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Abstract Dark, gamma-induced conductivities and conductivity modulation in silicon material

will be investigated for the development of carrier lifetime measurement. The present work includes

a simple method for finding the carrier lifetime variation from the measured conductivity under

dark and gamma irradiation conditions. It will be concluded that an improved material evaluation

in the area of semiconductors and nano-materials are expected to improve the efficiency of solar

cells and other opto-electronic devices.
ª 2009 King Saud University. All rights reserved.
1. Introduction

The lifetime measurement is normally used in one way or an-
other to assess material quality. High lifetimes are indicative of

good material, while low lifetimes might point to problems
such as inadequate crystal growth techniques that introduce
dislocations or high concentrations of impurities in the semi-

conductor material. Processing of various semiconductor de-
vices can also be effectively monitored and improved by
systematic lifetime measurements. Previously the study of

semiconductor materials, devices and circuits, lifetime mea-
surements were useful in gaining a better understanding of
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generation and recombination mechanisms. With improved
fabrication technology, the focus shifted away from theoretical
studies to processing-related lifetime testing. However, with

the new devices such as large area power devices, metal-
oxide–semiconductor MOS devices and high-efficiency solar
cells, there has been a considerable interest in lifetime measure-
ments that gives an explanation to the physical recombination

processes within the device. However, the measurement of
carrier lifetime in silicon wafers was studied in the past three
decades. This parameter is still required to be determined accu-

rately for new composites and nano-materials. On the other
hand, the conductivity modulation could alter the distribution
of charge carriers available for conduction. Thus, the excess

conduction loss can occur as conductivity modulation pro-
ceeds and the forward voltage will be lowered to the steady-
state value, (Moslehi, 1991; Stephens, 1996; Carsten, 2001;
Zhang et al., 2001; Brown et al., 2001; Nagel et al., 1991).

The present work discusses the evaluation of carrier life-
times based on a method developed earlier by Elani et al.
(2005) and more recently by Elani (2008). It will be concluded

that the conductivity modulation (conductivity changes) mea-
surement can lead to the determination of carrier lifetime. This
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10 U.A.I. Elani
parameter is very important for silicon fabrication in many
electronic devices such as solar cells, sensors, nuclear detectors,
switches and other bipolar or opto-devices. The other benefit

of the current research work lies within the improvement of
the computerized in-line carrier lifetime systems, such as the
microwave relaxometer and wafer lifetime tester (Telecom-

STV, 2003).

2. Method of analysis

Two main methods for determining the carrier lifetime are
known. The first one is intended to measure the ‘‘transient’’
effective lifetime by injecting the silicon material with excess

charge carriers from typical external sources such as electric
field, optical pulses, gamma radiation and others (Eikelboom
and Burgers, 1994; Cuevas and Sinton, 1997; DiGulio et al.,

1981; Stewart et al., 2001; Maekawa et al., 1995). Such sources
will generate excess carriers and then the effective lifetime
could be determined easily. The second method is known as
the steady-state technique which requires only a fixed value

of carrier generation (Sinton, 2004). If surface effects are ne-
glected and a uniform photogeneration is assumed, the bulk
carrier lifetime:

sb ¼
Dn
U

ð1Þ

where Dn is the excess charge carriers (cm�3) and U is the net
recombination rate in the bulk (cm�3 s�1). Now, assuming rD

as the dark conductivity which is given by:

rD ¼
I

2p � d � V ð2Þ

where I is the injected current (A), V is voltage developed
across the sample/wafer; and d is the inner spacing between
probes (cm). If rc is the conductivity due to gamma radiation,

then the difference in conductivity is defined (the conductivity
modulation Dr) as:

Dr ¼ rc � rD ð3Þ

Based on the previous technique reported by Elani et al.
(2005), the effective lifetime of minority carrier is then reduced
to:

seff ¼
Dr

J � ðln þ lpÞ
�W ð4Þ

The previous approach was fully adopted from a recent pub-

lished paper by Elani (2008). The lifetime determination is con-
sidered in this work only under dark and gamma conditions.
The lifetime level could be distinguished from its magnitude

