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A b s t r a c t -  ~Considered here are absolutely continuous probability distributions, concentrated on 
the  interval [0,1], and with the first M algebraic moments assigned. Lower and upper bounds for 
entropy axe provided solely in terms of assigned moments. (~) 2002 Elsevier Science Ltd. All rights 
reserved. 
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1. I N T R O D U C T I O N  

Every probability distribution has some uncertainty associated with it, and its entropy provides 
a quantitat ive measure of this uncertainty. Partial information given, for instance, in terms of 
averages about a random variate decreases its entropy. It thus appears interesting to provide an 
entropy estimate when partial information is given. 

A viable approach consists in use of the maximum entropy (ME) principle [1], according to 
which, out of all the probability distributions consistent with a given set of constraints, the one 
tha t  has maximum entropy should be chosen. Such a value of entropy, obtained by the ME 
principle, therefore, represents an upper bound on the entropy of the underlying distribution. 

In general, however, the following drawback arises: the entropy is not provided directly in 
terms of the given averages, but  it includes the parameters of the maximum entropy distribution 
(equations (2.1),(2.2)). Consequently, it is desirable to obtain an entropy estimate in terms of 
the given averages only. 

This paper attempts,  under special hypotheses, to accomplish that  goal by providing an upper 
and lower bound for absolutely continuous distributions, having assigned the first M algebraic 
moments (#1 , - - . ,  #M). The upper bound (equation (3.8)) will be stated under the most general 
hypothesis on the underlying distribution, whereas the lower bound (equation 3.14) will be pro- 
vided under restrictive hypotheses. Indeed, a very sharply peaked distribution has a very low 
entropy, whereas if the distribution is widely spread, the entropy is higher, owing to the fact that  
the entropy measures the "uniformity" of a distribution. 

The absolutely continuous distributions considered here are concentrated on the interval [0, 1] 
and have their first M moments known. This is the classical reduced Hausdorff moment prob- 
lem [2] consisting of recovering an unknown probability density in [0, 1] whose first M algebraic 
moments are known to match the given moments. 
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In studies on maximum entropy, there has been a great deal of interest in this problem. 
Csiszar [3] stated the existence conditions, while Borwein-Lewis [4] furnished several convergence 
criteria, according to different hypotheses concerning the underlying density f(x). Tagliani [5] has 
used a unified approach to obtain the same results of existence, convergence, and also provided 
a stability analysis. 

As regards the entropy estimate of a distribution in terms of given moments, only a few results 
are known in the literature. Jardas [6] considered discrete distributions with countable range 
and provided an upper bound of the entropy in terms of mean value only. Cover and Thomas [7] 
extended this result involving the first two moments. 

The present paper is both a natural continuation of [5] and an extension of previous results [6,7] 
to absolutely continuous distributions, taking higher moments into account. The technique used 
consists of a Taylor expansion of the entropy of the maximum entropy distribution (equation (2.3)) 
around the moments vector of the uniform distribution. Thus, the obtained entropy estimate 
grows increasingly sharp as the given vector of moments approach the moment vector of the 
uniform distribution. 

The possibility of extending this technique to absolutely continuous distributions defined within 
an unbounded domain is not remote. In several papers, the present writer has provided the exis- 
tence and convergence conditions (see [5] for references) for the corresponding ME distributions 
when the first algebraic moments are assigned. Hence, it should be possible to generalize the 
technique to an unbounded domain. Some difficulties may be raised by the paucity of results on 
the spectral properties of the Hankel matrices involved (equation (2.5)) [8]. Furthermore, in the 
case of unbounded domains, Theorem 2.2 quoted below does not hold. 

2. S O M E  B A C K G R O U N D  

2.1. T h e  M a x i m u m  Entropy  Technique  

Let X be an absolutely continuous random variable with density function f(x)  whose first M 

moments (#1,.. . ,  #M), Pj = f2 xJf(x)dx,  j = 1 , . . .  ,M,  #0 = 1, are assigned and the Shannon 

entropy is H[f] = - f l  o f (x)In f(x)dx.  Once (#0 , . . . ,  #M) is given, the ME principle yields the 
following approximate [9] of f (x ) :  

fM(x) = exp - E )~JXJ ' (2.1) 
j=0 

where )~0,... ,  AM a r e  Lagrange multipliers, to be supplemented by the condition that  its first 
M + 1 moments are given by #j ,  j -- 0 , . . .  ,M,  

f ~ j  = XJfM (X) dx ,  

and whose entropy is 

2.2. A Differential  Re la t ionsh ip  

j = 0 , . . . , M ,  (2.2) 

M 

j=O 

(2.3) 

Varying only one moment #~, i ---- 0 , . . .  
Aj = Aj(p,), j = 0 , . . . ,  M,  differentiation of 

dAo 

7 7., 
• 

A2M df~M 

M, while the remaining ones are held fixed, so that  

- ~ - e i + l .  (2 .4 )  

2.2) provides 
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Here ei+l is the canonical unit vector E R M'k l  , while/X2M is the (M + 1)-order symmetric definite 
positive Hankel matrix 

[A! ' "  [AM ] 
A 2 M  : : : , M = 1 , 2 , . . . .  (2.5) 

[A " "" [A2M 

The entries of A 2 M  satisfy the relationship [A0 > [A1 :> [A2 > " ' "  essential in the subsequent 
procedure for entropy estimate. 

