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This paper details a strategy for modifying the source code of a complex model so that the model may be
used in a data assimilation context, and gives the standards for implementing a data assimilation code to
use such a model. The strategy relies on keeping the model separate from any data assimilation code, and
coupling the two through the use of Message Passing Interface (MPI) functionality. This strategy limits
the changes necessary to the model and as such is rapid to program, at the expense of ultimate per-
formance. The implementation technique is applied in different models with state dimension up to
.2.7 � 108 The overheads added by using this implementation strategy in a coupled ocean-atmosphere
climate model are shown to be an order of magnitude smaller than the addition of correlated stochas-
tic random errors necessary for some nonlinear data assimilation techniques.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

When a model is developed to simulate a process in environ-
mental science, the accurate solution of the underlying physical
process will be foremost in the mind of the developers. Once the
model performs sufficiently well, only then might the developers
consider using such a model to produce a forecast (Verlaan, 1998).
In order to make a forecast, the model needs to be initialised using
observations of the system, so that the state of the model repre-
sents reality as best as possible. This process of incorporating ob-
servations into a model is known as data assimilation (DA).

The most effective method of DA for a new model may not be
known a priori. For instance, whether a variational method or an
ensemble method of DA should be used, and within these choices
whether linear or non-linear DA scheme should be used (see for
example Evensen, 2007). In this circumstance, an implementation
technique that can rapidly prototype different DA methods would
be particularly useful, before substantial time and effort is spent on
efficient implementation of any one particular algorithm.

In the same manner, an academic researcher will want the
flexibility to test novel DA techniques with state of the art models
ne).

r Ltd. This is an open access article
(Browne et al., 2014). Such ongoing changes to the DA system are
used as proof-of-concept tests and as such do not seek maximum
performance and efficiency. The critical factor for the academicmay
be the amount of coding time spent modifying the model in order
to perform scientific tests.

In this paper we propose a simple implementation strategy
which does not focus on maximum efficiency of the code. Instead
the focus is on the speed of implementation. The aim is to satisfy
the needs of model developers seeking to prototype different
existing DAmethods and also to give academics swift access to new
models for predictive purposes. Changes to the model should be as
small as possible, and specifically we do not want to change the
flow or structure of the model.

The goal of data assimilation is to represent the probability
density function (pdf) of the state of the model, given some ob-
servations (Evensen, 2007). Ensemble based data assimilation will
try and represent such a pdf (or its moments such as the mean and
covariance) with a collection of separate model instances. Each of
these models instances need be propagated forward in time, and
are inherently parallel tasks. To combine the information in the
ensemble with observations (using methods such as the Ensemble
Kalman Filter/Smoother (Evensen, 1994; Evensen and van
Leeuwen, 2000)) or particle filters (van Leeuwen, 2009) only the
state vector of each model at each timestep is required. Hence it is
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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possible to make generic data assimilation software based only on
knowledge of the dimension of the model.

To run an ensemble data assimilation systemwhich does not use
an adjoint model (Errico, 1997), the only task the model must
perform is to integrate the model state forward in time. Other
scientific questions related to data assimilation, such as handling
observations and constructing and storing covariance matrices are
effectively independent of the model code, hence fall outside the
scope of this paper where we consider technically connecting the
model with a data assimilation code. As such, the required opera-
tions will be to interrupt the model after each timestep and get the
model state to a DA code which will operate on it and return to the
model a modified state. This was noted by Verlaan (1998, Section
5.6.1) but implemented by combining the model and DA code
within one Fortran executable. Message Passing Interface (MPI) is
ideally suited to this and avoids the need of the model to write to
disk as we shall show subsequently.

There are a number of existing frameworks for performing data
assimilationwith a newmodel, with varying techniques for linking
with the model. Tools such as SESAM (Brankart et al., 2002) and
the Ocean Assimilation Kit (OAK) (Barth and Vandenbulcke, 2013)
are available to perform ensemble analysis on disk files. In these
cases the dynamical model and data assimilation are not coupled
at all. Instead a program such as a shell script has to control each
individual code. In this case the model must run only a single
timestep and write to disk at each step, resulting in poor perfor-
mance (Nerger and Hiller, 2013). The data assimilation code re-
quires the model state at every model timestep in order to be able
to use methods such as the EnKS (Evensen and van Leeuwen,
2000) or other nonlinear sequential methods (van Leeuwen,
2009).

A powerful data assimilation tool is the Data Assimilation
Research Testbed (DART) (Anderson et al., 2009). If a model is
already in the form where a single timestep is callable as a sub-
routine, then DART will wrap around the model source code. If the
model is not available as a subroutine then DART has the flexibility
to work with specifically formatted netcdf files from disk. Another
similar data assimilation tools is OpenDA (OpenDA, 2013) which
requires either wrapping the model in Java or directly reading and
writing disk files. Either case needs the model to produce a large
amount of meta-data in XML files which allow the full flexibility of
OpenDA to be utilised.

