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1. Introduction

For a real function f , consider the scalar conservation law in the unknown u ≡ u(t, x)

ut + f (u)x = 0 (1.1)

where t ∈ [0, T ] for some T > 0, x ∈ T (the one-dimensional torus), and subscripts denote partial
derivatives. Eq. (1.1) does not admit in general classical solutions for the associated Cauchy
problem, even if the initial datum is smooth. On the other hand, if f is non-linear, there exist
in general infinitely many weak solutions. An admissibility condition, the so-called entropic
condition, is then required to recover uniqueness for the Cauchy problem in the weak sense [6].
The unique solution satisfying such a condition is called the Kruzkhov solution.

A classical result [6, Chapter 6.3] states that the Kruzkhov solution can be obtained as limit
for ε ↓ 0 of the solution uε to the Cauchy problem associated with the equation

ut + f (u)x = ε

2

(
D(u)ux

)
x

(1.2)

provided that the initial data also converge. Here the diffusion coefficient D is a uniformly posi-
tive smooth function, and we remark that convergence takes place in the strong Lp([0, T ] × T)

topology. The Kruzkhov solution to (1.1) has also been proved to be the hydrodynamical limit of
the empirical density of stochastic particles systems under hyperbolic scaling, when the number
of particles diverges to infinity [11, Chapter 8]. These results legitimize the Kruzkhov solution as
the physically relevant solution to (1.1), and the entropic condition as the appropriate selection
rule between the infinitely many weak solutions to (1.1).

Provided the flux f and the diffusion coefficient D are chosen appropriately (depending on
the particles system considered), one may say that (1.2) is a continuous version for the evolution
of the empirical density of particles system, in which the small stochastic effects are neglected
(or averaged) and ε is the inverse number of particles. The convergence of both (1.2) and the
empirical measure of the density of particles to the same solution of (1.1) confirms somehow
that this approximation is reliable.

In [10,15], the long standing problem of providing a large deviations principle for the empiri-
cal measure of the density of stochastic particles systems under hyperbolic scaling is addressed.
In particular, the totally asymmetric simple exclusion process is investigated (which in particular
corresponds to f (u) = u(1 −u) in the hydrodynamical limit equation (1.1)), and the large devia-
tions result partially established. Roughly speaking, when the number of particles N diverges to
infinity, the asymptotic probability of finding the density of particles in a small neighborhood of
a path u : [0, T ] × T → R is e−NH JV (u), where H JV is a suitable large deviations rate functional
(see Section 2).

A continuous mesoscopic mean field counterpart of this large deviations result is provided
in [2,14]. In [14] a large deviations principle for a stochastic perturbation to (1.2) (driven by a
fluctuation coefficient σ ) is investigated in the limit of jointly vanishing stochastic noise and (de-
terministic) diffusion. In [2] a purely variational problem is addressed, namely the investigation
of the Γ -limit of a family of functionals Hε associated with (1.2) (see Section 2). The candi-
date large deviations functional H introduced in [14] and the candidate Γ -limit introduced in
[2] coincide, and in the case f (u) = u(1 − u) they are expected to coincide with the functional
H JV introduced in [10,15] (the equality can be proved on functions of bounded variations, but
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it is missing in the general case). The functional H thus provides a generalization of the func-
tional H JV , for arbitrary fluxes f (in particular, not necessarily convex or concave), diffusion
coefficients D and fluctuation coefficients σ . The functionals Hε , H and H JV are nonnegative;
Hε vanishes only on solutions to (1.2), so that Hε can be interpreted as the cost of violating the
flow (1.2). On the other hand, H and H JV are +∞ off the set of weak solutions to (1.1), they
vanish only on Kruzkhov solution to (1.1), and thus they can be interpreted as the cost of vio-
lating the entropic condition for the flux (1.1). Section 2 of the paper is devoted to the precise
definition of the functionals Hε , H and H JV .