2.3. The Moment Space 
The moment space D M C RI~ whose points are the n-ple ( # 1 , . . . ,  [AM) is the convex hull of the 

curve {x, x 2 , . . . ,  xM}, x E [0, 1]. The  existence conditions of fM(X) involve D M, more precisely 

if 

(a) the point [A = ([A1,..-,[AM) is outside D M, the corresponding finite Hausdorff moment 
problem does not admit any solution, 

(b) [A E OD M (OD M is the boundary of DM), the only distribution having ([A1 . . . .  , [AM) as its 
first moments is a (uniquely determined) convex combination of Dirac's delta, 

(c) [A belongs to the interior of D M many infinitely distributions exist, one of them being 

f~(z) [10]. 

2.4. Some Known Theorems 
Let ([A1,.-., [AM-I) E D M-I be assigned. For a density f (x)  with the same moments (#1 . . . . .  

# M - l ) ,  let [AM : inf/(=) : f l  o xMf (x )dx  and [A+M = supf(x) : f~ xMf(z )  dx where the minimum 
and maximum are taken over those density functions for which the moments up to degree M - 1 
coincide with the assigned ones. Therefore, [AA4 and [A~ are the extremes of the M th moment, and 
they assume a finite value because the moment space D M is compact [10]. Likewise, (~+4 - [AM) 
is the width of D M in the [AM direction. 

The following theorems will be used. 

THEOREM 2 .1 .  (See [4].) Let ([A1,... ,[AM) be assigned and let fM(x) be the corresponding ME 
density. Under the sole hypothesis of the existence of fM(x), l imM--~ g[fM] = H[f] holds. 

THEOREM 2.2. (See [11].) Assuming f (x)  >_ ~/ > O, with "r arbitrary constant, and with moments 
P l ,  [A2," • ", a n d  A 2 M  a s  the obtained Hankel matrices, then 

lim (Cond2 (A2M)) 1/(M+I) -~ lim (Cond2 (HM+I)) 1/(M+I) ~ e 3"525 (2.6) 
M---*c~ M---*oo 

holds. Here, the matr /x  HM+I ---- {h~j}, h~j = 1/(i + j + 1), i , j  = 0 , . . . ,  M, is the (M + 1)-order 
Hilbert matrix, and Cond2(.) denotes the spectral condition number, i.e., for a given matrix (.), 
Cond2(.) = [I(')H2 • H(')-lI[2 • Since A2M (and a/so, HM+I) are symmetric definite positive, 
C o n d 2 ( A 2 M )  = [ [ (A2M)][2"  [ I ( A 2 M ) - I [ [ 2  = )~m&x(A2M)/Amin(A2M) holds, where Amax and Amin 

denote the highest and lowest eigenvalue, respectively. Theorem 2.2 essentially states that  each 
Hankel matrix, raJsed by a strictly positive weight f (x ) ,  is asymptotically conditioned like a 
Hilbert matrix. In the moment space D M, the assumption f (x)  :> 7 > 0 means that  point 
(#1 . . . .  , [AM) is far from moment space boundary, or equivalently, f (x) is fax from a Dirac delta- 
type configuration. In this case, H[f] --~ -oo holds, since H[f] is a measure o£ uniformity. 
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3. E N T R O P Y  E S T I M A T E  

3 . 1 .  A n  U p p e r  B o u n d  

I now provide an estimate of H[fM] solely in terms of # 0 , . . . ,  J~M. Consider the vector ~H = 
{1/ ( j  + 1)}, j = 0 . . . .  , M, whose entries are the Hilbert matrix entries and # = (# 0 , . . . ,  #M) is 
the vector of given moments. When # = #H, the Hankel matrix and the Hilbert matrix coincide, 

since the corresponding ME density is f~"(x) -= 1, VM, so that  Aj = 0, j = 0 , . . . , M ,  and 

H[f~"] = 0. Let us examine the vector ~ = (G0,.. . ,  ~M) belonging to the segment joining #H 

to #. Once ~ is given, we consider the corresponding ME density f~M(X) from which the next 
moments ~j, j > M, can be obtained. From (2.3) and (2.4), we have 