The Parallel Data Assimilation Framework (PDAF) (Nerger and
Hiller, 2013) is a system in which a model's source code is modi-
fied in order to perform data assimilation. PDAF has two different
modes; the fast online mode or the slower offline mode. In offline
mode, disk files are used to transfer data between the model and
the DA system, hence it suffers relatively poor performance. In
online mode, the source code is modified to insert calls to the DA
procedures. One executable file is created and the parallelism of the
model is inherited by the DA algorithms (see Section 6).

The remainder of this paper is structured as follows. In Section 2
we give a brief overview of MPI. In Section 3 we discuss the concept
of the mechanism bywhich the code performs the necessary set-up
stages. In Section 4 the constraints on the design of a data assimi-
lation system in order to use such a communication system are
given. Section 5 explains the how communication between model
and data assimilation code is performed. Section 6 details the ad-
vantages and disadvantages of adopting the proposed technique.
Section 7 lists details of how this system has already been imple-
mented in large-scale models and gives performance details for
these. Finally we draw some conclusions on the implications of
adopting this implementation for data assimilation. For complete
clarity, we include Appendix A to give the technical details of the
construction of the MPI communicators introduced in Section 3,
and Appendix B shows the proposed implementation technique in
the code a short model.

2. Overview of MPI

Message Passing Interface (MPI) is a standardised system for
utilising distributed computing (Gropp et al., 1996; Gabriel et al.,
2004). It has become the de facto standard (Desouza et al., 2005)
for High Performance Computing (HPC) systems, and works on the
basis of sending packets of information between processes running
(possibly different) program executables. When launched, each
process is assigned a unique integer known as the rank. By
convention, we will refer to the process whose rank has the value
0 as the master process.

MPI is commonly thought of in Single Program Multiple Data
(SPMD) form (Pieterse and Black,1999), where the same program is
executed on multiple processes. In this paradigm, the program
computes which section of the code to execute based on a variable
which it is given at run-time. This variable is typically the global
rank of the process.

In contrast to SPMD, the Multiple Instruction Multiple Data
(MIMD) form allows different programs to be executed so that they
are able to communicate with each other. Here, multiple execut-
ables are launched using one mpiexec command. Hence one pro-
gram can be written for one task, and a different program can be
written to perform a completely separate task. All processes which
are able to pass information between each other are said to share a
communicator. When two processes share a communicator a simple
instruction can be given to send or receive data between the pro-
cesses. When more than two processes are involved in transfer of
information, MPI finds an efficient strategy for exchanging the in-
formation. Such strategies are architecture dependent and are
optimised without input from the user.

In this paper we will describe a strategy for setting up appro-
priate communicators so that models and DA codes can be run in
MIMD form. Once the communicators are initialised then data
transfer can be achieved with basic MPI send and receive
commands.

3. MPI communicator initialisation for model processes

In this section we shall describe the initialisation step for the
method that we propose that must be applied to the model code.
The goal is to compute the appropriate information to allow
communication to and from a data assimilation code. A more
detailed technical discussion of how this can be achieved is given in
Appendix A.

As the ensemble of models and a number of data assimilation
processes will be launched in MIMD mode, they will all share the
MPI_COMM_WORLD communicator. This default numbering and
ordering of the processes must be appropriately divided up to allow
for the various types of communication: theMPI concept of splitting
communicators will allow us to do precisely this. Splitting com-
municators is based on another abstract concept of colours: once
split those processes with the same colour are grouped together in
a new communicator. (See Nerger et al., (2005) for an example of
the use of different MPI communicators in a data assimilation
system.)

Fig. 1 shows the different communicators which we will seek to
create. From the point of view of the model code, this is a three
stage process. Firstly we separate the processes from the models
and those of the DA processes. We choose to do this by setting the
colour of all model processes to 0 (DA processes will have colour 1)
and using MPI_split to generate a temporary communicator
tmp_mdls_comm from MPI_COMM_WORLD. It is mandatory that the



Fig. 1. Schematic to show the distribution of processes amongst the different communicators. Black indicates the global communicator. Red, blue, green, yellow and magenta
represent 5 separate models each running on 4 processes. The cyan communicator is a communicator dedicated for the data assimilation code and the orange communicator links
the master process of each of the models with all the data assimilation processes. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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DA processes also call this split at this point, as discussed in Section
4.

