Convergence of Gauss–Christoffel Formula with Preassigned Node for Cauchy Principal-Value Integrals*

GIULIANA CRISCUOLO

Istituto per Applicazioni della Matematica, C.N.R., Viale A. Gramsci, 5, 80122 Napoli, Italy

AND

GIUSEPPE MASTROIANNI

Dipartimento di Matematica e Applicazioni, Università di Napoli, Via Mezzocannone, 8, 80134 Napoli, Italy

Communicated by Paul G. Nevai
Received March 7, 1985, revised July 24, 1985

DEDICATED TO THE MEMORY OF GÉZA FREUD

The authors consider Gauss–Christoffel formulas with preassigned node 0 for evaluating Cauchy singular integrals with an even generalized smooth Jacobi weight. A convergence theorem is given, and some asymptotic estimates of the remainder are established. © 1987 Academic Press, Inc.

1. INTRODUCTION

Let \(\Phi(f; t) \) be a Cauchy principal-value (V.P.) integral of the function \(f \), namely,

\[
\Phi(f; t) = \int_{-1}^{1} \frac{f(x)}{x-t} w(x) \, dx
\]

\[
= \lim_{\varepsilon \to 0} \left\{ \int_{-1}^{t-\varepsilon} + \int_{t+\varepsilon}^{1} \right\} \frac{f(x)}{x-t} w(x) \, dx, \quad |t| < 1, \quad (1.1)
\]

* Work sponsored by the Italian Research Council and by the Ministero della Pubblica Istruzione of Italy.

0021-9045/87 $3.00
Copyright © 1987 by Academic Press, Inc.
All rights of reproduction in any form reserved.
where

(i) \(f \in TD := \{ f \in C^0(I) | \int_I u^{-1} \omega(f; u) du < \infty \} \). Here \(I = [-1, 1] \) and \(\omega(f; \cdot) \) is the modulus of continuity of \(f \) in \(I \);

(ii) \(w(x) := \psi(x)(1 - x^2)^\mu; \mu > -1, \psi(x) = \psi(-x), 0 \leq \psi \in TD, 1/\psi \) is (Lebesgue) integrable on \(I \).

It is well known that (i) and (ii) imply the existence and continuity of \(\Phi(f; \cdot) \) moreover [2]:

\[
\omega(\Phi f; \delta) = O(\omega(f; \delta)) \quad (\delta \to 0).
\]

In order to approximate \(\Phi f \), we construct a Gauss–Christoffel type formula \(\Phi_{2m} \) with a fixed node at 0 of a given multiplicity \(2s \). This formula is a generalization of those contained in \([11, 6]\).

The principal aim of this work is to examine the convergence of the sequence \(\{\Phi_{2n}f\} \) under the assumption that the function \(f \in TD \) has derivatives of whatever order will be needed at 0. We prove there is a subsequence \(\{\Phi_{2m_n}f\} \) that converges uniformly to \(\Phi f \) on some closed subset of \((-1, 1) - \{0\}\). However, there exist also divergent subsequences \(\{\Phi_{2m}f\} \). Consequently, one concludes that when the function \(f \) is not sufficiently smooth, this type of quadrature formula is unsuitable for applications.

We also prove that if we omit in \(\Phi_{2m}f \) a term corresponding to a node nearest to the singularity, then we obtain a quadrature formula \(\Phi^*_{2m}f \) \((m \in \mathbb{N})\) that converges uniformly on a closed subset of \((-1, 1) - \{0\}\) to \(\Phi f \), under the previous assumptions on \(f \in TD \).

Moreover, we determine some asymptotic estimates of the remainders corresponding to the formulas \(\Phi_{2m} \) and \(\Phi^*_{2m} \).

2. A Gauss–Christoffel Type Formula for the Evaluation of Principal Value Integral

Let

\[
v(x) = x^{2s}w(x)
\]

where \(s \in \mathbb{N} \) and \(w \) is defined by (ii).

Moreover, let \(\{p_n\} \) be the sequence of the orthogonal polynomials in \(I \) associated with the weight function \(v \) defined by (2.1). Then, we denote the zeros of \(p_n(x) \) by \(x_{n,i} = x_{n,i}(v) \) \((i = 1, 2, \ldots, n)\), and the corresponding Christoffel numbers by \(\lambda_{n,i} = \lambda_{n,i}(v) \) \((i = 1, 2, \ldots, n)\). The function \(v \) is a "generalized smooth Jacobi" weight \((v \in GSJ)\), and the properties of the orthogonal polynomials \(p_n \) have been extensively studied by Stancu \([13]\), Rothmann \([12]\), Badkov \([1]\) and Nevai \([9]\).

