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Abstract. Let ‘p: [0, l] + Iw have a Lipschitz-continuous derivative on [0, I], j:, q(t) dt = 0, let 

~utl~\Q and write ~,,(x)=~(x)+~((x+a})+~~~+~({x+(n-I)cu}), HEN, .us[O,l[. In this 

paper results on the boundedness and the limit points of the sequence (p,,(x)),, ., are given. 

Further, ergodicity of the skew product (.u, .v) ++(~+a, ~+~(.x)) on KY/Z x[18 is proved for certain 

classes of p and (Y. 
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Introduction 

In [4] the following result was shown. 

Theorem. Let cp : [0, l] + [w be continuously diferentiable on the closed interval [0, 11, 

let j:, cp( t) dt = 0 and suppose that cy is irrational. If q(O) # q(l), then T,(x, y) = 

(x + a, y + p(x)) is ergodic on R/Z x Iw (with respect to h x A,, h the normalized Haar 

measure on R/Z, A,, the Lebesgue measure on IF!). 

In this paper we shall study whether “q(O) # cp( 1)” is also a necessary condition 

for ergodicity of the skew product T, : see Corollary 1.3. Further, we shall obtain 

a result on the ergodicity of T, in the case q(O) = v(l), cp K-times continuously 

differentiable on [0, 11, K 2 2: see Theorem 1.4. 

We shall use the following terminology. Let [w/Z be identified with the interval 

[0, l[ (with addition modulo 1) and let A denote the normalized Haar measure on 

[w/Z-[0, l[. If nEN and XE[O, l[, we write 

cp,(x):=cp(x)+cp({x+(~})+...+cp({x+(n-l)(~}), 

where { .} denotes the fractional part. 
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It is well-known that the following two questions are closely related to ergodicity 

of skew products of the type T, (see, for example, [4, Lemmata 1, 2 and 31). 

0.1. Question. Under which conditions (for cp, x and LY) do we have sup,,j~,,(x)l <a? 

0.2. Question. What can be said about limit points of the sequence (p,,(x)), ., ? 

These two questions are of interest in the theory of uniform distribution modulo 

1 as well, see [9,6,7, lo] and, in particular, [2] for the first question and [8,3] for 

the second one. 

1. Results 

Throughout this paper we shall assume that cp : [0, l] + R! is continuously differenti- 

able on the closed interval [0, 11, l,: q(t) dt = 0, and cp’ is Lipschitz-continuous on 

[0, I] i.e., 

C a positive constant, 6 > 0 arbitrary. Let cy be irrational with simple continued 

fraction expansion a = [a,,; a,, a?, . . .], a, the partial quotients. Let (p,/qz), .,) be 

the sequence of the convergents to a. 

1.1. Theorem. Let ~(0) # cp( 1). Then 

(1) sup,,Iv,(x)I=~ V-~E[O, I[; 

(2) ,for almost all x E [0, l[ the sequence (p,,(x)),, ., is dense in R; 

(3) Statement (2) cannot be improved: there are cp (us above), o t R\Q and x E [0, 1[ 

such that (cp,,(.x)),, ., is not dense in R. 

1.2. Theorem. Let ~(0) = cp( 1). Then we have the.following statements. 

(1) For almost all (Y E R\Q one has sup,,lcp,,(x)] < ~0 Vx E [0, l[. In particular, this is 

true for those cy E R\O with I”_,, a,+, /ql < CO (any irrational (Y with bounded partial 

quotients has this property). 

(2) Let CktL G(k) e*““‘ denote the Fourier series of cp. 

(2.1) Lf G(k) # 0 for infinitely many k, then there are continuum-many LY E R\O 

such that sup,,]cp,,(x)]=oo VXE[O, l[. 

(2.2) Lf G(k) # 0 ,for ,finitelv many k only, then for all cy E R\Q one has 

~~P,,lV,(X)l <cc VXE to, I[. 

1.3. Corollary. Let cp be as above and let LY E R/O be such that C:=,, ai+,/q, < 00. 

From Theorem 1.1(l) and Theorem 1.2(l) itfollows that cp(O)=cp(l) ifand only if 

sup,,](p,,(x)] < 00 ,for some/all x E [0, l[. Hence T, is ergodic on R\Z x R [f and on1.v 

4f P(O) f V(l). 
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1.4. Theorem. Suppose that cp : [0, l] -+ IR is K-times continuously differentiable on 

[0, 11, K 3 2, cp(“(O) = p”‘(l), 0s j 5 K - 2, qcKp”(0) # cpcK-‘)( l), and J: cp( t) dt = 

0. Let LY E R\Q be such that a,+, 3 qfK for i = 1,2,. . . (there are continuum-many such 

a). Then T,(x,y)=(x+cu,y+cp(x)) isergodicon R/Zx[w. 

1.5. Corollary. Zf cp: [O, l] + R is a polynomial of degree larger or equal to 1, 

J:,cp(t)dr=O, th en T, is ergodic on R/Z x R for at least continuum-many (Y E R\Q. 

