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Abstract. Let ¢:[0,1]>R have a Lipschitz-continuous derivative on [0, 1], j(',tp(t)dt:O, let
a eR\Q and write ¢,(x)=¢(x)+e({x+ah)+ - -+e({{x+(n—-1)a}), neN, xe[0,1[. In this
paper results on the boundedness and the limit points of the sequence (¢,(x)),.., are given.
Further, ergodicity of the skew product (x, y)— (x+a, v+ ¢(x)) on R/Z XR is proved for certain
classes of ¢ and a.
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Introduction

In [4] the following result was shown.

Theorem. Let ¢:[0, 11> R be continuously differentiable on the closed interval [0, 1],
let j:, ¢(1) dt =0 and suppose that « is irrational. If ¢(0)# ¢(1), then T, (x,y)=
(x+a, y+@(x)) is ergodic on R/Z xR (with respect to A X A, A the normalized Haar
measure on R/Z, A, the Lebesgue measure on R).

In this paper we shall study whether “¢(0) # ¢(1)” is also a necessary condition
for ergodicity of the skew product T,: see Corollary 1.3. Further, we shall obtain
a result on the ergodicity of T, in the case ¢(0)=¢(1), ¢ K-times continuously
differentiable on [0, 1], K = 2: see Theorem 1.4.

We shall use the following terminology. Let R/Z be identified with the interval
[0, 1] (with addition modulo 1) and let A denote the normalized Haar measure on
R/Z=[0,1[. If neN and x<[0, 1[, we write

po(x)=e(x)to({{x+ah+ - -+o({x+(n—1)a}),

where {-} denotes the fractional part.
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It is well-known that the following two questions are closely related to ergodicity
of skew products of the type T, (see, for example, [4, Lemmata 1, 2 and 3]).

0.1. Question. Under which conditions (for ¢, x and @) do we have sup,|¢, (x)]| <0?
0.2. Question. What can be said about limit points of the sequence (¢, (x)),,?

These two questions are of interest in the theory of uniform distribution modulo
1 as well, see [9, 6,7, 10] and, in particular, [2] for the first question and [8, 3] for
the second one.

1. Results

Throughout this paper we shall assume that ¢ : [0, 1] > R is continuously differenti-
able on the closed interval [0, 1], Ll, ¢(t)dt =0, and ¢’ is Lipschitz-continuous on
[0,1] i.e.,

sup{le’(x) =’ (M 0=x, y=1,[x ~y|<8}=C-§,

C a positive constant, § > 0 arbitrary. Let « be irrational with simple continued
fraction expansion a =[ay; a,, a,,...], a; the partial quotients. Let (p,;/¢q;);-, be
the sequence of the convergents to a.

1.1. Theorem. Let ¢(0) # ¢(1). Then

(1) sup,|e,(x)|=c0 ¥Vxe[0, 1[;

(2) for almost all x € [0, 1] the sequence {¢,(x)),.., is dense in R;

(3) statement (2) cannot be improved : there are ¢ (as above), a« e R\Q and x [0, 1|
such that (¢, (x)), .., is not dense in R.

1.2. Theorem. Let ¢(0)= ¢(1). Then we have the following statements.
(1) For almost all @ € R\Q one has sup,|¢,(x)| <o Vx e [0, 1[. In particular, this is
true for those a e R\Q with ¥ a;.,/q; <0 (any irrational o with bounded partial
quotients has this property).
(2) Let Y, , (k) e>™*" denote the Fourier series of ¢.
(2.1) If ¢(k)# 0 for infinitely many k, then there are continuum-many a € R\Q
such that sup,|e,(x)| =0 Vxe[0, 1[.
(2.2) If ¢(k)#0 for finitely many k only, then for all a cR\Q one has
sup,|@.(x)| <o ¥x e 0, 1[.

1.3. Corollary. Let ¢ be as above and let « ¢ R/Q be such that ¥ a.,,/q; <co.
From Theorem 1.1(1) and Theorem 1.2(1) it follows that ¢(0) = (1) if and only if
sup,|ea.(x)| <o for some/all xe[0,1[. Hence T, is ergodic on R\Z xR if and only
if (0) # @(1).
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1.4. Theorem. Suppose that ¢ :[0,1]->R is K-times continuously differentiable on
[0,1], K=2, (0)=¢"(1), 0<j< K =2, '*7V(0) £ 5 7V(1), and [, ¢(1) dt =
0. Let « € R\Q be such that a;.,= q;~ fori=1,2,. .. (there are continuum-many such
a). Then T, (x,y)=(x+a,y+¢(x)) is ergodic on R/Z xR.

1.5. Corollary. If ¢:[0,1]>R is a polynomial of degree larger or equal to 1,
L‘, o(t)dt =0, then T, is ergodic on R/Z X R for at least continuum-many a € R\Q.

Remark. Let ¢ and « be as in Theorem 1.4. Then the transformation S,(x, y) =
(x+ta,y+e(x)) is ergodic on R/ZxR/Z (with respect to the invariant measure
A X A). This implies that S, is uniquely ergodic and hence minimal, even though
the map x+— ¢(x) mod 1 belongs to the trivial homotopy class of functions from
R/Z to R/Z (see [1]).