Now, we consider the Gauss–Christoffel quadrature formula with respect
to the weight function w with the fixed knot 0, given with its order of multiplicity $2s$ [13]

$$G_{2m}(g) = \sum_{i=1}^{2m} A_{2m,i} g(x_{2m,i}) + \sum_{j=0}^{s} B_{2m,2j} g^{(2j)}(0) \quad (2.2)$$

where $x_{2m,i} = x_{2m,i}(v) \ (i = 1, 2, ..., 2m)$, and

$$A_{2m,i} = \frac{\gamma_{2m,i}(v)}{\chi_{2m,i}(v)}, \quad (i = 1, 2, ..., 2m), \quad (2.3)$$

$$B_{2m,2j} = \int_{-1}^{1} \beta_{2m,2j}(x) w(x) \, dx, \quad (j = 0, 1, ..., s - 1),$$

where the function g is defined on I. As the weight function v is even, we have

$$\gamma_{2m,i} = -\gamma_{2m,2m-i+1}, \quad (i = 1, 2, ..., m),$$

$$A_{2m,i} = A_{2m,2m-i+1}, \quad (i = 1, 2, ..., m).$$

Let $R_{2m}(g)$ be the remainder that is defined by

$$\int_{-1}^{1} g(x) w(x) \, dx = G_{2m}(g) + R_{2m}(g) \quad (2.5)$$

It is well known that the quadrature formula (2.2) has degree of exactness $4m + 2s - 1$.

Now, we may construct a Gauss–Christoffel quadrature formula for the approximate evaluation of Φf by the formula (2.2). In order to approximate the integral Φf, we write

$$\Phi(f; t) = f(t) \int_{-1}^{1} \frac{w(x)}{x-t} \, dx + \int_{-1}^{1} \frac{f(x) - f(t)}{x-t} w(x) \, dx \quad (7.6)$$

Hence, by (2.5) we have

$$\Phi(f; t) = f(t) \int_{-1}^{1} \frac{w(x)}{x-t} \, dx + G_{2m} \left(\frac{f-f(t)}{e_1-t} \right) + R_{2m} \left(\frac{f-f(t)}{e_1-t} \right), \quad (2.7)$$

where $e_k(x) = x^k \ (k \in N)$, and we have assumed that $t \neq 0$. Then (2.7) can be rewritten in the following form

$$\Phi(f; t) = \Phi_{2m}(f; t) + E_{2m}(f; t), \quad (2.8)$$
where we assume

$$E_{2m}(f; t) = R_{2m} \left(\frac{f-f(t)}{e_1-t} \right),$$ \hfill (2.9)$$

$$\Phi_{2m}(f; t) = f(t) \int_{-1}^{1} \frac{w(x)}{x-t} dx + \sum_{i=1}^{2m} A_{2m,i} \frac{f(x_{2m,i}) - f(t)}{x_{2m,i}-t} + \frac{B_{2m,0}(t)}{t} f(t) - \sum_{j=0}^{2s-2} \frac{B_{2m,j}(t)}{t} f^{(j)}(0),$$ \hfill (2.10)$$

$$B_{2m,2s-2}(t) = B_{2m,2s-2},$$ \hfill (2.11)$$

$$B_{2m,j}(t) = B_{2m,j} + (j+1) \frac{B_{2m,j+1}(t)}{t} \quad (j = 2s-3, \ldots, 1, 0),$$

where $B_{2m,2s-1} = 0$. Moreover, by

$$\int_{-1}^{1} \frac{w(x)}{x-t} dx - \sum_{i=1}^{2m} \frac{A_{2m,i}}{x_{2m,i}-t} + \frac{B_{2m,0}(t)}{t} = R_{2m} \left(\frac{1}{e_1-t} \right) = A_{2m}(t),$$ \hfill (2.10)$$

(2.10) becomes

$$\Phi_{2m}(f; t) = A_{2m}(t) f(t) + \sum_{i=1}^{2m} \frac{A_{2m,i}}{x_{2m,i}-t} f(x_{2m,i}) - \sum_{j=0}^{2s-2} \frac{B_{2m,j}(t)}{t} f^{(j)}(0).$$ \hfill (2.12)$$

