ON WEYL SUMS AND SKEW PRODUCTS OVER IRRATIONAL ROTATIONS

P. HELLEKALEK and G. LARCHER
Institut für Mathematik, Universität Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria

Received November 1987

Abstract

Let $\varphi:[0,1] \rightarrow \mathbb{R}$ have a Lipschitz-continuous derivative on $[0,1], \int_{0}^{1} \varphi(t) \mathrm{d} t=0$, let $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ and write $\varphi_{11}(x)=\varphi(x)+\varphi(\{x+\alpha\})+\cdots+\varphi(\{x+(n-1) \alpha\}), n \in \mathbb{N}, x \in[0,1[$. In this paper results on the boundedness and the limit points of the sequence $\left(\varphi_{n}(x)\right)_{n=1}$ are given. Further, ergodicity of the skew product $(x, y) \mapsto(x+\alpha, y+\varphi(x))$ on $\mathbb{R} / \mathbb{Z} \times \mathbb{F}$ is proved for certain classes of φ and α.

Contents

Introduction 189

1. Results 190
2. The proofs 191
References 196

Introduction

In [4] the following result was shown.
Theorem. Let $\varphi:[0,1] \rightarrow \mathbb{R}$ be continuously differentiable on the closed interval $[0,1]$, let $\int_{0}^{1} \varphi(t) \mathrm{d} t=0$ and suppose that α is irrational. If $\varphi(0) \neq \varphi(1)$, then $T_{\varphi}(x, y)=$ $(x+\alpha, y+\varphi(x))$ is ergodic on $\mathbb{R} / \mathbb{Z} \times \mathbb{R}$ (with respect to $\lambda \times \lambda_{x}, \lambda$ the normalized Haur measure on $\mathbb{R} / \mathbb{Z}, \lambda_{\infty}$ the Lebesgue measure on \mathbb{R}).

In this paper we shall study whether " $\varphi(0) \neq \varphi(1)$ " is also a necessary condition for ergodicity of the skew product T_{φ} : see Corollary 1.3. Further, we shall obtain a result on the ergodicity of T_{φ} in the case $\varphi(0)=\varphi(1), \varphi K$-times continuously differentiable on $[0,1], K \geqslant 2$: see Theorem 1.4.

We shall use the following terminology. Let \mathbb{R} / \mathbb{Z} be identified with the interval [$0,1[$ (with addition modulo 1) and let λ denote the normalized Haar measure on $\mathbb{R} / \mathbb{Z} \cong[0,1[$. If $n \in \mathbb{N}$ and $x \in[0,1[$, we write

$$
\varphi_{n}(x):=\varphi(x)+\varphi(\{x+\alpha\})+\cdots+\varphi(\{x+(n-1) \alpha\}),
$$

where $\{\cdot\}$ denotes the fractional part.

It is well-known that the following two questions are closely related to ergodicity of skew products of the type T_{φ} (see, for example, [4, Lemmata 1, 2 and 3]).
0.1. Question. Under which conditions (for φ, x and α) do we have $\sup _{n}\left|\varphi_{n}(x)\right|<\infty$?
0.2. Question. What can be said about limit points of the sequence $\left(\varphi_{n}(x)\right)_{n=1}$?

These two questions are of interest in the theory of uniform distribution modulo 1 as well, see [9,6,7,10] and, in particular, [2] for the first question and [8, 3] for the second one.

1. Results

Throughout this paper we shall assume that $\varphi:[0,1] \rightarrow \mathbb{R}$ is continuously differentiable on the closed interval [0,1], $\int_{0}^{1} \varphi(t) \mathrm{d} t=0$, and φ^{\prime} is Lipschitz-continuous on $[0,1]$ i.e.,

$$
\sup \left\{\left|\varphi^{\prime}(x)-\varphi^{\prime}(y)\right|: 0 \leqslant x, y \leqslant 1,|x-y|<\delta\right\} \leqslant C \cdot \delta,
$$