M 0Aj 
OH [fM] _ E llJ "4- Ak = Ak -- 6Ok, k = O, M, (3.1) 

0#~ ~ k  " ' "  j=0 

where 5ok denotes 6-Kronecker. When # = pH, from (3.1), we have 

OH [fM] = --6ok, k = 0 . . . . .  M. (3.2) 

From (3.1), and taking (2.4) into account, the Hessian matrix, evaluated at ~ = (G0,.-.,  (M), is 
obtained: 

02H[ fM]  .=~ : OAk ~ = ~ _  I 

O#jO#k Otzj [A2MI ,=~ 

G0 "'" ~k-1 : ~k4-1 "'" ~M (3.3) 

× e j+ I , 

~M "'" ~k - l+M ~k+l+M "'" ~2M 
so that  the (j, k)-entry of the Hessian matrix coincides, up to sign, with the (j, k)-entry of the 
inverse A2-~l~ of A2MI~. From Taylor expansion, at # = #H, and taking (3.1)-(3.3) into account, 
we obtain 

M (  1 ) cOH[fM] H 1 A ~  H [ f M I = H [ f M I I • " + E  #J l + j  Opj __~(#_#U) (#_#H)  T 
j=0 (3.4) 

= 12 ,H) T 

Since A~-~ ]~ is symmetric definite positive, then 

i ( ,  -- ,H )  A2MI [~ ( ,  -- ,H )  T l 

Amax (A2M[~) < <~ , (3.5) 

and then 
M M 

A2MI'  1 { 1 } = [[max {#,~uH}[ ] I  (3.6) Amax ( A 2 M [ ' )  -< = E e J  --- E "J' 
j=0 i=0 

Combining (3.6), (3.5), and (3.4), we have 

1 < 1 < (~  _ , H )  A2~/]~ (j~ _ ~tH) T = 2H [fM] (3.7) 
Hmax{]l'llH}H1 -- Amax(i2MIf) -- 1I~--/2H[[2 2 I[~ t-]AH[I 2" 

From (3.7) and the ME principle, 

H[f] < H [fM] < l ip -  (3.8) 
-- -- 2 IImax{]~, ~tH} [I 1 

holds for each M. Inequality (3.8) is the required upper bound of H[f] and provides an estimate 
of H[f] in terms of given moments only for each function f(x) with the same ~ = (#0 , - . . ,  #M). 
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3.2. An Asymptot ic  Lower Bound 

With (#0,.--,/~M--1) fixed and varying #M continuously, from (2.3) and (2.4), we have 

dH [fM] = AM, (3.9) 
dlzM 

and from (2.4), 

d2H [fM] dAM IA2(M-1)I 
= ~ = < 0, (3.10) 

d#~M d#M [A2M[ 

SO that  H[fM] is a concave differentiable function of #M. When #M --* # ~ ,  we have from (2.4), 
with i = M, AM --* :FOO, so that  H[fM] ~ --co. Thus, H[fM] may admit a lower bound if an 
additional hypothesis is imposed on f (x) .  This lower bound will be obtained under the hypothesis 
f (x)  _> "7 > 0, so that  Theorem 2.2 can be used. 

Since A2M[~ is symmetric definite positive, 

and moreover, 

Arnax A2M[~ = A2M[~ 2 - - i , j  

(here max~,j runs over the entries of A2M[~). Combining (3.5) and (3.11) yields 

(3.11) 

II~ - ~ H l l  2 - I I ,  - , H I 1 2  

< Amax (A2MI¢) ---- Cond2 (A2M[~) . 

(3.12) 

We prove now that  A2M[~ satisfies the hypothesis of Theorem 2.2 when ~ runs along the segment 
joining #H to # in the moment space D M. Let us fix ~ and consider the corresponding ME density 
f~M(X) ---- exp(-- M ' #H ~-]~j=0 Ajx3). When ~ = or ~ - / z ,  the Lagrange multipliers Aj, j = 0 , . . . ,  M,  
assume finite values. Varying ~ continuously along the segment joining # g  to/~, all the Lagrange 
multipliers vary continuously and then assume finite values. Thus, the corresponding density 
f~M(X) satisfies the condition f~M(X) >_ "7 > O. 

When M --* oo, Theorem 2.2 yields Cond2(A2M[~) = Cond2(HM+l) ~- e 3"525(M+1) and Theo- 
rem 2.1 yields H[fM] ~" H[f]. Thus, from (3.4) and (3.12), we have 

2H[f] 2H[fM] ( # _  #H) A211~ ( # _ / I H )  T 

( 3 . 1 a )  

from which, 
e3.525(M+l) 

HISJ > 2 ]Ix - (3.14) 

providing an asymptotic lower bound of H[f]. Equations (3.8) and (3.14) are the main results. 
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