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We investigate the sensitivity of the discrete BFKL spectrum, which appears in the gluon Green function 
when the running coupling is considered, to a lower cut-off in the relative rapidities of the emitted 
particles. We find that the eigenvalues associated to each of the discrete eigenfunctions decrease with 
the size of the rapidity veto. The effect is stronger on the lowest eigenfunctions. The net result is a 
reduction of the growth with energy for the Green function together with a suppression in the regions 
with small transverse momentum.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In perturbative QCD, the counterpart of the pomeron of Regge 
theory is described in terms of a Green function G(Y , t, t′) de-
scribing the rapidity, Y , dependence of the scattering amplitude 
of a gluon with transverse momentum kT = �Q C D et/2 and a gluon 
with transverse momentum k′

T = �Q C D et′/2 with a relative rapid-
ity difference Y between the two gluons. It is obtained [1] by 
resumming the leading rapidity contributions to all orders in per-
turbation theory. At leading order, this is obtained by assuming a 
cascade of gluons emitted between the two primary gluons in the 
kinematic regime in which the emitted gluons have a large rapid-
ity relative to the preceding emitted gluons. Schmidt [2] pointed 
out that a significant reduction in the resultant Green function oc-
curs if one imposes this restriction explicitly by demanding that 
one only considers contributions to the scattering amplitude in 
which emitted gluons have a minimum rapidity gap, b, relative to 
the preceding emitted gluon. It was furthermore shown in ref. [3]
that the large effect of imposing such a restriction simulates, to 
a good approximation, the effect of the NLO corrections to the 
BFKL Green-function with collinear summation as proposed by 
Salam [4]. In particular the optimal match was found if one takes 
the resummation scheme 4 of [4] and a rapidity gap veto (min-
imum rapidity gap between adjacent emitted gluons) b ≈ 2. This 
is consistent with the original presentation of this idea by Lipa-
tov in [5]. A rapidity veto has been used in different works also 
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for non-linear evolution equations [6]. The mean distance in ra-
pidity among emissions in the BFKL ladder, including higher order 
collinear contributions, has been recently studied using the Monte 
Carlo event generator BFKLex in [7].

The purely perturbative QCD pomeron has the feature of a cut 
in the complex angular momentum plane as opposed to a discrete 
pole predicted by the phenomenologically successful Regge theory. 
As long ago as 1986, Lipatov [8] pointed out that the cut can be 
converted into a series of discrete poles if the running of the QCD 
coupling is taken into account and that a phase-fixing condition 
in the infrared region of transverse momentum arising from the 
non-perturbative properties of QCD is imposed. This scenario has 
been studied extensively in ref. [9].

In this letter we combine these two approaches and show that 
there is a very significant attenuation of the growth of the BFKL 
amplitude with rapidity if the rapidity veto is imposed.

2. Discrete pomeron in leading order

We first reproduce the results for the discrete BFKL pomeron 
in leading order (LO). For simplicity we neglect the effects of any 
thresholds arising from massive particles in the running of the 
coupling and write the running coupling as

ᾱs(t) ≡ C A

π
αs(t) = 1

β̄0t
. (2.1)

The Green function, G(Y , t, t′), then obeys the equation

∂

∂Y
G(Y , t, t′) =

∫
dt′′ 1√ ¯ K(t, t′′) 1√ ¯ ′′ G(Y , t′′, t′), (2.2)
β0t β0t
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Fig. 1. The first six discrete eigenfunctions of the BFKL kernel with running coupling. In each case the green dot indicates the value of tc ≡ 4 ln 2/β̄0ω which delineates 
between the oscillatory and evanescent parts of the eigenfunctions. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
where we have introduced the running coupling in such a way 
as to ensure that the operator on the RHS of (2.2) is Hermitian. 
The kernel K is the LO BFKL kernel with eigenvalues (in the az-
imuthally symmetric case) χ(ν) where

χ(ν) = 2
(1) − 


(
1 + iν

)
− 


(
1 − iν

)
. (2.3)
2 2
In the semi-classical approximation, the normalized eigenfunctions 
of the kernel with running coupling, with eigenvalue ω, i.e.

∫
dt′ 1√

β̄0t
K(t, t′) 1√

β̄0t′′ fω(t′) = ω fω(t) (2.4)

are given by
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fω(t) = |zω(t)|1/4√
ᾱs(t)χ ′ (νω(t))

Ai (zω(t)) , (2.5)

where Ai(z) is the Airy function which is regular as z → ∞,

νω(t) = χ−1(β̄0ωt), (2.6)

and

zω(t) = −
⎛
⎜⎝3

2

4 ln 2/β̄0ω∫
t

dt′νω(t′)

⎞
⎟⎠

2/3

. (2.7)

The Airy function is oscillatory for negative argument and the im-
position of a fixed phase for such oscillations at some small value 
of t leads to a set of discrete eigenfunctions fωn (t). The Green 
function is then given by

G(Y , t, t′) =
∑

n

fωn (t) f ∗
ωn

(t′)eωn Y . (2.8)

The first six such eigenfunctions are shown in Fig. 1 in the case 
where an infrared phase of π/4 is assumed at t = 1. As expected, 
the nth eigenfunction has n turning points in the oscillatory region.

3. Introducing a rapidity gap veto

The imposition of a rapidity gap veto in the kernel follows very 
much along the lines described in [2]. We start by defining the 
Mellin transform of the Green function with the rapidity Y shifted 
by b, i.e.