C a positive constant, $\delta>0$ arbitrary. Let α be irrational with simple continued fraction expansion $\alpha=\left[a_{0} ; a_{1}, a_{2}, \ldots\right], a_{i}$ the partial quotients. Let $\left(p_{i} / q_{i}\right)_{i<0}$ be the sequence of the convergents to α.
1.1. Theorem. Let $\varphi(0) \neq \varphi(1)$. Then
(1) $\sup _{n}\left|\varphi_{n}(x)\right|=\infty \forall x \in[0,1[$;
(2) for almost all $x \in\left\lceil 0,1\left\lceil\right.\right.$ the sequence $\left(\varphi_{n}(x)\right)_{n=1}$ is dense in \mathbb{R};
(3) statement (2) cannot be improved: there are φ (as above), $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ and $x \in[0,1[$ such that $\left(\varphi_{n}(x)\right)_{n}$, is not dense in \mathbb{R}.
1.2. Theorem. Let $\varphi(0)=\varphi(1)$. Then we have the following statements.
(1) For almost all $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ one has $\sup _{n}\left|\varphi_{n}(x)\right|<\infty \forall x \in[0,1$ [. In particular, this is true for those $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ with $\sum_{i=1}^{\infty_{i}} a_{i+1} / q_{i}<\infty$ (any irrational α with bounded partial quotients has this property).
(2) Let $\sum_{k \in \mathbb{Z}} \hat{\varphi}(k) \mathrm{e}^{2 \pi \mathrm{i} k \cdot}$ denote the Fourier series of φ.
(2.1) If $\hat{\varphi}(k) \neq 0$ for infinitely many k, then there are continuum-many $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ such that $\sup _{n}\left|\varphi_{n}(x)\right|=\infty \forall x \in[0,1[$.
(2.2) If $\hat{\varphi}(k) \neq 0$ for finitely many k only, then for all $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ one has $\sup _{n}\left|\varphi_{n}(x)\right|<\infty \forall x \in[0,1[$.
1.3. Corollary. Let φ be as above and let $\alpha \in \mathbb{R} / \mathbb{Q}$ be such that $\sum_{i=0}^{\infty} a_{i+1} / q_{i}<\infty$. From Theorem 1.1(1) and Theorem 1.2(1) it follows that $\varphi(0)=\varphi(1)$ if and only if $\sup _{n}\left|\varphi_{n}(x)\right|<\infty$ for some / all $x \in\left[0,1\left[\right.\right.$. Hence T_{φ} is ergodic on $\mathbb{H} \backslash \mathbb{Z} \times \mathbb{R}$ if and only if $\varphi(0) \neq \varphi(1)$.
1.4. Theorem. Suppose that $\varphi:[0,1] \rightarrow \mathbb{R}$ is K-times continuously differentiable on $[0,1], K \geqslant 2, \varphi^{(j)}(0)=\varphi^{(j)}(1), 0 \leqslant j \leqslant K-2, \varphi^{(K-1)}(0) \neq \varphi^{(K-1)}(1)$, and $\int_{0}^{1} \varphi(t) \mathrm{d} t=$ 0 . Let $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ be such that $a_{i+1} \geqslant q_{i}^{2 K}$ for $i=1,2, \ldots$ (there are continuum-many such $\alpha)$. Then $T_{\varphi}(x, y)=(x+\alpha, y+\varphi(x))$ is ergodic on $\mathbb{R} / \mathbb{Z} \times \mathbb{R}$.
1.5. Corollary. If $\varphi:[0,1] \rightarrow \mathbb{Q}$ is a polynomial of degree larger or equal to 1 , $\int_{0}^{1} \varphi(t) \mathrm{d} t=0$, then T_{φ} is ergodic on $\mathbb{R} / \mathbb{Z} \times \mathbb{R}$ for at least continuum-many $\alpha \in \mathbb{R} \backslash \mathbb{Q}$.

Remark. Let φ and α be as in Theorem 1.4. Then the transformation $S_{\varphi}(x, y)=$ $(x+\alpha, y+\varphi(x))$ is ergodic on $\mathbb{R} / \mathbb{Z} \times \mathbb{R} / \mathbb{Z}$ (with respect to the invariant measure $\lambda \times \lambda$). This implies that S_{φ} is uniquely ergodic and hence minimal, even though the map $x \mapsto \varphi(x) \bmod 1$ belongs to the trivial homotopy class of functions from \mathbb{R} / \mathbb{Z} to \mathbb{R} / \mathbb{Z} (see [1]).