Next we must split this temporary communicator into the
different ensemble members, in order to account for any existing
MPI parallelism within the model. The colour for this splitting is
given by the integer value [models_id/mdl_num_proc], where
models_id is the rank of the process on the tmp_mdls_comm

communicator and mdl_num_proc is the number of MPI processes
launched for each ensemble member. Hence the different instances
of the model will have colour ¼ 0, 1, 2…. Splitting the temporary
communicator based on these colours produces the new commu-
nicator mdl_mpi_comm. In Fig.1 these different mdl_mpi_comm are
shown in the second row, and given the colours red, blue, green,
yellow and magenta. This communicator should replace the orig-
inal communicator used for all communication between the pro-
cesses of the model.

The next task is to set up another communicator, to couple the
master process of each model and all the DA processes. A final split
of MPI_COMM_WORLD is used to create this, in which the model
process will set its colour to 9999 if and only if its rank on
mdl_mpi_comm ¼ 0. This value is somewhat arbitrarily chosen for
our implementation, and will be the value that all the DA processes
use for this splitting. For simplicity of implementation we want to
ensure that the DA processes have the highest rank on this
communicator. This can be achieved by setting the rank_key used in
the MPI_split of the DA processes higher than that used by the
model processes. To ensure this is possible, the rank_key used by
the model processes in this splitting must be less than the total
number of model processes launched. Thus this split creates the
orange communicator in Fig. 1 which we denote cpl_mpi_comm.

What remains is to identify with which DA process the master
process of each model should transfer data. To do this, we first
detect the total number of DA processes and models which are
running and we call them nda and nens respectively. The rank of
each instance of the model is detected on cpl_mpi_comm and we
denote this particle_id. For each particle_id we must
choose a particular DA process on cpl_mpi_comm with which it
should communicate. The rank of this DA process we shall call
cpl_root and we choose to define it such that

cpl_root : ¼
�
nda� particle_id

nens

�
þ nens:

In doing so the work is distributed almost uniformly across all
the DA processes. The benefits of this choice of cpl_root are
greatest for the DA implementation (see Section 4).
4. Data assimilation code design

In order to make use of a model with the communication ca-
pabilities as given in the previous sections, a data assimilation code
must be written to link with such a generic model. As for the model
code there are two stages: defining the communicators and then
evolving the model. In this section we describe the requirements of
a data assimilation code to use the system we have introduced.

The data assimilation code that the models will be linked to will
have to set appropriately the communicators which we have dis-
cussed earlier. Firstly, an inter-DA process communicator is created
at the same time that the temporary models communicator,
tmp_mdls_comm, is made. This is done by an MPI_split of MPI_-
COMM_WORLD where the DA processes set their colour to 1. The
resulting communicator we denote da_mpi_comm (and is shown in
cyan in Fig. 1). To create cpl_mpi_comm the DA processes must
again perform a split of MPI_COMM_WORLD at the corresponding
time that the models create each mdl_mpi_comm. The couple
colour must be set to 9999, the value used by the master process of
the models. To ensure that the DA processes are given the highest
ranks, the rank_key used in this split must be at least the number of
ensemble members; the size of MPI_COMM_WORLD satisfies this
condition. Once this split is complete, the number of ensemble
members can be computed by differencing the sizes of the com-
municators cpl_mpi_comm and da_mpi_comm.

Each DA process must then compute the rank of the ensemble
members which it will communicate with. For the DA process with
rank da_rank on cpl_mpi_comm, the ensemble members which it
communicates with lie in the interval

��ðda rank� nensÞnens
nda

�
;

�ðda rank� nensþ 1Þnens
nda

�
� 1

�

This distribution of ensemble members to DA processes is a
direct result of the choice of cpl_root chosen in Section 3. This
ensures a relatively even number of ensemble members per data
assimilation process for load balancing purposes. The main
advantage and reason that this distribution strategy has been
adopted is that contiguous ensemble members are associated with
each DA process, thus allowing easy use of MPI methods such as
MPI_gatherv and MPI_scatterv for transferring information about
ensemble members between the DA processes.

In order for the data assimilation code to evolve ensemble
member j forward one timestep, it is simply a matter for the
appropriate DA process to send model j the appropriate initial
conditions and receive back the evolved state. Hence DA process
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�
nda�j
nens

�
þ nens must send the state vector to process rank j on

cpl_mpi_commusinganMPI_sendcommandandreceive theupdated
state vector from the same process. The MPI receive here can be non-
blocking to allow the DA process to perform other calculations while
the model is evolving the state vector forward in time, provided the
dataassimilationmethod inquestionpermits suchextracomputations.