We have established (2.12) under the assumption that $t \neq 0$; however, by an easy limit calculus, we may have the following quadrature formula

$$\int_{-1}^{1} \frac{f(x)}{x} \, w(x) \, dx = \Phi_{2m}(f; 0) = \sum_{i=1}^{m} \frac{A_{2m,i}}{x_{2m,i}} \left[f(x_{2m,i}) - f(-x_{2m,i}) \right] + \sum_{j=0}^{s-1} \frac{B_{2m,2j}}{2j+1} f^{(2j+1)}(0).$$ \hfill (2.13)$$

We note that formulas (2.12) and (2.13) have degree of exactness $4m + 2s$, but (2.12) depends on $m + 2s$ coefficients, whereas only $m + s$ coefficients are in (2.13); furthermore, the calculation of these is easier.

Finally, we observe that in the special case in which $w \equiv 1$ and $s = 1$, the formula (2.13) becomes the formula given by Hunter in [6], and for $w \equiv 1$ and $s = 0$, we obtain the Piessen's formula [11].

Now, we want examine the convergence of the formulas that we have introduced. It is clear that the convergence of the formula (2.13) follows
easily; in fact, the function \(f \) has a derivative at point 0 and so the function \((f(x))/x \) is Riemann-integrable. Therefore, we shall attend to the convergence of the quadrature formula (2.10).

3. NOTATIONS AND BASIC LEMMAS

The symbol "const" stands for some positive constant taking a different value each time it is used. If \(A \) and \(B \) are two expressions depending on some variables, then we write

\[A \sim B \quad \text{if} \quad |AB^{-1}| \leq \text{const} \quad \text{and} \quad |A^{-1}B| \leq \text{const} \]

uniformly for the variables under consideration. Throughout this paper, \(C_c(I) \) denotes the class of the continuous functions on \(I \) with \(2s-2 \) derivatives at point 0, and \(A \) denotes a closed set such that \(A \subset (-1, 1) - \{0\} \).

As mentioned above, \(v \) is a generalized smooth Jacobi weight function; the properties of the corresponding orthogonal polynomials and of the Christoffel numbers are well known [1, 9].

From among these, we recall the important relations

\[H_{2m,i} - H_{2m,i+1} \sim (2m)^{-1}, \quad (i = 1, 2,..., 2m - 1), \quad (3.1) \]

where \(x_{2m,i} = \cos \theta_{2m,i} \) \((i = 1, 2,..., 2m)\) are the zeros of \(p_{2m} \), so ordered

\[-1 < x_{2m,1} < x_{2m,2} < \cdots < x_{2m,2m} < 1, \]

(see [9, Theorem 9.22, p. 166]), and

\[\tilde{\lambda}_{2m,i}(v) \sim (2m)^{-1}(1-x_{2m,i}^{2}) + \frac{1}{2}(|x_{2m,i}| + (2m)^{-1})^{2}, \quad (i = 1, 2,..., m). \quad (3.2) \]

(See [9, Theorem 6.3.28, p. 120].)

Then, we set: \(N^* = \{ m \in N: x_{2m,i} \neq t, \ i = 1, 2,..., 2m \} \), and \(x_{2m,c} \) denotes the closest knot to \(t \); more precisely

\[|t - x_{2m,c}| = \min \{ t - x_{2m,d}, x_{2m,d+1} - t \}, \]

where: \(x_{2m,d} \leq t \leq x_{2m,d+1}, \ (0 \leq d \leq 2m) \). It is obvious that

\[N^* = \{ m \in N^*: t - x_{2m,d} \sim x_{2m,d+1} - t \} \subseteq N^*, \]

and both sets are infinite [3].

At this point we prove the following lemmas, we need later for the main theorem.
Lemma 3.1. The inequalities

\[
\frac{\lambda_{2m,i}}{|x_{2m,i} - t|} < \frac{A_{2m,i}}{|x_{2m,i} - t|} < \frac{C}{(1 - t^2)^{1/2}} \left\{ (2m)^{-1} |x_{2m,i} - t|^{-1} + (1 - x_{2m,i}^{-2})^{-1/2} \right\}
\]

\[(i = 1, 2, ..., 2m), \quad (3.3) \]

hold for some constant \(C > 0 \) independent of \(m \).