2. The proofs

Proof of Theorem 1.1. We shall give an indirect proof for (1). Suppose that $\sup _{n}\left|\varphi_{n}(x)\right|<\infty$ for some $x \in\left[0,1\left[\right.\right.$. The sequence $\left(T^{k} x\right)_{k \geqslant 0}$ is uniformly distributed modulo 1, hence (see [5, Corollary 1.1])

$$
\left\|\varphi_{n}\right\|_{2}^{2}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1}\left|\varphi_{n}\left(T^{k} x\right)\right|^{2}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1}\left|\varphi_{n+k}(x)-\varphi_{k}(x)\right|^{2} .
$$

Therefore

$$
\sup _{n}\left\|\varphi_{n}\right\|_{L^{2}<\infty} \quad\left(L^{2}=L^{2}(\mathbb{R} / \mathbb{Z}, \lambda)\right) .
$$

If $T x:=x+\alpha \bmod 1$ with $x \in \mathbb{R} / \mathbb{Z} \cong\left[0,1\left[\right.\right.$, then $\varphi=g-g \circ T$ in L^{2} with some $g \in L^{2}$ (see $[9,6]$). This implies

$$
\begin{equation*}
\sum_{\substack{k \in \mathbb{Z} \\ k \neq 0}}|\hat{\varphi}(k)|^{2} /\|k \alpha\|^{2}<\infty, \tag{2.1}
\end{equation*}
$$

where $\hat{\varphi}(k)$ stands for the k th Fourier coefficient of φ and $\|k x\|$ denotes the distance to the nearest integer of $k \alpha$.
φ^{\prime} is Lipschitz-continuous on [0, 1], so integration by parts gives $(k \neq 0)$

$$
\hat{\varphi}(k) \geqslant C \cdot(|\varphi(1)-\varphi(0)| /|k|) \quad \text { with some constant } C>0 .
$$

It is $\left\|q_{i} \alpha\right\|<1 /\left(a_{i+1} q_{i}\right)$ and the sum in (2.1) can be estimated from below by

$$
\sum_{i=1}^{\infty}\left|\hat{\varphi}\left(q_{i}\right)\right|^{2} /\left\|q_{i} \alpha\right\|^{2} .
$$

The latter sum diverges, which contradicts (2.1).
(2): We shall apply [4, Lemma 2]. Let $d \neq 0$ be an arbitrary real number. It will be shown that for almost all x in [$0,1\left[\right.$ there is a sequence $\left(N_{k}\right)_{k \geqslant 1}$ such that $\lim _{k \rightarrow \infty} \varphi_{N_{k}}(x)=d$ (and even $\lim _{k \rightarrow \infty}\left\|N_{k} \alpha\right\|=0$). $\left(N_{k}\right)_{k \leqslant 1}$ will depend on x.

Write $m:=\left[2|d| \cdot|\varphi(1)-\varphi(0)|^{1}(1-\rho(\alpha))^{\text {' }}\right]$ and $c:=d / m, \rho(\alpha)$ as in [4]. Let K be a nonnegative integer and define $M(c, K):=\left\{x \in\left[0,1\left[: \exists\left(q_{n}\right)_{j \geqslant 1}\right.\right.\right.$ subsequence of $\left(q_{n}\right)_{n>1}$ such that $\left.\lim _{j \rightarrow \infty} \varphi_{\varphi_{n}}(x+K \alpha)=c\right\}$. It is $q_{n_{j}}=q_{n_{i}}(c, K, x)$. If $M(c):=$ $\bigcap_{k=0}^{\infty} M(c, K)$ then [4, Lemma 2] implies $\lambda(M(c)=1$.