2. The proofs

Proof of Theorem 1.1. We shall give an indirect proof for (1). Suppose that
sup,|e,(x)| <o for some x € [0, 1{. The sequence (T*x),, is uniformly distributed
modulo 1, hence (see [5, Corollary 1.1])

1

i 1 N-1 ) 5 . 1 N—
leall2=1im — ¥ [ T3) = lim — ¥ [.i(x)—@p(x)
N oo N k=0 N >0 N k=0

Therefore

sup [lg, | 2<o0 (L= L*(R/Z, 1)).

If Tx:=x+a mod 1 with xeR/Z=[0, 1[, then ¢ =g—~g° T in L’ with some ge L’
(see [9, 6]). This implies
Y @R/ llke|f* <o, (2.1)
keZ
k=0
where ¢ (k) stands for the kth Fourier coefficient of ¢ and || ka|| denotes the distance
to the nearest integer of ka.
¢' is Lipschitz-continuous on [0, 1], so integration by parts gives (k #0)
¢(k)=C- (le(1)—¢(0)|/lk]) with some constant C > 0.

It is [[gia]| <1/(a;114;) and the sum in (2.1) can be estimated from below by
Z 18/ gl

The latter sum diverges, which contradicts (2.1).

(2): We shall apply [4, Lemma 2]. Let d # 0 be an arbitrary real number. It will
be shown that for almost all x in [0, 1{ there is a sequence (N,)..., such that
limy . @, (x) =d (and even lim,_..| Nya| =0). (N),=, will depend on x.
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Write m=[2|d| - |¢(1)—¢(0)| ' (1~ p(a)) 'Jand c:=d/m, p(a) as in [4]. Let K
be a nonnegative integer and define M(c¢, K):={x¢€[0, 1[: 3(q, );~, subsequence
of (g,)n=1 such that lim,_. ¢, (x+Ka)=c}. It is q, =g, (c, K,x). If M(c):=
M., M(c, K) then [4, Lemma 2] implies A(M(c)=1.

For every x in M(c) there are subsequences (Q.(i)).-,, i=1,..., m, of the
sequence (q,), ., of denominators of the convergents to « such that

|‘PO,\(|)(X)‘C|< 1/(km),
l@o,iien(x+(Qu(1)+ Qu(2)+- - -+ Quli))a) —c| < 1/(km),

i=1,2,...,m—1. Let Nyi=Q(1)+-- -+ Qi(m). Then || N.a| tends to zero and
[en, (x)—d| < 1/

(3): If @(x)=x—4%and x =0, then Sés [10] has shown that (¢, (0)),.-., is bounded
from below for continuum-many «. ]

2.1. Lemma. Let s,qeN, s<gq, (s,q)=1, and let s/q have the simple continued
fraction expansion [0; by, ..., b,]. Then the discrepancy D¥_, of the g —1 points (k/ g,
{ks/q}) {3 (and of the points (k/q, {ks/q})i~\| as well) satisfies

D;k,,SC'<Z b.)/q
i—1

with some absolute constant C.

Proof. See [5, Chapter 2] for the definition of the discrepancy. It is elementary to
show that

(g=DDj =1+ max m- Di(({ks/qhHi0).

T=ims y—1

From [5, inequality (3.18)], it follows that

nm:- Dj‘:,(({ks/q})'[';},l)S1+2 2 b O
i=1

i=

Corollary. The discrepancy D | of the g, — 1 points (k/q,, {kq,,,l/q,,})‘,i";,2 satisfies
Y »

D = C( ) a,->/q,, (2.2)
i—1

with some absolute constant C.

Every neN has a unique representation of the form n=Y_ ngq, with digits
nee{0,1,...,a,—1},me{0,1,...,a,,,},i=1,2,... Weshall write n(k) =Y, _; ngs,
k=1,2,....
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2.2. Lemma. Let neN, n =Zf7,(, nq:, n,#0, and let x€[0,1[. Then
n =1 5 nkfl

en(x) = ((1) = (0)) z Y oty Y omy

1=0 k=0 I=0

s K
+O<Z, ”k'max{l/‘h, > ai/(‘hﬂ‘lk)}); (2.3)

k=0 i=0

where

5

Z' denotes Y

k=0 k=0
king #=0
) [
a:ﬂ—f-‘—%, k=0,1,...,
gk (@ qi)
O = (= 1)"[6,], 6] <1,

O = ek/(zak+])+{quk.1} _;,
X ={x+(n(k)+ lg)et,
e({1—-1/q; +{quk,l}/qk + mqkflgk/(akwthi‘)}) —¢(1-1/q4)
T = k even,
o({myb/(a 1) g}/ ) — 2(0)  k odd,
m,, _, such that m,_, - p,={q— 1) —r,,; mod g,
m, such that m, - p, = —r,; mod g,
0=my, my =< q.—1, rier = [qexi]-
Proof. From identity (1) and Proposition 1 and 2 of [4] and from Lemma 2.1 it
follows that (g:=q,, a'=a,;,, 6= 6;)
@4 (x) = (@(1) = ¢(0))(8/(2a) +{gx} )