Proof. By (2.3) and (2.4), we have

\[
A_{2m,i} = \lambda_{2m,i} x_{2m,i}^{2i} \approx (2m)^{-1} (1 - x_{2m,i}^2)^{1/2} \left(1 + \frac{1}{2m |x_{2m,i}|} \right)^{2i},
\]

\[(i = 1, 2, ..., 2m). \]

Moreover, as the weight function \(v \in GSJ \) is even, and by (3.1), we obtain

\[
\frac{1}{2m |x_{2m,i}|} \leq \frac{1}{2m |x_{2m,m}|} \sim 1, \quad (i = 1, 2, ..., 2m).
\]

Thus

\[
A_{2m,i} \leq \text{const} (2m)^{-1} (1 - x_{2m,i}^2)^{-1/2}, \quad (i = 1, ..., 2m),
\]

from which the second inequality in (3.3) easily follows, and also first inequality, from

\[
A_{2m,i} \leq \lambda_{2m,i}, \quad (i = 1, 2, ..., 2m). \]

Lemma 3.11. Let \(x_{2m,d} \) be the closest knot to \(t \). If we set

\[
\sigma_m^*(t) = \sum_{i=1}^{2m} \frac{A_{2m,i}}{|x_{2m,i} - t|},
\]

\[(3.4) \]

then

\[
\sigma_m^*(t) \sim \log m, \quad (m \in N), \quad (3.5)
\]

holds uniformly on \(A \).

Proof. Without any loss of generality, we suppose that

\[
x_{2m,d} = x_{2m,d} \leq t < x_{2m,d+1} \quad \text{thus} \quad t - x_{2m,d-1} \sim x_{2m,d+1} - t \sim (2m)^{-1}
\]

Then, by (3.3), we have

\[
\sigma_m^*(t) > \sum_{i=1}^{2m} \frac{\lambda_{2m,i}}{|x_{2m,i} - t|} = \sum_{i=1}^{d-1} \frac{\lambda_{2m,i}}{t - x_{2m,i}} + \sum_{i=d+1}^{2m} \frac{\lambda_{2m,i}}{x_{2m,i} - t},
\]

\[(3.6) \]
Further, the function \(u(x) = |x - t|^{-1} \) is such that
\[
u^{(i)}(x) > 0, \quad x \in [-1, x_{2m,d + 1}], \quad i = 0, 1, \ldots
\]
and
\[
(-1)^i \nu^{(i)}(x) > 0, \quad x \in [x_{2m,d + 1}, 1], \quad i = 0, 1, \ldots
\]
Then, by the generalized Markov-Stieltjes inequalities (see Lemma 1.5.3 in [5, p. 301] and Lemmas 3.2, 3.3 in [8, p. 222]), we obtain
\[
\sum_{i = 1}^{d} \sum_{i \neq i'} \frac{\lambda_{2m,i}^{2}}{|x_{2m,i} - t|} \geq \int_{S_{2m,d}} v(x) \frac{\nu(x)}{|t - x|} \, dx,
\]
\[
\sum_{i = d + 1}^{2m} \lambda_{2m,i}^{2} \geq \int_{S_{2m,d+1}} v(x) \frac{\nu(x)}{|x - t|} \, dx.
\]
From these inequalities, we easily get
\[
\sigma^{*}_{m}(t) > 2v(t) \log m + v(t) \log(1 - t^2) + V(t),
\]
where
\[
V(t) = \int_{-1}^{1} \left| \frac{v(x) - v(t)}{x - t} \right| \, dx.
\]
From \(v \in TD \), we have that the function \(V \) is continuous on \(A \), and thus
\[
\sigma^{*}_{m}(t) > a_{1} \log m + b_{1}, \quad (\forall t \in A),
\]
where \(a_{1}, b_{1} \) are two constants, independent of \(m \).
Further, by (3.3) we obtain
\[
\sigma^{*}_{m}(t) \leq \text{const} \frac{1}{1 - t^2} \left[\sum_{i = 1}^{2m} \frac{1}{2m|x_{2m,i} - t|} + \sum_{i = 1}^{2m} \frac{1}{2m \sqrt{1 - x_{2m,i}^2}} \right].
\]
By (3.1), we represent the two summations in the last inequality as Riemann Darboux ones. Thus
\[
\sigma^{*}_{m}(t) \leq \text{const} \frac{1}{1 - t^2} \left[\int_{-1}^{x_{2m,d - 1}} \frac{dx}{|t - x|} + \int_{x_{2m,d + 1}}^{1} \frac{dx}{x - t} + \pi \right].
\]
Again, by (3.1) and \(t \in A \), we have
\[
\sigma^{*}_{m}(t) \leq a_{2} \log m + b_{2},
\]
where \(a_{2}, b_{2} \) are two constants, independent of \(m \).
Hence the lemma is proved. \(\square \)
Lemma 3.11. For the coefficients $B_{2m,2r}^{\pm}$ in (2.2) the inequalities

$$|B_{2m,2r}^{\pm}| \leq \frac{K}{(2r)!} \frac{m^{2r+1}}{m^{2r+1}+1}, \quad (r = 0, 1, \ldots, s - 1), \quad (3.7)$$

hold, where K is a constant, independent of m and r.