For every x in $\boldsymbol{M}(c)$ there are subsequences $\left(Q_{k}(i)\right)_{k=1}, i=1, \ldots, m$, of the sequence $\left(q_{n}\right)_{n=1}$ of denominators of the convergents to α such that

$$
\begin{aligned}
& \left|\varphi_{Q_{k}(1)}(x)-c\right|<1 /(k m), \\
& \left|\varphi_{Q_{k}(i+1)}\left(x+\left(Q_{k}(1)+Q_{k}(2)+\cdots+Q_{k}(i)\right) \alpha\right)-c\right|<1 /(k m),
\end{aligned}
$$

$i=1,2, \ldots, m-1$. Let $N_{k}:=Q_{k}(1)+\cdots+Q_{k}(m)$. Then $\left\|N_{k} \alpha\right\|$ tends to zero and $\left|\varphi_{N_{k}}(x)-d\right|<1 / k$.
(3): If $\varphi(x)=x-\frac{1}{2}$ and $x=0$, then Sós [10] has shown that $\left(\varphi_{n}(0)\right)_{n \geqslant 1}$ is bounded from below for continuum-many α.
2.1. Lemma. Let $s, q \subset \mathbb{N}, s<q,(s, q)=1$, and let s / q have the simple continued fraction expansion $\left[0 ; b_{1}, \ldots, b_{n}\right]$. Then the discrepancy D_{q-1}^{*} of the $q-1$ points (k / q, $\{k s / q\})_{k-0}^{q-2}$ (and of the points $(k / q,\{k s / q\})_{k-1}^{q-1}$ as well) satisfies

$$
D_{\varphi-1}^{*} \leqslant C \cdot\left(\sum_{i=1}^{n} b_{i}\right) / q
$$

with some absolute constant C.

Proof. See [5, Chapter 2] for the definition of the discrepancy. It is elementary to show that

$$
(q-1) D_{4-1}^{*} \leqslant 1+\max _{1 \sim m \times 4-1} m \cdot D_{m}^{*}\left((\{k s / q\})_{k-0}^{m-1}\right)
$$

From [5, inequality (3.18)], it follows that

$$
m \cdot D_{m}^{*}\left((\{k s / q\})_{k-0}^{m-1}\right) \leqslant 1+2 \sum_{i=1}^{n} b_{i}
$$

Corollary. The discrepancy $D_{4, n}^{*}$, of the $q_{n}-1$ points $\left(k / q_{n},\left\{k q_{n-1} / q_{n}\right\}\right)_{k=0}^{q_{n}-2}$ satisfies

$$
\begin{equation*}
D_{\psi_{n}, 1}^{*} \leqslant C\left(\sum_{i-1}^{n} a_{i}\right) / q_{n} \tag{2.2}
\end{equation*}
$$

with some absolute constant C.

Every $n \in \mathbb{N}$ has a unique representation of the form $n=\sum_{i=0}^{{ }_{i=0}} n_{i} q_{i}$ with digits $n_{0} \in\left\{0,1, \ldots, a_{1}-1\right\}, n_{i} \in\left\{0,1, \ldots, a_{i+1}\right\}, i=1,2, \ldots$ We shall write $n(k):=\sum_{i=0}^{k-1} n_{i} q_{i}$, $k=1,2, \ldots$.
2.2. Lemma. Let $n \in \mathbb{N}, n=\sum_{i=0}^{*} n_{i} q_{i}, n_{s} \neq 0$, and let $x \in[0,1[$. Then

$$
\begin{align*}
\varphi_{n}(x)= & (\varphi(1)-\varphi(0)) \sum_{k=0}^{s} \sum_{l=0}^{n_{k}-1} \sigma_{k, t}+\sum_{k=0}^{s} \sum_{l=0}^{n_{k}-1} \tau_{k, l} \\
& +O\left(\sum_{k=0}^{\prime} n_{k} \cdot \max \left\{1 / q_{k}, \sum_{i=0}^{k} a_{i} /\left(a_{k+1} q_{k}\right)\right\}\right), \tag{2.3}
\end{align*}
$$