+o({1-1/q+{gx}/q+m,_,0/(ag")})

k
—¢(1- 1/q)+(0/a)0< > a;/Cl) +0(1/q)
i=0
for even k. For odd k, the second and the third term in this sum have to be replaced
by o({m,0/(aq*)+{gx}/q}) and by ¢(0), respectively. Summation over k and [ will
give the result. [
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2.3. Lemma. For every a eR\Q, ¥, _, (zf:“ )/ g < .
Proof. We define s(k):=card{i,0si<k:q,=1}and t(k)=card{i,0<si<k—1:a,=
a;,, = 1}. If s(k) =<3k, then

gr = max{a;: 0si<k}- gk/a—t
If s(k) >3k, then

g =max{a,: 0<i<k}-2'""?>max{a,: 0i<k} 2*/°

From these estimates the result follows easily. [

Proof of Theorem 1.2. (1): Because of ¢(1)= ¢(0) and of
|7l = max{|@’(y)|: v [0, 1]} - 2/ qs
identity (2.3) implies
s k
@n(X) :O< IR P max{l/qk, > ai/(ak+1qk)}>-
k=0 i=0

From Lemma 2.3 and the fact that Z:\:O ai+1/ qx is finite for almost all « the result
follows.
(2.1): It is not difficult to show that there are continuum-many « such that

PRET

diverges. From the proof of Theorem 1.1(1) the result follows.
(2.2): By simple calculation we see that

Ison(X)ISC%Ié(k)I/IIkaII
with some constant C. [J

2.4. Lemma. Let ¢ and « be as in Theorem 1.4 and let d €R, d >0, be arbitrary.
Then, for almost all x € [0, 1[, there is a subsequence (qy, ) - 0f the sequence (1) =1,
gk, = Gx,,(X), such that

lim ¢, g, (x)=d-sign(e* " "(1)— o *7(0))

Mmoo
and
im [t |l =0,
e
where

_ {[dq{f,,,]/cx], K even,
" \dgk "/ (Culqu,xD], K odd,
Cr =X (1) = *V(0)| - Bx /K, Cx = KCxBx _,/ Bx

and (B;);-, is the sequence of Bernoulli-numbers.
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Proof. It follows from Euler’s summation formula that (g = gk)

(¢ " ") =@ "(0)Bx

g—1
. - -K
ig() eli/q)= K!qK‘l O(g ™)
if K is even, and
g-1 K
Y e(i/g)=0(q "), (2.4)
i=0
as well as
4! (¢(K71)(1)_¢(K71)(0))BK—1 CK+1
(i = > +0
z,¢'t/a) (K-1)iqg"" (=)
if K is odd.

The sequence ({gaxx})y = is uniformly distributed modulo 1 for almost all x € [0, 1[
(see [5, Theorem 4.1]). Hence, for almost all x, there exists a subsequence (qy, }m=1—
it depends on x—such that

lim {g,x}=0,  {q,x}=qx,’, YmeN.

m-—>o0

Let g:=qi, a=a;,, +, =1, and 6= 6, . Then 6>0, 0<t=qa"? and {gx}/q+
1/(aq) + t/(aq) < 1/q for sufficiently large m. Hence (see [4, proof of Lemma 2])

ou(x)= T ‘I'io«p(l/q+m,e/<aq2>+{qx}/q+bo/(acm,

H
h=0I=

where m, is defined by the congruence m;p,, =!—[g,, x]mod g, 0==m,<gq, . We
apply Taylor’s formula and find that

Pu(x) =1 ‘Ig e(l/q)+t{gx}/q EZ ¢'(1/q)+O(1*/a)+O(t{gqx}’q ™).
(2.5)
If K is even, then (2.4) and (2.5) imply
@q(x)=1Cx /g~ '+ 0(£*/a)+O(r{gx}g * ™).
If K is odd, then (2.4) and (2.5) imply
@ (x)=0(1g )+ t{gx}Cxq * 7'+ 0(£*/a) + O(t{gx}’ g * ")
Thus, in both cases,

lim ¢, (x)=d-sign(e'*""(1)—¢* 7(0)).

m—>o0

It is trivial that im,, .. |[feqe, @l =0. O

Proof of Theorem 1.4. Let ¢ # 0 be an arbitrary real number with the same sign as
e KV(1) = o' *71(0). Define A(c)={xeR/Z=[0,1[: 3(Q,,) m-1, subsequence of
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N, such that lim,, . . ¢o,{x)=c and lim,, .. {|Q, || =0}. The set A(c) is invariant
under the ergodic transformation x—x+«a mod 1 on R/Z, hence A(A(c¢))e{0, 1}.
From Lemma 2.4 it follows that the A-measure of A(c¢) is 1. We follow the proof
of [4, Lemma 3] to show that ¢ is a period of the skew product T_. The set P, of
periods of T, is a group, hence P, =R. This implies that 7, is ergodiconR/Z xR. []
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