(ps, ns, ls, ms) according to sample size and device or wafer
application (Taylor, 2005; Zaroff and Brophy, 1963; Ravi,
1981; Shimura and Huff, 1985; Kishimoto, 1996; Kishimoto
et al., 1998; Bentzen et al., 2005; Sinton Consulting Inc.,

2006).
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Figure 1 The variation of modulated conductivity differences

with injected currents at the central region in Si#1 wafer.
3. Experimental procedures and results

3.1. Samples

A number of n-type monocrystalline silicon materials is used
throughout the present work. Ten wafers are taken from the
same batch. These wafers were supplied from Arkansas Uni-
versity, USA. The silicon samples are numbered horizontally
and vertically across the surface of each wafer. For example,

the symbol L3S4 means sample no. 4 line 3 (i.e. line zero starts
from the diameter and up for each wafer and so on). A special
mask was used with opening windows with an approximate

area of 4 mm · 2 mm.

3.2. Experimental technique

A Jandel in-line four-probes assembly ‘‘ILFP’’ is used nor-
mally for measuring the resistivity across each wafer (Jandel
Ltd., UK, 2001). The sample geometry was controlled by

the probes spacing. A current is passed through the outer
two probes; and the potential developed across the inner two
probes is measured. The ILFP technique is used here to mea-
sure the dark conductivity rD under dark conditions (no light

or external excitation) based on Eq. (2). The induced change of
gamma conductivity rc in silicon samples could be realized
when samples are exposed to gamma rays. The radiation

source was a gamma cell 220 Model no. 246 with a Cobalt-
60 source containing 24,910 Curies. Low intensity gamma
radiation is considered with exposure times of 1–2 h which is

equivalent to nearly 6323 and 12,647 Gy irradiation doses,
respectively. The conductivity modulation values are then de-
fined as the difference between gamma conductivity and dark
conductivity according to Eq. (3) and the effective lifetime

was determined from Eq. (4).

3.3. Dark, gamma conductivity and conductivity modulation

As mentioned by Elani et al. (2005), it was found that the dark
conductivity rD increases at higher injected current levels and
the average change in rD lies between 60 and 200 X�1 cm�1

across the levels in most silicon wafers.
The uniformity of bulk resistivity is an important factor for

establishing the conductivity modulation mode. For instance,

by exposing the silicon wafers to gamma radiation at different
doses and time levels, an increase in their conductivity are ob-
tained, and this may be attributed to the excess charge carriers
produced by gamma irradiation and this will lead to an

improvement in the conductivities of nearly 2–3 times of their
initial values. This result could be also explained from the fact
that the conductivity modulation causes a sharp increase in the

gamma-induced conductivity rc. In fact the conductivity
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Figure 2 The variation of modulated conductivity differences

with injected currents at the middle region in Si#1 wafer.
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Figure 5 Carrier lifetime variation with injected current in

silicon wafer.
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Figure 3 The variation of modulated conductivity differences

with injected currents at the edge region in Si#1 wafer.
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modulation can be deduced from Eq. (3) and the sudden
changes of Dr against the injected current makes maximum
and minimum peaks through each run of conductivity

measurement.
Fig. 1 illustrates a typical example of Dr under certain in-

jected current levels. For instance, in sample L1S1, the maxi-
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Figure 4 Carrier lifetime variation with dark conduct
mum peak occurs at 225 X�1 cm�1 when the injected current
was nearly 25 mA, whereas the minimum peak occurs at
160 X�1 cm�1, when the current level was increased to

30 mA. This phenomena did not occur in samples located near
the third line across the wafer, e.g. sample L2S5, and in this
case Dr increases linearly as shown in Fig. 2. Similar results

are also plotted in Fig. 3; but for the samples located near
the edges, Dr will be saturated at a current level of about 50
mA, e.g. sample L3S3. The change of Dr is therefore a very
critical for selecting samples/wafers and must be considered

for future fabrication procedures.

3.4. Carrier lifetimes determination

Based on conductivity modulation measurement, the carrier
lifetime is then calculated using Eq. (4) and the results are plot-
ted against the dark conductivity as illustrated in Fig. 4. It is

clear that the lifetime is decreased as the dark conductivity in-
creased, and this could be explained from the fact that the
110 115 120 125 130

tivity, (ohm.cm)-1

 from conductivity modulation 
afer , (100) orientation, 
o gamma irradiation, sample no. L3S4

ivity in a silicon wafer before gamma irraddiation.
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Figure 6 Carrier lifetime variation with injected current in silicon wafer for sample L1S1.
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Figure 7 Carrier lifetime variation with injected current in

silicon wafer, sample L1S2.