To start the DA code, the ensemble of initial states have to be
received from the connected models using an MPI_recv command.
To allow the models to end correctly, the final step of the DA code
should be to send the state vector of each connected ensemble
member back to the corresponding models. This has the effect of
ensuring that all the send/receive pairs match up. Algorithm 1
shows pseudocode of a data assimilation code showing where the
appropriate communication occurs.
5. Communicating the state vector by the model code

In this sectionwe describe howwe propose to communicate the
model state betweenmodel and data assimilation codes. The entire
model state has to be passed back and forth from the model to the
DA code in two places. Firstly, this is done once the model is ini-
tialised. Secondly, this must happen after the model has completed
an iteration of its timestepping scheme.

In order to send the model state to the DA code, all of the
model's prognostic variables are first gathered to the model master
process so that the DA code will interact with a single complete
state vector. This is a straightforward MPI procedure which we do
not show in Algorithm 3 of the Appendix as the state vector is
already stored in a single vector on a single process, however care
must be taken in a model which employs domain decomposition in
order to not duplicate any variables which are stored in multiple
locations. As every model will store its variables in a different
manner, locating them within the model may present its own
complications. As these are the very variables that we wish to in-
fluence through data assimilation, finding them is an unavoidable
process in setting up any data assimilation system. However, as the
model must collect the state variables when it performs its output,
it may be possible to reuse these sections of output code for this
task.

Once all the prognostic variables are on the master model pro-
cess, they are sent with a single MPI send command to the DA
process with rank cpl_root on the cpl_mpi_comm
communicator. The source of this rank is given in Section 3. We
make the convention that all of the state variables are communi-
cated as MPI_DOUBLE_PRECISION variables with MPI tag set to 1.

Immediately following the MPI send commands, MPI receive
instructions should be issued, to receive the state vector from the
same DA process as used in the MPI send. The receive tag should be
MPI_ANY_TAG to allow extensions to be made for variational-type
DAmethods. Once this receive is completed, themodel state should
be scattered throughout the model to ensure that the updated state
is in the appropriate variables.

The initial MPI send and receive commands are located after the
model is initialised so that the DA code has the possibility of
creating an initial perturbed ensemble. For instance, if each model
has an identical initial state then DA code could add some sto-
chastic variation initially.
The remainder of the MPI send and receive commands must
occur after the model has completed a timestep. Hence the model
has integrated forward in time the model state which was provided
to it by the DA code. This integrated state is returned to the DA code
so that its algorithm can continue. In the case of, say, a leapfrog
integration scheme, this should be done for all parts of the model's
timestepping scheme.

It should be noted that all of the MPI send and receive com-
mands can be included in an if statement within the code or
included as a compile time option. This will allow the user the
functionality of running the model with or without data assimila-
tion. Hence this functionality could then be left within the trunk of
the model code, giving scope to progress the development of the
model independently of the DA system being used.

6. Pros and cons of this strategy

Using MPI communicators in a data assimilation framework is a
powerful tool, and indeed forms the basis of PDAF (Nerger, 2004,
Section 8.3.2). The difference with our technique is that separate
model and DA executables will be run in MIMD form with a single
mpiexec command, as opposed to the SPMD setup of PDAF. PDAF
may be used with a model written in a language that can call
Fortran, and requires that the model executable be rebuilt each
time the data assimilation codes are updated. The implementation
technique described in this paper will be applicable for any model
written in a language which has MPI bindings. These are generally
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directly callable from C, Cþþ and Fortran. Other programming
languages such as C#, Perl, Python, R, Ruby, Java, CL and Matlab are
able to interface with the MPI libraries and are thus compatible
with this technique, though care must be taken to ensure that both
model and DA code use compatible MPI libraries.

The major advantage of adopting the implementation technique
described in this paper is the speed of implementation. In the au-
thors’ experience it has been finding the appropriate position in the
model to insert the appropriate lines of code which has taken the
most time. Once this has been found in the code, then the code
modifications are similar for each different model.

A disadvantage of this implementation technique is that it does
impact on the performance of the model. As we are including extra
communication we are adding an extra overhead in terms of wall-
clock time. This means that the implementation technique will be
theoretically less efficient than converting the model to a subrou-
tine callable by a data assimilation system such as DARTor OpenDA,
however the task of implementing this is the impracticality that the
implementation technique proposed in this paper avoids. It is,
however, much more efficient to use MPI to transfer the data than
writing to disk. A simple test, where a state vector of dimension
2.3 � 106 is written to disk by one process, read in by another, then
reversed so that it is returned to the original process, took
approximately 28 s. In comparison, on the same machine, the same
task accomplished by MPI took approximately 0.03 s. These figures
are more pronounced than those quoted by Nerger and Hiller
(2013) as here we consider a model with approximately 2.5 times
larger state dimension.