where

$$
\begin{aligned}
& \sum_{k=0}^{s} \text { denotes } \sum_{\substack{k=0 \\
k: n_{k} \neq 0}}^{\dot{n}}, \\
& \alpha=\frac{p_{k}}{q k}+\frac{\theta_{k}}{\left(a_{k+1} q_{k}^{2}\right)}, \quad k=0,1, \ldots, \\
& \theta_{k}=(-1)^{k}\left|\theta_{k}\right|, \quad\left|\theta_{k}\right|<1, \\
& \sigma_{k, l}=\theta_{k} /\left(2 a_{k+1}\right)+\left\{q_{k} x_{k, l}\right\}-\frac{1}{2}, \\
& x_{k, l}=\left\{x+\left(n(k)+l q_{k}\right) \alpha\right\}, \\
& \tau_{k, l}= \begin{cases}\varphi\left(\left\{1-1 / q_{k}+\left\{q_{k} x_{k, l}\right\} / q_{k}+m_{q_{k}-1} \theta_{k} /\left(a_{k+1} q_{k}^{2}\right)\right\}\right)-\varphi\left(1-1 / q_{k}\right) \\
\varphi\left(\left\{m_{0} \theta_{k} /\left(a_{k+1} q_{k}^{2}\right)+\left\{q_{k} x_{k, l}\right\} / q_{k}\right\}\right)-\varphi(0) & k \text { even, },\end{cases} \\
& m_{q_{k}-1} \text { such that } m_{q_{k}-1} \cdot p_{k}=\left(q_{k}-1\right)-r_{k, l} \bmod q_{k}, \\
& m_{0} \text { such that } m_{0} \cdot p_{k} \equiv-r_{k, l} \bmod q_{k}, \\
& 0 \leqslant m_{0}, \quad m_{q_{k}-1} \leqslant q_{k}-1, \quad r_{k, l}=\left[q_{k} x_{k, l}\right] .
\end{aligned}
$$

Proof. From identity (1) and Proposition 1 and 2 of [4] and from Lemma 2.1 it follows that $\left(q:=q_{k}, a:=a_{k+1}, \theta:=\theta_{k}\right)$

$$
\begin{aligned}
\varphi_{q_{k}}(x)= & (\varphi(1)-\varphi(0))\left(\theta /(2 a)+\{q x\}-\frac{1}{2}\right) \\
& +\varphi\left(\left\{1-1 / q+\{q x\} / q+m_{q-1} \theta /\left(a q^{2}\right)\right\}\right) \\
& -\varphi(1-1 / q)+(\theta / a) \mathrm{O}\left(\sum_{i=0}^{k} a_{i} / q\right)+\mathrm{O}(1 / q)
\end{aligned}
$$

for even k. For odd k, the second and the third term in this sum have to be replaced by $\varphi\left(\left\{m_{0} \theta /\left(a q^{2}\right)+\{q x\} / q\right\}\right)$ and by $\varphi(0)$, respectively. Summation over k and l will give the result.
2.3. Lemma. For every $\alpha \in \mathbb{R} \backslash \mathbb{Q}, \sum_{k=0}^{\infty}\left(\sum_{i=0}^{k} a_{i}\right) / q_{k}<\infty$.

Proof. We definc $s(k):=\operatorname{card}\left\{i, 0 \leqslant i \leqslant k: a_{i}=1\right\}$ and $t(k):=\operatorname{card}\left\{i, 0 \leqslant i \leqslant k-1: a_{i}=\right.$ $\left.a_{i+1}=1\right\}$. If $s(k) \leqslant \frac{3}{4} k$, then

$$
q_{k} \geqslant \max \left\{a_{i}: 0 \leqslant i \leqslant k\right\} \cdot 2^{k / 4-1} .
$$

If $s(k)>\frac{3}{4} k$, then

$$
q_{k} \geqslant \max \left\{a_{i}: 0 \leqslant i \leqslant k\right\} \cdot 2^{\prime(k) / 2}>\max \left\{a_{i}: 0 \leqslant i \leqslant k\right\} \cdot 2^{3 k / 16}
$$

From these estimates the result follows easily.
Proof of Theorem 1.2. (1): Because of $\varphi(1)=\varphi(0)$ and of

$$
\left|\tau_{k, 1}\right| \leqslant \max \left\{\left|\varphi^{\prime}(y)\right|: y \in[0,1]\right\} \cdot 2 / q_{k}
$$

identity (2.3) implies

$$
\varphi_{n}(x)-\mathrm{O}\left(\sum_{k=0}^{\prime} a_{k+1} \max \left\{1 / q_{k}, \sum_{i=0}^{k} a_{i} /\left(a_{k+1} q_{k}\right)\right\}\right) .
$$