Proof. If one set $g(x) = x^{2r}$ ($r = 0, 1, \ldots, s - 1$) in (2.5), we obtain

$$B_{2m,2r}^{\pm} = \frac{1}{(2r)!} \int_{-1}^{1} x^{2r} w(x) \, dx - \sum_{i=1}^{2m} \frac{\lambda_{2m,i}}{x^{2(s-r)}}.$$

Now, the function $\gamma(x) = x^{2(r-s)} (r < s)$ is such that

$$\gamma^{(i)}(x) > 0, \quad x < 0, \quad i = 0, 1, \ldots,$$

$$(-1)^i \gamma^{(i)}(x) > 0, \quad x > 0, \quad i = 0, 1, \ldots,$$

and

$$v(x) \gamma(x) = x^{2r} w(x).$$

Then, by the generalized Markov–Stieltjes inequalities (see [8, p. 222]), we have

$$\sum_{i=1}^{m+1} \frac{\lambda_{2m,i}}{x^{2(s-r)}} \leq \int_{-1}^{1} x^{2r} w(x) \, dx \leq \sum_{i=1}^{m+1} \frac{\lambda_{2m,i}}{x^{2(s-r)}}.$$

From these inequalities, we deduce

$$\alpha_m - \beta_m \leq B_{2m,2r}^{\pm} \leq \alpha_m,$$

where

$$\alpha_m = \frac{1}{(2r)!} \int_{-1}^{1} x^{2r} w(x) \, dx,$$

and

$$\beta_m = \frac{2}{(2r)!} \frac{\lambda_{2m,m+1}}{x^{2(s-r)}}.$$

Thus

$$|B_{2m,2r}^{\pm}| \leq \max \{\alpha_m, \beta_m\}.$$
Further, we have

\[(2r)! \, \alpha_m = w(\xi) \int_{x_{2m,m}}^{x_{2m,m+1}} x^{2r} \, dx = w(\xi) \frac{x_{2m,m+1}^{2r+1} - x_{2m,m}^{2r+1}}{2r + 1} \]

\[- 2\omega(\xi) \, x_{2m,m+1}^{2r+1} \sim m^{-2r-1}, \]

where \(\xi \in (x_{2m,m}, x_{2m,m+1}) \). Moreover, by (3.2), we see

\[(2r)! \beta_m \sim m^{-1} (1 - x_{2m,m+1}^2)^{n+1/2} \left(x_{2m,m+1} + \frac{1}{2m} \right)^{2s} x_{2m,m+1}^{2(r-s)} \]

\[= m^{-1} (1 - x_{2m,m+1}^2)^{n+1/2} \left(x_{2m,m+1} + \frac{1}{2m} \right)^{2r} \]

\[\times \left(x_{2m,m+1} + \frac{1}{2m} \right)^{2s} x_{2m,m+1}^{2(r-s)} \]

\[= m^{-1} (1 - x_{2m,m+1}^2)^{n+1/2} \left(x_{2m,m+1} + \frac{1}{2m} \right)^{2r} \left(1 + \frac{1}{2mx_{2m,m+1}} \right)^{2s} x_{2m,m+1} \]

\[\approx m^{-1} \]

Hence, the lemma is proved.

Before proceeding any further, we observe that the result of Lemma 3.11 is sufficient to prove the convergence of the formula (2.2) when \(g \in C^0(I) \) and we suppose the existence of \(2s - 1 \) derivatives of the function \(g \) at point 0.

Now, we note that the functions \(B_{2m,j}(t) \) depend on \(B_{2m,j} \) by (2.11). From these relations, the equalities

\[B_{2m,2j}(t) = \frac{1}{(2j)!} \sum_{i=1}^{j} (2j + 2i - 2)! \frac{B_{2m,2j}^{2i+2} t^{2i-2}}{t^{2i-2}}, \quad (j = 0, 1, ..., s - 1), \]

\[B_{2m,2j+1}(t) = \frac{1}{t(2j+1)!} \sum_{i=1}^{j} (2j + 2i)! \frac{B_{2m,2j+2i}^{2i+2} t^{2i-2}}{t^{2i-2}}, \quad (j = 0, 1, ..., s - 2), \]

casily follow.