Redirecting the reader to Section 3 for a more detailed discussion, here we briefly recall a
general definition of the quasi-potential associated with a family of functionals. Suppose we
are given a topological space U , and for each T > 0 a set XT ⊂ C([0, T ];U) and a functional
IT : XT → [0,+∞]. For the sake of simplicity, let us also fix a point m ∈ U . The quasi-potential
V : U → [0,+∞] associated with {IT } is then defined as V (u) := infT >0 infw IT (w), where the
infimum is carried over all the w ∈ XT such that w(0) ≡ m and w(T ) = u. A natural choice
for the reference point m should be an attractive point for the minima of the functionals IT

(see e.g. Theorems 4.4 and 5.5 for the case of Hε , H and H JV ). Indeed, in such a case, the
investigation of the quasi-potential is a classical subject both in dynamical optimal control theory
and in large deviations theory, as it quantifies “the cheapest cost” to move from the stable point m

to a general one u. Moreover, from the optimal control theory point of view, the quasi-potential
describes the long time limit of the functionals IT , see e.g. [5]. Furthermore, there is a broad
family of stochastic processes for which the quasi-potential is expected to be the large deviations
rate functional of their invariant measures, provided IT is the large deviations rate functional of
the laws of such processes up to time T > 0 (see e.g. [9, Theorem 4.4.1] for the classical finite-
dimensional case, and [4] for a more general discussion and applications to particles systems).
Moreover, see [9, Chapter 4], the quasi-potential of the large deviations rate functionals provides
a valuable tool to investigate long time behavior of the processes (e.g. average time to be waited
for the process to leave an attractive point, and the path to follow when the process performs
such a deviation). Finally, in the context of non-equilibrium statistical mechanics in which the
functionals Hε , H and H JV have been introduced, the quasi-potential has been proposed as a
dynamical definition of the free energy functional for systems out of equilibrium [3].

Since Hε is a functional associated with a control problem (see [2]) and it can be also retrieved
as large deviations rate functional of some particles systems (e.g. weakly asymmetric particle
systems, see [11]) and stochastic PDEs (see [13]), the quasi-potential problem is relevant for
such a functional. Similarly, H and H JV are the (candidate) large deviations rate functionals for
both particles systems processes and stochastic PDEs, see [10,15,14].

Given a bounded measurable map ui : T → R, it is well known that the (entropic) solutions
to the Cauchy problems for (1.1) and (1.2) with initial datum ui will converge to the constant
m = ∫

T
dx ui(x), namely constant profiles are attractive points for the zeros of the function-

als Hε , H and H JV . Given m ∈ R and two positive smooth maps on T, interpreted as the diffusion
coefficient D and fluctuation coefficient σ , the Einstein entropy is defined as the unique nonneg-
ative function hm on R such that hm(m) = 0 and σh′′

m = D. In this paper, we establish an explicit
formula for the quasi-potential problem associated with the functionals Hε , H and H JV (which
of course will depend on a time parameter T ) with reference point the constant maps on the
torus, proving that these three quasi-potential functionals coincide and are equal to the integral
of the Einstein entropy. More precisely, given uf ∈ L∞(T), the quasi-potential V (m,uf ) of Hε ,
H and H JV with reference constant m ∈ R is equal to

∫
T

dx hm(uf (x)) if
∫

T
dx uf (x) = m and

it is +∞ otherwise (see Theorem 3.1).



G. Bellettini et al. / Journal of Functional Analysis 258 (2010) 534–558 537
As remarked above, both the large deviations results in [10,15,14] and the Γ -limit results
in [2] are incomplete, due to little knowledge of structure theorems and regularity results for
weak solutions to conservation laws (1.1). These results on the quasi-potential give therefore
an additional heuristic argument supporting the actual identification of H as the Γ -limit of Hε .
Similarly, since it is easily seen that the large deviations rate functional (in the hydrodynamical
limit) of the invariant measures of the totally asymmetric simple exclusion process is also given
by the integral of the Einstein entropy, these results also support the conjecture that H and H JV

may coincide at least in the case f (u) = u(1 − u) and that they are in fact the large deviations
rate functional of the totally asymmetric simple exclusion process. Finally, we remark that the
integral of the Einstein entropy is expected to rule the long time behavior of the well-behaving
physical systems, and the result provided in this paper thus also supports the universality of
the Jensen and Varadhan functional H JV (or in general of H ) as a relevant universal entropy
functional for asymmetric conservative, closed physical systems.