One other potential complication is that the proposed technique
requires the communicator used in the model to be changed to the
one defined in Section 3. This complication is only applicable if the
model in question is already parallelised using MPI. In the models
we have considered, this is a simple find and replace task. Using the
MIMD approach may also make debugging and compilation more
problematic, as errors in consistency between different executables
may only be noticed at run-time.

The method we propose in this paper necessary launches more
processes than those to run the models. These additional data
assimilation processes can be performing useful tasks such as
generating random terms while the models are running. This may
save some wall-clock time over other implementation strategies,
but would of course remain model dependent.

Notice that the set-up of themodel is done entirely by themodel
itself. This allows the methods of operating and defining the model
to remain unchanged when it is run within the DA system. Ad-
vantages of keeping the model interface consistent include
improved productivity, shorter learning times, fewer user frustra-
tions and reduced training costs (Nielsen, 1989).

The implementation technique proposed in this paper could be
easily incorporated into an existing framework which uses sub-
routines. A dummy subroutine would have to be created to use MPI
to interfacewith themodel. The core of this subroutinewould be an
MPI_send followed by a corresponding receive, which would
instruct the model to integrate the dynamical system forward one
timestep. These links are planned to be developed in the near
future and would give any model with the MPI capability proposed
in this paper access to the wealth of tools available in, say, DART or
PDAF.

The data assimilation methods which can make immediate use
of a model with the MPI functionality are sequential methods. Most
variants of the Ensemble Kalman Filter (localised EnKF, square root
EnKF, morphing EnKF etc, see for example (Lei et al., 2010; Tippett
et al., 2003)) could easily be implemented in this setting. Fully
nonlinear ensemble data assimilation methods, such as particle
filters (van Leeuwen, 2009) can also be implemented. Examples of
such methods would include the SIR filter (Gordon et al., 1993), the
auxiliary particle filter (Pitt and Shephard, 1999), the implicit par-
ticle filter (Chorin et al., 2010) or the equivalent weights particle
filter (van Leeuwen, 2010). Parameter estimation and sensitivity
analyses could be implemented using these methods by including
the parameters as prognostic variables of the model in an
augmented state approach.

The implementation technique proposed in this paper has the
potential to be extended to allow for variational data assimilation
methods. This would require that the adjoint of the model (Errico,
1997) was also available to provide the necessary gradient infor-
mation. A similar MPI structure to that proposed in this paper for
the forward model could be added to the adjoint model code. In
doing so, the data assimilation code would be able to use a gradient
based optimization method necessary for variational DA.

7. Large scale examples

Models such as Lorenz 1963 (Lorenz, 1963) shown in the ap-
pendix are of course not the scale of model for which the imple-
mentation proposed in this paper is designed. We are indeed
interested in much larger models. The MPI coupling has been
incorporated into a Barotropic Vorticity model with 65536 vari-
ables that has been used for research (Ades and van Leeuwen, 2014)
and teaching of particle filters. It was quickly implemented into
TELEMAC (Hervouet, 2000), an unstructured finite element model
of the North Sea with 114288 state variables, for the assimilation of
tidal gauge data (Thainuruk, 2013). It has also recently been
incorporated into the land-surface models JULES (Best et al., 2011)
and DALEC (Williams et al., 2005), as well as the coupled ocean
biogeochemical model GOTM-ERSEM (Allen et al., 2004).

The implementation technique as described in this paper has
been incorporated into HadCM3 (Gordon et al., 2000) (a coupled
ocean-atmosphere global climate model). Using this, we have
implemented the equivalent weights particle filter, and we show
results here to illustrate simple performance measures. For a
comprehensive overview of the equal weights particle filter see
(van Leeuwen, 2010) and (Ades and van Leeuwen, 2012). Specific
details of the assimilation method including the choice of the
model error covariance matrix, will be thoroughly described in a
forthcoming paper, along with the implications for this new strat-
egy for initialising a climate model. For the implementation
described here artificial sea surface temperature data were assim-
ilated into the model and we present timings for one analysis cycle
(24 h model simulation). The model has state dimension 2314430
and observation dimension 27370. For fully nonlinear data assim-
ilation, this is a large system (Snyder et al., 2008). Note that this
method updates the model state vector at every timestep, not just
at observation time.

Table 1 shows wall-clock timings when the models and data
assimilation system were run together. The ensemble size starts
from 1 for completeness of the computational timings. The first
column gives the number of models in the ensemble. The second
column shows the total number of processing cores used; each
model used 24 and was associated with its own DA MPI process
which was distributed over another 12 cores in a hybrid MPI/
OpenMP/multithreaded implementation. The third column shows
the wall-clock time taken to run the model to simulate a single day
when the MPI send and receives as described in this paper are not
used. Hence it is constant as no communication happens except for
the intrinsic model communication.