Thus, by (3.7) we deduce

\[\left| \frac{B_{2m,j}(t)}{t^{j+1}} \right| \leq \frac{K}{j! \, m^{j+1}}, \quad (j = 0, 1, ..., 2s - 2), \]

where \(K > 0 \) is a constant, independent on \(m, j, \) and \(t \in A \).
4. On the Convergence of Rule (2.10)

We set
\[P_{2s-2}(x) = \sum_{k=0}^{2s-2} \frac{f^{(k)}(0)}{k!} x^k, \]
\[g = f - P_{2s-2}, \]
\[r_m = g - q_m, \]
where \(q_m \) is the best approximation polynomial with respect to the function \(g \). We remark that \(\omega(g; \delta) \leq \text{const} \omega(f; \delta) \) when \(f \in C^0(I) \).

Under these assumptions, we may prove the following.

Lemma 4.1. Given any function \(f \in C_c(I) \), there is a constant \(L \) independent on \(f \) and \(m \in \mathbb{N} \) such that
\[|E_{2m}(f; t)| \leq L \delta_m + |a_{2m,c}(t)|, \quad t \in A, \tag{4.1} \]
where
\[a_{2m,c}(t) = A_{2m,c} \frac{r_m(x_{2m,c}) - r_m(t)}{x_{2m,c} - t}, \quad (m \in \mathbb{N}^*), \]
\[\delta_m = \|r_m\|(\log m + m^{-1}) + \left[\int_0^1 \frac{\omega(f; u)}{u} \, du + \frac{\|q_m\|}{m} \right] \]
\[+ m \sum_{j=1}^{2s} \frac{|q_m^{(j)}(0)|}{j! m^j}, \quad (m \in \mathbb{N}), \]
and \(A \) is a closed set such that \(A \subset (-1, 1) \).

Proof. Having rule \(\phi_{2m} \) degree of exactness \(4m + 2s \), we may claim that
\[|E_{2m}(f; t)| \leq I_1 + I_2 + I_3, \]
where
\[I_1 = |\phi(r_m - r_m(t); t)|, \tag{4.2} \]
\[I_2 = \left| \sum_{i=1}^{2m} A_{2m,i} \frac{r_m(x_{2m,i}) - r_m(t)}{x_{2m,i} - t} \right|, \tag{4.3} \]
\[I_3 = \left| \frac{B_{2m,0}(t)}{t} (r_m(t) - r_m(0)) + \sum_{j=1}^{2s} \frac{B_{2m,j}(t)}{t} q_m^{(j)}(0) \right|. \tag{4.4} \]
Now, we obtain

\[I_1 \leq 2 \left\| r_m \right\| W(t) + w(t) \times \left\{ 4 \left\| r_m \right\| \log m + \int_{\|x\|_A \leq 1} \frac{r_m(x) - r_m(t)}{x - t} \, dx \right\}, \]

where

\[W(t) = \int_{-1}^{1} \frac{w(x) - w(t)}{x - t} \, dx \]

By

\[\left| \int_{\|x\|_A \leq 1} \frac{r_m(x) - r_m(t)}{x - t} \, dx \right| \leq \text{const} \int_{0}^{1/m} \omega(f; u) u^{-1} \, du + \frac{\|q_m\|_A}{m}, \]

as \(w \in TD \) implies \(W \in C^0(A) \), we obtain

\[I_1 \leq \text{const} \left\{ \|r_m\| (\log m + 1) + \int_{0}^{1/m} \omega(f; u) u^{-1} \, du + \frac{\|q_m\|_A}{m} \right\}. \]

Furthermore, because of Lemma 3.11,

\[I_2 \leq \text{const} \|r_m\| \log m + |a_{2m,n}(t)|. \]

Finally, by (3.8), we have

\[I_3 \leq Km^{-1} \left\{ 2 \|r_m\| + \sum_{j=1}^{2} \frac{\|q_{m,j}(0)\|}{j! \, m^j} \right\}. \]

The combination of these inequalities proves the lemma.

At this point, we may prove the following

Theorem 4.1. For any function \(f \in C_s(I) \cap TD \), there exists a subsequence \(\{ \Phi_{2m_k} \}_{k \in N} \) uniformly convergent to \(\Phi f \) on \(A \).