Remark. Let cp and (Y be as in Theorem 1.4. Then the transformation S,(x, y) = 

(x-to, y+cp(x)) is ergodic on R/Z xR/Z (with respect to the invariant measure 

A x A). This implies that S, is uniquely ergodic and hence minimal, even though 

the map XH p(x) mod 1 belongs to the trivial homotopy class of functions from 

R/Z to R/Z (see [l]). 

2. The proofs 

Proof of Theorem 1.1. We shall give an indirect proof for (1). Suppose that 

sup,lp,,(x)] <co for some x E [0, l[. The sequence ( Tk~)kzO is uniformly distributed 

modulo 1, hence (see [5, Corollary 1.11) 

Therefore 

sup II(PnIIL2<~ (L’ = L2(lR/Z, A)). 

IfTx:=x+amod1withx~IW/Z~[O,1[,thencp=g-g~TinL2withsomeg~L2 

(see [9,6]). This implies 

& I~(~)l’lIlk412-, (2.1) 
h#O 

where G(k) stands for the kth Fourier coefficient of cp and II ka 11 denotes the distance 

to the nearest integer of ka. 

cp’ is Lipschitz-continuous on [0, 11, so integration by parts gives (k # 0) 

G(k) 2 C. (Iv(l) - p(O)l/lkl) with some constant C> 0. 

It is Ijq,cxll < l/(ai+rqi) and the sum in (2.1) can be estimated from below by 

f 14G~)121119i~l12. i=, 
The latter sum diverges, which contradicts (2.1). 

(2): We shall apply [4, Lemma 21. Let d f 0 be an arbitrary real number. It will 

be shown that for almost all x in [0, l[ there is a sequence (Nk)hzl such that 

limk_ pNI(x) = d (and even limk,,l( Nk~ II = 0). ( Nk)ksl will depend on x. 
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Write m:=[21dl .I~(l)-(p(O)l~‘(l-p((~)) ‘1 and c:=d/m, p(n) as in [4]. Let K 

be a nonnegative integer and define M(c, K) := {x t [0, l[: 3(q,,!), ., subsequence 

of (q,,),, <, such that lim,,, c~~,,,(x+Ko)=c}. It is q,,,=q,Jc,K,x). If M(c):= 

n;=,, M(c, K) then [4, Lemma 21 implies h(M(c)= 1. 

For every x in M(c) there are subsequences ( Qk( i))r ., , i = 1, . . . , m, of the 

sequence (qn),, _, of denominators of the convergents to N such that 

i=l, 2,..., m-l. Let N,:=Q,(l)+...+Q,(m). Then lINka// tends to zero and 

I~,v~(x)-dl<llk. 
(3): If q(x) = x -1 and x = 0, then Sos [lo] has shown that (~p,~(o)),, ., is bounded 

from below for continuum-many a. 0 

2.1. Lemma. Let s, qEN, s< q, (s, q) = 1, and let s/q have the simple continued 

fraction expansion [O; b, , . . , b,,]. Then the discrepancy D&, ofthe q ~ 1 points (k/q, 

{ks/q})fZT, (and of the points (k/q, {ks/q})fZ\ as well) satisfies 

q 

with some absolute constant C. 

Proof. See [5, Chapter 

show that 

(q-l)D;_,s 

21 for the definition of the discrepancy. It is elementary to 

l+ max m. DS,((Ckslql);“Y:). 
I. ,,I’ <,-I 

From [5, inequality (3.18)], it follows that 

m. Df(({ks/q});“l~:)~1+2 $ b,. 0 
,=, 

Corollary. The discrepancy Dz,, , of the q,, - 1 points (k/q,,, {kq,,_,/q,,})~=~~ satisfies 

q,1 

with some absolute constant C. 

(2.2) 

Every n EN has a unique representation of the form n = XI_,, n,q, with digits 

n,,E{O,l,..., a,-l},n,E{O,l,..., a,+,},i=1,2 ,... Weshallwriten(k):=~~,~n,q,, 

k-1,2,.... 
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2.2. Lemma. Let n E N, n =I:_,, n,q,, n, # 0, and let XE [0, l[. Then 

a,(x) = (cp(l) - o(O)) i’ “‘z’ CA,, + it ‘y ‘Th,, 

h-0 I-0 h-0 I=0 

+0 ( ir nh.max l/q,, Iit ail(ah+,qh) 1 1) , 

h =o ,-0 

(2.3) 

where 

Ph a=-+ 01, 
qk (a&+,&) ’ 

k=O,l,..., 

Ok =(-w-41, 14 < 1, 

ch./= 8,,/(2a~+,)+{q,x,,,}-:, 

x~,,={x+(n(k)+fq,)cy}, 

cp({l- l/q, +{wk,,l/qh + m,,-,~hl(ah+,qI)l)- cp(l - llqh) 
Tk.1 = k even, 

cp({m,,Bk/(a,+,q~)+{q,x,,,}/q~})-cp(O) k odd, 

m,,,- I such that myi_, . pA = (qL - 1) - rk,, mod qr, 

m,, such that m, . pI = -rA,, mod qr, 

OG m,, myh-l s qh - 1, rh,f = [wd. 