The forth column in Table 1 can be compared with the third
column to see how much of an overhead using the MPI imple-
mentation described in this paper adds to the model run-time. The
penultimate and final columns show the wall-clock time when



Table 1
Relative timings of HadCM3 with and without the MPI coupling over one analysis step, run on ARCHER, the UK's national HPC machine. It is a Cray XC30 with an Aries
interconnect.

Number of ensemble
members

Number of
cores used

Model only
time (s)

Model þ MPI
communication time (s)

Model þ MPI þ stochastic
error (s)

Model þ MPI þ equivalent
weights filter time (s)

1 36 4.6 5.5 25.6 39.5
3 108 4.6 5.5 26.1 39.3
7 252 4.6 5.5 26.4 39.7
15 540 4.6 5.5 26.4 37.9
31 1116 4.6 5.5 27.5 39.3
62 2232 4.6 5.5 26.5 39.7
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running a stochastic ensemble and the specific data assimilation
scheme respectively. These are an order of magnitude larger than
the time to run the deterministic model itself, and even more of an
overhead than the additional time that the MPI communication has
added. Note how the timings for each different type of ensemble
remains approximately constant as the number of ensemble
members increases, showing excellent scaling properties for this
implementation strategy. This is due to the fact that, as the
ensemble size increases, we launch extra DA processes to do the
computations associated with the extra ensemble members.

The computational cost of the equivalent weights particle filter,
and indeed a stochastic ensemble, is dominated by the cost of
computing correlated random errors. To do so requires a matrix-
vector multiplication by Q

1
2 at each timestep of the model where,

with Nx the size of the state vector of the model, Q2ℝNx�Nx is the
model error covariance matrix. The addition of correlated random
error should be included in any consistent DA method that con-
siders the model stochastic and so is not a limitation of the
equivalent weights particle filter. There are 72 timesteps per day in
themodel, so the stochastic version of HadCM3 requires 72 of these
matrix-vector multiplications. The equivalent weights particle filter
required an extra 28 matrix-vector multiplications as part of its
relaxation scheme. For this application, Q

1
2 exists only as a sparse

matrix, and not in operator form, requiring 16 GB of disk space to
store only its upper part. To maximise the efficiency of these matrix
vector multiplications they have been implemented in parallel
using the highly efficient sparse BLAS implementation LIBRSB
(Martone et al., 2010).

Note that all these performance numbers are highly model
dependent. However, the more computationally expensive the
model, the less overhead using the proposedMPI coupling will add.
For instance, this coupling has been included within the UK
MetOffice's operational forecast model (UM vn8.2) configured as an
N512L70 global model. This has 40 km horizontal resolution and 70
vertical layers. The size of the state vector for this system is
275537920z2:7� 108.

For a single instance of this model, a single model timestep
without MPI communication to a DA code took 28.4 s. Running the
code with the MPI communication to a DA code resulted in a wall-
clock time for a singlemodel timestep of 30.5 s. The communication
overhead is smaller with 7.4% for the larger model compared to 20%
with HadCM3.
8. Code availability

Our examples of this implementation have been released under
the name Employing Message Passing Interface for Researching
Ensembles (EMPIRE). Step-by-step implementation guides and
minimal codes to test the implementation are available at http://
www.met.reading.ac.uk/~darc/empire, along with software that
implements various sequential data assimilation methods accord-
ing to the design specified in Section 4.
9. Conclusions

In this paper we have proposed a technique for coupling a
dynamical model with a data assimilation code by using MPI. This
technique has the advantage of not writing files to disk, as well as
not changing the flow of the model program. This means that the
changes to the model source code are small, reducing the effort
required to adapt the model to fit the data assimilation system.

We have given a specific example of the changes needed in a
simple model to elucidate the abstract concepts of sending and
receiving data. The technique has been applied to much larger
models, specifically HadCM3 and the current UK MetOffice opera-
tional global forecast model. Timings for running the models with
the proposed MPI technique have been shown not to significantly
impede performance and have excellent scaling properties.

Acknowledgements

The authors would like to thank PJ van Leeuwen for his dis-
cussion on the data assimilation test cases to apply this framework.
This work was supported by NERC grant NE/J005878/1. This work
used the ARCHER UK National Supercomputing Service (http://
www.archer.ac.uk).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.envsoft.2015.02.003.

References

Ades, M., van Leeuwen, P., 2014. The equivalent-weights particle filter in a high
dimensional system. Q. J. R. Meteorol. Soc. http://dx.doi.org/10.1002/qj.2370.

Ades, M., van Leeuwen, P.J., 2012. An exploration of the equivalent weights particle
filter. Q. J. R. Meteorol. Soc. 139 (672), 820e840.