Proof. First we remark that from \(f \in C_s(I) \cap TD \) follows

\[\|r_m\| \leq \text{const} \omega(f; m^{-1}), \]

\[\lim_{m \in N} \int_{0}^{1/m} \omega(f; u) u^{-1} \, du = 0, \]

and

\[\lim_{m \in N} \omega(f; m^{-1}) \log m = 0. \]
Furthermore, it is well known [7] that for any function \(F \in C^r(I) \) \((r \geq 0)\), if we denote by \(q_m \) the best approximation polynomial with respect to the function \(F \), for any \(k > r \) there exists a constant \(M_k \) such that

\[
\| q_m^{(k)} \|_A \leq M_k m^{k-r} \omega(F^{(r)}; m^{-1}),
\]

where \(A \) is a closed set such that \(A \subset (-1, 1) \).

Thus, from \(g \in C^0(I) \), we obtain

\[
m^{-1} \left\{ \| q_m' \|_A + \sum_{j=1}^{2k-2} \frac{|q_m^{(j)}(0)|}{j! m^j} \right\} \leq \text{const} \omega(f; m^{-1}).
\]

Finally, we have

\[
\lim_{m \to \infty} \delta_m = 0.
\]

At this point, we introduce the set \(N' = \{ n \in N^*: |x_{2n, \epsilon} - t| \sim n^{-1} \log^{-1} n \} \).

By \(N^* \subset N' \subset N^* \), we obtain that \(N' \) is an infinite set and \(N' = \{ m_k \}_{k \in N} \).

Then, for any sufficiently large \(k \in N \), there exists a constant \(H > 0 \), independent of \(f \) and \(k \) such that

\[
\| a_{2m,i} \| \leq H \omega(f; m_k^{-1}) \log m_k = o(1), \quad (k \to \infty),
\]

and the theorem is proved. \(\blacksquare \)

Now, let \(LD(\lambda), \ (\lambda > 0) \), be the class of functions \(f \in C^0(I) \), such that \(\omega(f, \delta) \log^\lambda \delta^{-1} = o(1), \ (\delta \to 0^+) \). Obviously, we have

\[
LD(\lambda) \supset TD \quad \text{if} \quad \lambda \in (0, 1],
\]

and

\[
LD(\lambda) \subset TD \quad \text{if} \quad \lambda > 1.
\]

Note that by Lemma 4.1 and Theorem 4.1 the corollaries immediately follows:

Corollary 4.1. For any function \(f \in LD(\lambda), \ (\lambda > 1) \), there exists a subsequence \(\{ E_{2m_i, f} \}_{i \in N} \) such that

\[
\| E_{2m_i, f} \| = o(\log^{-1} m_i), \quad (i \to \infty).
\]

Corollary 4.11. For any function \(f \in \text{Lip}_s \alpha \), there exists a subsequence \(\{ E_{2m_j, f} \}_{j \in N} \) such that

\[
\| E_{2m_j, f} \| = O(m_j^{-2} \log m_j), \quad (j \to \infty).
\]
COROLLARY 4.III. For any function \(f \in \text{Lip}_M \), we have
\[
\| E_{2n} f \| = O(n^{-1} \log n), \quad (n \in N^*).
\]

COROLLARY 4.IV. For any function \(f \in C^{(k)}(I) \), we have
\[
\| E_{2n} f \| = O(n^{-k} \log n \omega(f; n^{-1})), \quad (n \in N^*).
\]

Furthermore, we observe that obvious changes in the proof of Theorem 4.1 are sufficient to prove the following:

THEOREM 4.11. If the integral \(\Phi_f \) exists, then, for any function \(f \in C_1(I) \cap LD(1) \), there exists a subsequence \(\{ \Phi_{m_k} f \}_{k \in N} \) convergent to \(\Phi_f \) in \((-1, 1) - \{0\} \).

At this point, we remark that by Lemma 3.11 the norm of \(\Phi_m \) is not bounded; then the continuity of the function \(f \) is not sufficient for the convergence of the sequence \(\{ \Phi_{2m} \} \), which besides is defined just for \(m \in N^* \subset N \). Yet, in some cases we have \(N^* = N \). This is true when \(s = 0 \), \(\psi(x) \equiv 1 \), \(\mu = \pm \frac{1}{2} \), and \(t = \cos(\pi p/q) \), where \(p/q \) is a rational number in \((0, 1)\), [8].