Proof. From identity (1) and Proposition 1 and 2 of [4] and from Lemma 2.1 it 

follows that (q:= qr, a := a,,, , O:= 0,) 

-cp(l-llq)+(fJ/a)O ( > ii 4/q +0(1/q) 
t-0 

for even k. For odd k, the second and the third term in this sum have to be replaced 

by cp({moel(aq2)+{qx}lq}) and by V(O), respectively. Summation over k and 1 will 

give the result. 0 
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2.3. Lemma. For every a E R\Q, I;_,, (I:=,, u,)/qk < ~0. 

Proof. We define s(k) := card{ i, 0 ~i~k:a,=l}andr(k):=card{i,O~i~k-l:a,= 

a,,, = 1). If s(k) ~$k, then 

q,Zmax{u,:0~i~k}.2h’4P’. 

If s(k) > $k, then 

From these estimates the result follows easily. 0 

Proof of Theorem 1.2. (1): Because of q(l) = q(O) and of 

lqll G max{l~‘(y)l: .v E [O, 111 . 2/q, 
identity (2.3) implies 

V,(X) =O ? a,+, max t/q,, $ a,l(ak+,q,) 
( 1 1) 

. 
!. =o ,-,I 

From Lemma 2.3 and the fact that CF=,, a r+,/qk is finite for almost all N the result 

follows. 

(2.1): It is not difficult to show that there are continuum-many a such that 

diverges. From the proof of Theorem l.l( 1) the result follows. 

(2.2): By simple calculation we see that 

I~,(x)l~ C F l~(kMk4 

with some constant C. 0 

2.4. Lemma. Let cp and a be us in Theorem 1.4 and let d E R, d > 0, be arbitrary. 

Then,,foralmost allx E [0, l[, there is a subsequence (ql,,,),,, _, ofthesequence (q2A)k_., , 

qk,, = qr,,,(x), such that 

lim p,,,,qk,,,(x)=d’sign(cp’km”(l)-cp’k-”(0)) 
m-m 

and 

lim II fmqk,,,a (1 = 0, 
I?, -v 

where 

lrn := 1 

[dq:,:‘/ CK I, K even, 

[dq~,_‘l(~,{qk,,,x})l, K odd, 

CK := Ip (k-‘)(l)-q~‘~~“(O)I. B,/K!, ?:, := KCKBK_,/BK 

and (B,),,, is the sequence of Bernoulli-numbers. 
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Proof. It follows from Euler’s summation formula that (q := qk) 

if K is even, and 

q-1 

,zx” cpGlq)=wq-K)> 

as well as 

(2.4) 

if K is odd. 

The sequence ({ q2kx})k _, is uniformly distributed module 1 for almost all x E [0, 1[ 

(see [5, Theorem 4.11). Hence, for almost all x, there exists a subsequence (qk,,Jm,,-- 

it depends on x-such that 

lim {qk,,,x] = 0, {qk,,,x] 2 s:,:,“, Vm E N. 

Let q := qk ,,,, a := ak,,,+, , t := t, and 0 := 19~,,~. Then 0 > 0, 0 < t s a’/’ and {qx}/q + 

l/(aq)+ t/(aq)< l/q for sufficiently large m. Hence (see [4, proof of Lemma 21) 

R,(X)= C C cP(1/q+m,Bl(aq’)+{qx}lq+bBl(aq)), 
h=O I=0 

where m, is defined by the congruence m,p,,,, = l-[q~,,,xl mod qk ,,,, 0s ml < qk,,,. We 
apply Taylor’s formula and find that 

q-1 y-1 
P,,(X) = t C cp(llq)+ t{qx)lq C cp’(llq)+O(t’la)+O(t{qx}2q~K+‘). 

I:0 I = 0 

(2.5) 

If K is even, then (2.4) and (2.5) imply 

cp,q(x) = tCfc/q K~‘+O(t2/a)+O(t{qx}q~K+‘). 

If K is odd, then (2.4) and (2.5) imply 

cp,q(x)=O(tq~K)+t{qx}~Kq~K+‘+O(t2/a)+O(t{qx~’q~K+‘) 

Thus, in both cases, 

lim (~,~(x)=d. sign((p’“-‘j(l)-(p’““(0)) 
m-u- 

It is trivial that lim,,, I/ t,qk,,,a I( = 0. 0 

Proof of Theorem 1.4. Let c # 0 be an arbitrary real number with the same sign as 

cp 
(K~Il(l)_cp’K-I) (0). Define A(c) := {x E R/Z = [0, l[: 3( Q,,), z,, subsequence of 
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N, such that lim ,,,_ -( cpo,,,(x) = c‘ and Cm,,,, , 11 Q,,,(Y 1) = 0). The set A(c) is invariant 

under the ergodic transformation XH.X+ LY mod 1 on R/Z, hence h(A(c)) E (0, 1). 

From Lemma 2.4 it follows that the A-measure of A(c) is 1. We follow the proof 

of [4, Lemma 31 to show that c’ is a period of the skew product T,. The set P, of 

periods of T, is a group, hence P, = R. This implies that T, is ergodic on R/Z x IF?. q 
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