Table 1 Carriers lifetime measurement based on conductivity

modulation method (dark and gamma irradiation lifetime

measurements) for different silicon samples, L2S1, L2S2, L2S3

and L2S5, n-type, (1 0 0), Si wafers.

Injected current

I (mA)

Dark lifetime

sD (ms)

Gamma irradiation

lifetime sc (ms)

sc=sD
ratio

Sample no. L2S1

10 0.0434 0.1061 2.44

20 0.0265 0.0950 3.58

30 0.0224 0.0919 4.10

40 0.0197 0.0803 4.07

50 0.0129 0.0799 6.19

Sample no. L2S2

10 0.0477 0.0630 1.33

20 0.0281 0.0406 1.44

30 0.0228 0.0327 1.43

40 0.0199 0.0286 1.43

50 0.0137 0.0238 1.73

Sample no. L2S3

10 0.0477 0.0582 1.22

20 0.0289 0.0357 1.23

30 0.0253 0.0304 1.20

40 0.0229 0.0262 1.14

50 0.0156 0.0177 1.13

Sample no. L2S5

10 0.0434 0.0580 1.33

20 0.0289 0.0386 1.33

30 0.0248 0.0316 1.27

40 0.0218 0.0290 1.33

50 0.0162 0.0300 1.85

12 U.A.I. Elani
wafers/samples must be kept at a low injection level in order

to maintain higher lifetimes (i.e. in the case of photovoltaic de-
vices). The same experiment was repeated in a different Si wa-
fer (e.g. p-type), but in this case it is believed that the material

will resist gamma radiation more than n-type Si material and
thus the lifetime is expected to be at higher levels in such
materials. This case could be adopted for Si concentrated

high-efficiency photovoltaic devices, space solar cells and sub-
strate resistance modeling in Si devices/integrated circuits
(Yamaguchi et al., 1996). The effect of gamma radiation on
carrier lifetimes is also shown in Fig. 5.

It is also clear that the carrier lifetime was improved in sam-
ple L2S4 from (2.5 ls to 4.5 ls) to about (7.5 ls to 11 ls), and
this may reflect that the recombination rate was reduced to its

minimum. The dark and gamma irradiation lifetime measure-
ments were repeated in order to see the effect of gamma irra-
diation on lifetime levels. Typical results are plotted in Figs.

6 and 7 for L1S1 and L1S2 samples, respectively.
On the other hand, Table 1 contains more experimental re-

sults for samples numbered L2S1, L2S2, L2S3 and L2S5,
respectively. These samples were taken from the same batch
of silicon wafers. It is clear that the variation of carrier lifetime

with injected currents has the same trend. Again, it is believed
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that gamma irradiation enables to establish an improvement in
carrier lifetimes ratios sc=sD in the range between 1 and 6 times
under various injected current levels.

An additional important factor could be also concluded in
this work for further analysis in order to extract quantitative
values for a number of material parameters. These include

material properties such as carriermobilities, dielectric constants,
effective masses, impurity energy levels, surface recombination
velocities, diffusion lengths and saturation current densities.

4. Conclusion

Conductivity modulation method could be used as a simplified

technique for determining the carrier lifetime in silicon materi-
als. The conductivity modulation mode was measured after
exposing the silicon samples to gamma irradiation; and it

was found that the conductivity modulation occurred under
a fixed injected current 24 mA in the silicon material. This
mode is realized clearly in the central region of silicon wafers.

The carrier lifetime was also determined from conductivity

modulation mode, and was almost doubled through the ratio
sc=sD between 1 and 6 times after exposing the silicon wafers
to low-level of gamma irradiation. Higher lifetimes in the n-

type silicon substrates indicate that such materials could be
operated under low injection level known for sensors, nuclear
detectors and complex circuits IC’s. Finally, it is advised to

adopt this method for evaluating other new semiconductors
or nano-materials as well as for the development of a comput-
erized unit to meet laboratory and industrial needs.
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