Further, it is not difficult to find a subsequence \(\{ \Phi_{2m} \}_{v \in N} \) not convergent when the function \(f \in \text{Lip}_M \), \((x < 1) \). In fact, following the example \(s = 0 \), \(\psi(x) \equiv 1 \), \(\mu = \pm \frac{1}{2} \), if we suppose \(t = \cos(\theta \pi) \), where \(\theta \) is an irrational number in \((0, 1)\), we have \(|a_{2m,v}| \sim (2m)^{1-x} \) for a particular sequence \(\{m_v\} \subset N^* \) (see [10, p. 231]).

From the proof of Theorem 4.1, we have that the term that causes difficulties to the convergence of \(\Phi_{2m} f \) is \(a_{2m,v}(t) \), corresponding to the closest knot to the singularity. Now, let us omit this term and consider the quadrature formula
\[
\Phi_{2m}^*(f; t) = f(t) \int_{-1}^{1} \frac{w(x)}{x - t} \, dx + \sum_{i=1}^{2m} \frac{A_{2m,i} f(x_{2m,i}) - f(t)}{x_{2m,i} - t} \left(\frac{B_{2m,0}(t)}{t} f(t) - \sum_{j=0}^{2x-2} \frac{B_{2m,j}(t)}{t} f^{(j)}(0) \right),
\]
that can be rewritten in the following form
\[
\Phi_{2m}^*(f; t) = A_{2m}^*(f; t) + \sum_{i=1}^{2m} \frac{A_{2m,i} f(x_{2m,i}) - \sum_{j=0}^{2x-2} \frac{B_{2m,j}(t)}{t} f^{(j)}(0)}{x_{2m,i} - t}.
\]
where
\[
A_{2m}^*(t) = \int_{-1}^{1} \frac{w(x)}{x - t} \, dx - \sum_{i=1}^{2m} \frac{A_{2m,i}}{x_{2m,i} - t} + \frac{B_0(t)}{t}.
\]
Then, the corresponding remainder is defined by
\[E_{2m}^*(f; t) = \Phi(f; t) - \Phi_{2m}^*(f; t). \]

One can easily prove that \(\Phi_{2m}^* \) has degree of exactness 0, however we may consider \(\Phi_{2m}^* \) for any \(m \in \mathbb{N} \), and we may prove the following:

Theorem 4.I. For any function \(f \in C_{s}(I) \cap TD \), the sequence \(\{ \Phi_{2m}^* f \}_{m \in \mathbb{N}} \) converges uniformly to \(\Phi f \) on \(A \).

Proof: Proceeding as in [4], we obtain
\[E_{2m}^*(f; t) = E_{2m}(r_m; t) + A_{2m,c} \frac{q_m(x_{2m,c}) - q_m(t)}{x_{2m,c} - t}, \]
and recalling (3.4), (4.2), (4.4), we have
\[|E_{2m}^*(f; t)| \leq I_1 + 2 \| r_m \| \sigma_m(t) + I_3 + A_{2m,c} \| q_m \|_A. \]

At this point, if we proceed as for the proof of Theorem 4.1, we may obtain
\[\| E_{2m}^* f \|_A \leq C(\delta_m + \omega(f; m^{-1})), \tag{4.8} \]
where \(C \) is a constant, independent on \(f \) and \(m \).

This completes the proof of the theorem.

Furthermore, by (4.8) we obtain
\[\| E_{2m}^* f \|_A = O(m^{-\frac{1}{2}}) \quad \text{if} \quad f \in LD(\hat{\alpha}), \quad (\hat{\alpha} > 1), \tag{4.9} \]
\[\| E_{3m}^* f \|_A = O(m^{-\frac{1}{2}} \log m) \quad \text{if} \quad f \in Lip_M \alpha, \quad (0 < \alpha \leq 1). \tag{4.10} \]

On the other side, we have the following:

Theorem 4.IV. If the integral \(\Phi f \) exists, then for any function \(f \in C_{s}(I) \subset LD(1) \), the sequence \(\{ \Phi_{2m}^* f \} \) converges to \(\Phi f \) in \((-1, 1) - \{0\} \):

Further, we point out that Theorem 4.III, Theorem 4.IV and the relations (4.9), (4.10) also hold for the quadrature formula \(\Phi_{2m}^* \) that we may obtain from \(\Phi_{2m} \) omitting the two terms that correspond to both knots \(x_{2m,d} \) and \(x_{2m,d+1} \).

Finally, note that in the special case in which \(s = 0 \), we obtain results established in [4].

Acknowledgment

We would like to thank Paul Nevai for many helpful suggestions, which certainly improved this paper.
REFERENCES