Allen, J., Siddorn, J.R., Blackford, J.C., Gilbert, F.J., 2004. Turbulence as a control on
the microbial loop in a temperate seasonally stratified marine systems model.
J. Sea Res. 52 (1), 1e20.

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., Avellano, A., 2009. The
data assimilation research testbed: a community facility. Bull. Am. Meteorol.
Soc. 90 (9), 1283e1296.

Barth, A., Vandenbulcke, L., 2013. Ocean Assimilation Kit. http://modb.oce.ulg.ac.be/
mediawiki/index.php/Ocean_Assimilation_Kit.

Best, M.J., Pryor, M., Clark, D.B., Rooney, G.G., Essery, R.L.H., M�enard, C.B.,
Edwards, J.M., Hendry, M.A., Porson, A., Gedney, N., Mercado, L.M., Sitch, S.,
Blyth, E., Boucher, O., Cox, P.M., Grimmond, C.S.B., Harding, R.J., 2011. The joint
UK land environment simulator (JULES), model description Part 1: energy and
water fluxes. Geosci. Model Dev. 4 (3), 677e699.

Brankart, J., Testut, C., Parent, L., 2002. An Integrated System of Sequential Assim-
ilation Modules: Sesam Reference Manual. LEGI/MEOM, Grenoble, France. Tech.
Rep., Office Note. http://lgge.osug.fr/meom/Outils/SESAM/sesam.html.

Browne, P., Charlton-Perez, C., Dance, S.L., 2014. RMetS special interest group
Meeting: high resolution data assimilation. Atmos. Sci. Lett. 15 (4), 354e357.

Chorin, A.J., Morzfeld, M., Tu, X., 2010. Implicit Particle Filters for Data Assimilation
arXiv preprint arXiv:1005.4002.

Desouza, J., Kuhn, B., de Supinski, B.R., 2005. Automated, scalable debugging of MPI
programs with Intel message Checker. In: SE-HPCS ’05 Proceedings of the
Second International Workshop on Software Engineering for High Performance
Computing System Applications, pp. 78e82.

http://www.met.reading.ac.uk/%7Edarc/empire
http://www.met.reading.ac.uk/%7Edarc/empire
http://www.archer.ac.uk
http://www.archer.ac.uk
http://dx.doi.org/10.1016/j.envsoft.2015.02.003
http://dx.doi.org/10.1016/j.envsoft.2015.02.003
http://dx.doi.org/10.1002/qj.2370
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref2
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref2
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref2
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref3
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref3
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref3
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref3
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref4
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref4
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref4
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref4
http://modb.oce.ulg.ac.be/mediawiki/index.php/Ocean_Assimilation_Kit
http://modb.oce.ulg.ac.be/mediawiki/index.php/Ocean_Assimilation_Kit
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref6
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref6
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref6
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref6
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref6
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref6
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref6
http://lgge.osug.fr/meom/Outils/SESAM/sesam.html
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref8
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref8
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref8
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref9
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref9
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref10
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref10
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref10
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref10
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref10


P.A. Browne, S. Wilson / Environmental Modelling & Software 68 (2015) 122e128128
Errico, R., 1997. What is an adjoint model? Bull. Am. Meteorol Soc. 78 (11),
2577e2591.

Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi geostrophic
model using Monte Carlo methods to forecast error statistics. J. Geophys. Res.
Oceans (1978e2012) 99 (C5), 10143e10162.

Evensen, G., 2007. Data Assimilation. Springer.
Evensen, G., van Leeuwen, P., 2000. An ensemble Kalman smoother for nonlinear

dynamics. Mon. Weather Rev. 128 (6), 1852e1867.
Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay, V.,

Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J., Graham, R.L.,
Woodall, T.S., 2004. Open MPI : goals, concept, and design of a next generation
mpi implementation. In: 11th European PVM/MPI Users' Group Meeting,
Budapest, Hungary.

Gordon, C., Cooper, C., Senior, C., Banks, H., Gregoire, L.J., Johns, T., Mitchell, J.,
Wood, R., 2000. The simulation of SST, sea ice extents and ocean heat transports
in a version of the Hadley Centre coupled model without flux adjustments.
Clim. Dyn. 16, 147e168.

Gordon, N., Salmond, D., Smith, A., 1993. Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEE Proc. F Radar Signal Process. 140, 107e113.

Gropp, W., Lusk, E., Doss, N., Skjellum, A., 1996. A high-performance, portable
implementation of the MPI message passing interface standard. Parallel Com-
put. 22 (6), 789e828.

Hervouet, J.-M., 2000. TELEMAC modelling system: an overview. Hydrol. Process. 14
(13), 2209e2210.

