D1-4 copies in the asymmetric unit. The CTLs

were fixed and the FN2 domains placed using the first FN2 domain of fibro-

nectin (PDB: 3M7P) as a search model. Finally, the ricin-like domains were

placed using the ricin-like domain of MR (PDB: 1DQG) as a search model.

Manual rebuilding and refinement were done using Coot (Emsley and Cowtan,

2004) and PHENIX (Adams et al., 2010). The refined monoclinic Endo180 D1-4

structure was used to solve the trigonal crystal form. Figures were generated

using PyMOL (http://www.pymol.org/).

Small-Angle X-Ray Scattering

SAXS data were collected at beamline B21 of the Diamond Light Source over a

momentum transfer range of 0.028 Å�1 < q < 0.403 Å�1 from untagged

Endo180 D1-4 in four different buffers: 20 mM Na-HEPES (pH 7.5), 150 mM

NaCl with either 10 mM EDTA or 5 mM CaCl2; 20 mM Na-MES (2-(N-morpho-

lino)ethanesulfonic acid) (pH 5.5), 150 mM NaCl with either 10 mM EDTA or

5 mM CaCl2. Data were collected from three sequential 2-fold dilutions, start-

ing at the following concentrations: 17 mg/ml (pH 7.5 + EDTA), 10 mg/ml (pH

7.5 + Ca2+), 13 mg/ml (pH 5.5 + EDTA), and 7 mg/ml (pH 5.5 + Ca2+). The data

were analyzed, buffer-subtracted, scaled, and merged using the Scatter soft-

ware package (Forster et al., 2010). RG and Dmax values are given in Figure 4A.

Shape estimation was carried out with DAMMIF/DAMMIN (Franke and Sver-

gun, 2009), as implemented in Scatter. In brief, 20 ab initio models were gener-

ated from each dataset, which were then superimposed and averaged using

DAMAVER. The mean normalized spatial discrepancy values were 0.71 (pH

7.5 + EDTA), 0.68 (pH 7.5 + Ca2+), 0.71 (pH 5.5 + EDTA), and 0.59 (pH 5.5 +

Ca2+). The averaged models from DAMAVER were refined to convergence us-

ing DAMMIN, giving final c values of 0.269 (pH 7.5 + EDTA), 0.372 (pH 7.5 +

Ca2+), 0.309 (pH 5.5 + EDTA), and 0.231 (pH 5.5 + Ca2+). Comparison with

the crystal structure was carried out as described by Guttman et al. (2013).

Solid-Phase Binding Assay

The solid-phasebinding assaywasperformedasdescribedbyLeitinger (2003).

Denatured collagen (gelatin)waspreparedby heating a 1-mg/ml solution of rat-

tail type I collagen (Sigma) in 100 mM acetic acid to 67�C for 30 min. Native

collagenandgelatinwere coatedonto flat-bottomed96-well plates (NuncMax-

iSorp) at a concentration of 10 mg/ml in 100 mM Tris-HCl (pH 8.5) and 150 mM

NaCl. Unreacted surfaces were blockedwith PBS containing 0.1mg/ml bovine

milk k-casein (Sigma) and 0.05% Tween 20. For the experiment shown in Fig-

ureS3,PBSwas replacedby20mMNa-HEPES (pH7.5) and150mMNaCl con-

taining either 10 mM EDTA or calcium chloride. Fc-tagged Endo180 proteins

diluted in blocking buffer were added for 2 hr. After washing, bound Endo180

proteins were detected by antihuman IgG antibody conjugated to horseradish

peroxidase (Sigma) and SIGMAFAST OPD solution (Sigma). The plates were

measured at 492 nm using a Tecan Sunrise plate reader. The data were fitted

to a single-site binding model using GraphPad Prism.

Surface Plasmon Resonance

The experiments were performed with a Biacore 3000 instrument (GE Health-

care), and collagen and gelatin covalently attached to a CM5 sensor chip (GE

Healthcare). A 10-mg/ml solution of collagen in 10 mM citrate buffer (pH 3.2)

(either untreated or heat-denatured as described above) was flowed over

the activated sensor chip surface until a response of �1,500 resonance units

(RU) was reached, and the remaining activated sites were then blocked using

1 M ethanolamine (pH 7.0). A reference surface was prepared in the same way

without collagen.

The experiments were performed in 20 mM Na-HEPES (pH 7.5), 130 mM

NaCl, 5 mM EDTA, 0.005% Tween 20, or with 20 mMNa-MES (pH 5.5) replac-

ing the HEPES buffer. Endo180 proteins were passed over the sensor chip sur-

face at a flow rate of 30 ml/min at concentrations ranging from 0 to 20 mM for

wild-type D1-4 proteins and from 0 to 2 mM for all other proteins. After each in-

jection, the surfaces were regenerated using a brief pulse of 2Mguanidine-HCl

(pH 7.0). To confirm that this treatment did not denature the collagen surface,

wemeasured binding of a recombinant SPARCprotein that recognizes only tri-

ple-helical type I collagen (Giudici et al., 2008; Hohenester et al., 2008).

Steady-state RU values were obtained using BIAevaluation software (GE
2140 Structure 23, 2133–2142, November 3, 2015 ª2015 The Author
Healthcare). The data were fitted to a single-site binding model using Graph-

Pad Prism.
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