Gω(t, t′) ≡
∞∫

0

dY e−ωY G
(
Y + b, t, t′) (3.1)

which obeys the modified Green function equation

ωGω(t, t′) = δ(t − t′)

+ e−b ω

∫
dt′′ 1√

β̄0t
K(t, t′′) 1√

β̄0t′′ G(Y , t′′, t′). (3.2)

In terms of the discrete eigenfunctions with eigenvalues ωn , this 
Mellin transform is given by

Gω(t, t′) =
∑

n

fωn (t) f ∗
ωn

(t′)
ω − e−b ωωn

(3.3)

and inverting it and shifting the argument of the Green function 
back to Y we have

G(Y , t, t′) =
∫
C

dω

2π i
eω(Y −b)

∑
n

fωn (t) f ∗
ωn

(t′)
ω − e−b ωωn

. (3.4)

The term 
(
ω − e−b ωωn

)−1
has a pole at

ω = W (b ωn)

b
≡ ωn (3.5)

where W (x) is the Lambert W -function (defined as the solution 
to x = W (x)eW (x)), with residue (1 + b ωn)−1 so that finally our 
expression for the Green function with rapidity gap veto b is given 
by

G(Y , t, t′) =
∑

n

eωn(Y −b)
fωn (t) f ∗

ωn
(t′)

1 + b ωn
. (3.6)

It is interesting to note that we may re-express this more sim-
ply as
Fig. 2. The reduction of the first 13 effective eigenvalues from the imposition of a 
rapidity veto b = 1 (black crosses) and b = 2 (blue stars). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

G(Y , t, t′) =
∑

n

eωn Y f ωn
(t) f

∗
ωn

(t′) (3.7)

where f ω(t) are the eigenfunctions of the kernel with running 
coupling normalized as∫

dt f ω(t) f
∗
ω′(t) = δ

(
ω − ω′

)
(3.8)

so that in order to account for this normalization we have

fω(t) = η(ω) f ω(t) (3.9)

where

|η(ω)|2 = dω

dω
= e−b ω

1 + b ω
, (3.10)

which matches the factor

e−bω̄n

1 + b ω̄n
(3.11)

in each term in the sum on the RHS of eq. (3.6).

4. Results

We can see from eq. (3.6) that the imposition of a rapidity 
gap veto, b, attenuates the Green function in two different ways. 
The first is the simple shift of Y to Y − b. The second is the re-
placement of the eigenvalues ωn by their reduced values ωn . This 
reduction is shown in Fig. 2 and we notice that the effect is much 
larger for the leading eigenvalues than the subleading. This imme-
diately tells us that the effect of the rapidity gap veto is largest for 
very large values of Y for which we expect the Green function to 
be dominated by the leading eigenvalue. On the other hand, it has 
been shown in [10] that when t increases beyond tc = 4 ln 2/β̄0ω1
the residue of this leading pole becomes evanescent and even-
tually the first subleading pole becomes dominant. We therefore 
conclude that the effect on the Green function is reduced as the 
values of t and t′ increase. This effect, however, is very slow and 
one has to consider very substantial values of t before such behav-
ior becomes manifest.

For a typical pair of values of t and t′ , namely t = 10, t′ = 4, 
we show in Fig. 3 the growth in the Green function with Y for the 
case of rapidity gap veto 0, 1 and 2 and note that the imposition 
of a veto of two units, preferred in [3], can reduce the value of 
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Fig. 3. The rapidity dependence of the Green function without a rapidity veto (red 
solid), with rapidity gap veto 1 (blue dotted) and rapidity veto 2 (black dotted). (For 
interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

Fig. 4. The transverse momentum (t) dependence of the Green function without a 
rapidity veto (red solid), with rapidity gap veto 1 (blue dotted) and rapidity veto 2 
(black dotted) for t′ = 10 and Y = 10. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

the Green function by an order of magnitude. Whereas the over-
all value can often be absorbed into a redefinition of the impact 
factors of the scattering particles, we note that the divergence of 
these lines indicates that the growth of diffractive cross-sections 
with increasing rapidity gap is noticeably reduced when such a 
veto is imposed.

Finally, in Fig. 4 we examine the effect of the rapidity veto 
on the t dependence of the Green function for Y = 10. We note 
that the distinct peak in the vicinity of t = t′ which is present 
in the case of zero veto is substantially suppressed and broad-
ened when a rapidity-gap veto is introduced. For Y = 0 we get 
a δ-function which can be seen from the completeness relation 
of the set of eigenfunctions f̄ . As Y increases this δ-function 
is broadened, giving rise to the distribution in transverse mo-
mentum which is broader in the center than at the ends (the 
so-called “Bartels cigar” [11]). Fig. 4 shows that with the impo-
sition of a rapidity-gap veto we expect this “cigar” to become 
fatter.
5. Conclusions

Higher order corrections to the BFKL equation are very impor-
tant for theoretical and phenomenological studies of QCD at high 
energies. It is well-known that the largest portion of the next-to-
leading corrections are due to running of the coupling effects and 
collinear contributions. Both have been treated in the present work 
using the discrete pomeron approach together with the introduc-
tion of a veto in the relative rapidities of the emitted gluons in the 
BFKL gluon Green function. The rapidity veto samples the region 
of phase space corresponding to collinear emissions already at a 
value of two units of rapidity. We have shown how to implement 
this veto when infrared boundary conditions are imposed with a 
running coupling such that the singularities in the complex angu-
lar momentum plane are only Regge poles and no branch cuts. This 
is a novel approach which should be most relevant when investi-
gating observables characterized by external scales which are not 
too hard. It will be interesting to put these ideas to work at differ-
ent observables in hadron collisions such as those being tested at 
the Large Hadron Collider.
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