From Lemma 2.3 and the fact that $\sum_{k=0}^{\infty} a_{k+1} / q_{k}$ is finite for almost all α the result follows.
(2.1): It is not difficult to show that there are continuum-many α such that

$$
\sum_{k=1}^{\infty}|\hat{\varphi}(k)|^{2} /\|k \alpha\|^{2}
$$

diverges. From the proof of Theorem 1.1(1) the result follows.
(2.2): By simple calculation we see that

$$
\left|\varphi_{n}(x)\right| \leqslant C \sum_{k}|\hat{\varphi}(k)| /\|k \alpha\|
$$

with some constant C.
2.4. Lemma. Let φ and α be as in Theorem 1.4 and let $d \in \mathbb{R}, d>0$, be arbitrary. Then, for almost all $x \in\left[0,1\left[\right.\right.$, there is a subsequence $\left(q_{k_{m}}\right)_{m>1}$ of the sequence $\left(q_{2 k}\right)_{k>1}$, $q_{k_{m}}=q_{k_{m}}(x)$, such that

$$
\lim _{m \rightarrow \infty} \varphi_{t_{n}} q_{k_{m}}(x)=d \cdot \operatorname{sign}\left(\varphi^{(K-1)}(1)-\varphi^{(K-1)}(0)\right)
$$

and

$$
\lim _{m \rightarrow \infty}\left\|t_{m} q_{k_{m}} \alpha\right\|=0
$$

where

$$
\begin{aligned}
& t_{m}:= \begin{cases}{\left[d q_{\left.k_{m+1}^{K-1} / C_{K}\right],}\right.} & K \text { even }, \\
{\left[d q_{k_{m, 1}-1}^{K} /\left(\tilde{C}_{K}\left\{q_{k_{m}} x\right\}\right)\right],} & K \text { odd },\end{cases} \\
& C_{K}:=\left|\varphi^{(K-1)}(1)-\varphi^{(K-1)}(0)\right| \cdot B_{K} / K!, \quad \tilde{C}_{K}:=K C_{K} B_{K-1} / B_{K}
\end{aligned}
$$

and $\left(B_{i}\right)_{i \geqslant 1}$ is the sequence of Bernoulli-numbers.

Proof. It follows from Euler's summation formula that ($q:=q k$)

$$
\sum_{i=0}^{q-1} \varphi(i / q)=\frac{\left(\varphi^{(K-1)}(1)-\varphi^{(K-1)}(0)\right) B_{K}}{K!q^{K-1}}+\mathrm{O}\left(q^{-K}\right)
$$

if K is even, and

$$
\begin{equation*}
\sum_{i=0}^{q-1} \varphi(i / q)=\mathrm{O}\left(q^{-K}\right) \tag{2.4}
\end{equation*}
$$

as well as

$$
\sum_{i=0}^{4-1} \varphi^{\prime}(i / q)=\frac{\left(\varphi^{(K-1)}(1)-\varphi^{(K-1)}(0)\right) B_{K-1}}{(K-1)!q^{K-2}}+\mathrm{O}\left(q^{-K+1}\right)
$$

if K is odd.
The sequence $\left(\left\{q_{2 k} x\right\}\right)_{k \geqslant 1}$ is uniformly distributed modulo 1 for almost all $x \in[0,1[$ (see [5, Theorem 4.1]). Hence, for almost all x, there exists a subsequence $\left(q_{k_{m}}\right)_{m=1}$ it depends on x-such that

$$
\lim _{m \rightarrow \infty}\left\{q_{k_{m}} x\right\}=0, \quad\left\{q_{k_{m}} x\right\} \geqslant q_{k_{m}}^{-1 / 2}, \quad \forall m \in \mathbb{N} .
$$

Let $q:=q_{k_{m}}, a:=a_{k_{m+1}}, t:=t_{m}$ and $\theta:=\theta_{k_{m}}$. Then $\theta>0,0<t \leqslant a^{1 / 2}$ and $\{q x\} / q+$ $1 /(a q)+t /(a q)<1 / q$ for sufficiently large m. Hence (see [4, proof of Lemma 2])

$$
\varphi_{t q}(x)=\sum_{b=0}^{t-1} \sum_{l=0}^{q-1} \varphi\left(l / q+m_{l} \theta /\left(a q^{2}\right)+\{q x\} / q+b \theta /(a q)\right)
$$