Lei, J., Bickel, P., Snyder, C., 2010. Comparison of ensemble Kalman filters under non-
Gaussianity. Mon. Weather Rev. 138 (4), 1293e1306.

Lorenz, E.N., 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130e141.
Martone, M., Filippone, S., Tucci, S., Paprzycki, M., Ganzha, M., 2010. Utilizing

recursive storage in sparse matrix-vector multiplication - preliminary consid-
erations. In: Philips, T. (Ed.). ISCA, pp. 300e305. CATA.

Nerger, L., 2004. Parallel Filter Algorithms for Data Assimilation in Oceanography.
Phd, Universit€at Bremen.
Nerger, L., Hiller, W., 2013. Software for ensemble-based data assimilation systems
e implementation strategies and scalability. Comput. Geosci. 55, 110e118.

Nerger, L., Hiller, W., Schr€oter, J., 2005. Pdaf e the parallel data assimilation
framework: experiences with kalman filtering. In: Zwieflhofer, W.,
Mozdzynski, G. (Eds.), Proceedings of the Eleventh ECMWF Workshop on the
Use of High Performance Computing in Meteorology. World Scientific, Reading,
UK, pp. 63e83.

Nielsen, J., 1989. Coordinating user interfaces for consistency. ACM SIGCHI Bull. 20
(3), 63e65.

OpenDA, 2013. The OpenDA data-assimilation toolbox. http://www.openda.org.
Pieterse, V., Black, P.E. (Eds.), 1999. Algorithms and Theory of Computation Hand-

book, Chapter Single Program Multiple Data. CRC Press LLC.
Pitt, M.K., Shephard, N., 1999. Filtering via simulation : auxiliary particle filters.

J. Am. Stat. Assoc. 94 (446), 590e599.
Snyder, C., Bengtsson, T., Bickel, P., Anderson, J., 2008. Obstacles to high-

dimensional particle filtering. Mon. Weather Rev. 136 (12), 4629e4640.
Thainuruk, R., 2013. Using the Equivalent Weights Particle Filter to Predict Storm

Surges for a Finite-element Model of the North Sea (MSc. thesis). University of
Reading.

Tippett, M.K., Anderson, J.L., Bishop, C.H., Hamill, T.M., Whitaker, J.S., 2003.
Ensemble square root filters. Mon. Weather Rev. 131 (7), 1485e1490.

van Leeuwen, P.J., 2009. Particle filtering in geophysical systems. Mon. Weather Rev.
137 (12), 4089e4114.

van Leeuwen, P.J., 2010. Nonlinear data assimilation in geosciences: an extremely
efficient particle filter. Q. J. R. Meteorol Soc. 136 (653), 1991e1999.

Verlaan, M., 1998. Efficient Kalman Filtering Algorithms for Hydrodynamic Models
(PhD thesis). Technische Universiteit Delft.

Williams, M., Schwarz, P.A., Law, B.E., Irvine, J., Kurpius, M.R., 2005. An improved
analysis of forest carbon dynamics using data assimilation. Glob. Change Biol. 11
(1), 89e105.

http://refhub.elsevier.com/S1364-8152(15)00051-1/sref11
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref11
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref11
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref12
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref12
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref12
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref12
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref12
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref13
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref14
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref14
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref14
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref15
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref15
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref15
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref15
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref15
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref16
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref16
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref16
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref16
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref16
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref17
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref17
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref17
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref18
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref18
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref18
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref18
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref19
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref19
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref19
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref20
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref20
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref20
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref21
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref21
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref22
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref22
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref22
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref22
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref23
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref23
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref23
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref24
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref24
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref24
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref25
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref25
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref25
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref25
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref25
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref25
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref25
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref25
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref26
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref26
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref26
http://www.openda.org
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref28
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref28
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref29
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref29
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref29
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref30
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref30
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref30
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref31
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref31
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref31
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref32
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref32
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref32
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref33
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref33
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref33
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref34
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref34
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref34
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref35
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref35
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref36
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref36
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref36
http://refhub.elsevier.com/S1364-8152(15)00051-1/sref36

	A simple method for integrating a complex model into an ensemble data assimilation system using MPI
	1. Introduction
	2. Overview of MPI
	3. MPI communicator initialisation for model processes
	4. Data assimilation code design
	5. Communicating the state vector by the model code
	6. Pros and cons of this strategy
	7. Large scale examples
	8. Code availability
	9. Conclusions
	Acknowledgements
	Appendix A. Supplementary data
	References