where m_{l} is defined by the congruence $m_{l} p_{k_{m, \prime}} \equiv l-\left[q_{k_{1,1}} x\right] \bmod q_{k_{m, 1},}, 0 \leqslant m_{1}<q_{k_{m, m}}$. We apply Taylor's formula and find that

$$
\begin{equation*}
\varphi_{l q}(x)=t \sum_{l=0}^{q-1} \varphi(l / q)+t\{q x\} / q \sum_{i=0}^{q-1} \varphi^{\prime}(l / q)+\mathrm{O}\left(t^{2} / a\right)+\mathrm{O}\left(t\{q x\}^{2} q^{-K+1}\right) . \tag{2.5}
\end{equation*}
$$

If K is even, then (2.4) and (2.5) imply

$$
\varphi_{t q}(x)=t C_{K} / q^{K-1}+\mathrm{O}\left(t^{2} / a\right)+\mathrm{O}\left(t\{q x\} q^{-K+1}\right) .
$$

If K is odd, then (2.4) and (2.5) imply

$$
\varphi_{t q}(x)=\mathrm{O}\left(t q^{-K}\right)+t\{q x\} \tilde{C}_{K} q^{-K+1}+\mathrm{O}\left(t^{2} / a\right)+\mathrm{O}\left(t\{q x\}^{1^{2}} q^{-K+1}\right)
$$

Thus, in both cases,

$$
\lim _{m \rightarrow \infty} \varphi_{i q}(x)=d \cdot \operatorname{sign}\left(\varphi^{(\kappa-1)}(1)-\varphi^{(\kappa-1)}(0)\right)
$$

It is trivial that $\lim _{m \rightarrow \infty}\left\|t_{m} q_{k_{m}} \alpha\right\|=0$.
Proof of Theorem 1.4. Let $c \neq 0$ be an arbitrary real number with the same sign as $\varphi^{(K-1)}(1)-\varphi^{(K-1)}(0)$. Define $A(c):=\left\{x \in \mathbb{R} / \mathbb{Z} \cong\left[0,1\left[: \exists\left(Q_{m}\right)_{m \geqslant 1}\right.\right.\right.$, subsequence of
\mathbb{N}, such that $\lim _{m \rightarrow x} \varphi_{Q m}(x)=c$ and $\left.\lim _{m \rightarrow x}\left\|Q_{m} \alpha\right\|=0\right\}$. The set $A(c)$ is invariant under the ergodic transformation $x \mapsto x+\alpha \bmod 1$ on \mathbb{R} / \mathbb{Z}, hence $\lambda(A(c)) \in\{0,1\}$. From Lemma 2.4 it follows that the λ-measure of $\boldsymbol{A}(\boldsymbol{c})$ is 1 . We follow the proof of $\left[4\right.$, Lemma 3] to show that c is a period of the skew product T_{φ}. The set P_{φ} of periods of T_{φ} is a group, hence $P_{\varphi}=\mathbb{R}$. This implies that T_{φ} is ergodic on $\mathbb{R} / \mathbb{Z} \times \mathbb{R}$.

References

[1] H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math. 83 (1961) 573-601.
[2] S. Hartman, Sur une méthode d’estimation des moyennes de Weyl pour les fonctions périodiques et presque périodiques, Studia Math. 12 (1951) 1-24.
[3] P. Hellekalek and G. Larcher, On functions with bounded remainder, Amn. Inst. Fourier (1989) to appear.
[4] P. Hellekalek and G. Larcher, On the ergodicity of a class of skew products, Israel J. Math. 54 (1986) 301-306.
[5] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences (Wiley, New York, 1974).
[6] P. Liardet, Regularities of distribution, Compositio Math. 61 (1987) 267-293.
[7| J. Oren, Admissible functions with multiple discontinuities, Israel J. Math. 42 (1982) 353-360.
[8] J. Oren, Ergodicity of cylinder flows arising from irregularities of distribution, Israel J. Math. 44 (1983) 127-138.
[9] K. Petersen, On a series of cosecants related to a problem in ergodic theory, Compositio Math. 26 (1973) 313-317.
[10] V.T. Sós, On the theory of diophantine approximations I, Acta Math. Acad. Sci. Hungar. 8 (1957) 461-472.