In Section 2 we recall some preliminary notions. In Section 3 the main definitions and results
are stated, while Sections 4 and 5 are devoted to the proofs. The techniques used to prove the
results vary from calculus of variations (Remark 3.2 and Corollary 5.4), large deviations theory
(Lemmas 4.2, 4.3 and 5.1) and conservation laws (Lemma 5.8).

2. Preliminaries

Our analysis will be restricted to equibounded “densities” u, and for the sake of simplicity
we let u take values in [−1,1]. Let U denote the compact Polish space of measurable functions
u : T → [−1,1], equipped with the H−1(T) metric

dU := sup
{〈u,ϕ〉, ϕ ∈ C∞

c (T), 〈ϕx,ϕx〉 + 〈ϕ,ϕ〉 = 1
}

where 〈·,·〉 denotes the scalar product in L2(T). Given T > 0, let XT be the Polish space
C([0, T ];U) endowed with the metric

dXT
(u, v) := sup

t∈[0,T ]
dU

(
u(t), v(t)

) + ‖u − v‖L1([0,T ]×T).

Hereafter we assume f a Lipschitz function on [−1,1]. Moreover we let D,σ ∈ C([−1,1])
with D uniformly positive, and σ strictly positive in (−1,1).

2.1. The functional Hε

For ε > 0, T > 0, we define Hε;T : XT → [0,+∞] as (hereafter we may drop the explicit
dependence on integration variables inside integrals when no misunderstanding is possible)

Hε;T (u) :=

⎧⎪⎨
⎪⎩

supϕ∈C∞
c ((0,T )×T) ε

−1[− ∫ T

0 dt〈u,ϕt 〉 + 〈f (u),ϕx〉 − ε
2 〈D(u)ux,ϕx〉

− 1
2

∫ T

0 dt〈σ(u)ϕx,ϕx〉] if ux ∈ L2([0, T ] × T),

+∞ otherwise.

(2.1)

Note that Hε;T (u) = 0 iff u ∈ XT is a weak solution to (1.2). Hε;T is a lower-semicontinuous and
coercive functional on XT (see [2, Proposition 3.3, Theorem 2.5]). Moreover if Hε;T (u) < +∞
then u ∈ C([0, T ];L1(T)) (see [2, Lemma 3.2]).
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2.2. Entropy-measure solutions

We say that u ∈ XT is a weak solution to (1.1) iff for each ϕ ∈ C∞
c ((0, T ) × R)

T∫
0

dt〈u,ϕt 〉 + 〈
f (u),ϕx

〉 = 0.

A function η ∈ C2([−1,1]) is called an entropy, and its conjugated entropy flux q ∈ C([−1,1])
is defined up to an additive constant by q(w) := ∫ w

dv η′(v)f ′(v). For u ∈ XT a weak solution
to (1.1), for (η, q) an entropy – entropy flux pair, the η-entropy production is the distribution
℘η,u acting on C∞

c ((0, T ) × R) as

℘η,u(ϕ) := −
T∫

0

dt
〈
η(u),ϕt

〉 + 〈
q(u),ϕx

〉
.

Let C
2,∞
c ([−1,1] × (0, T ) × T) be the set of compactly supported maps ϑ : [−1,1] × (0, T ) ×

R  (v, t, x) �→ ϑ(v, t, x) ∈ R, that are C2 in the v variable, with derivatives continuous up to
the boundary of [−1,1] × (0, T ) × T, and C∞ in the (t, x) variables. For ϑ ∈ C

2,∞
c ([−1,1] ×

(0, T ) × T) let ϑ ′ and ϑ ′′ denote its partial derivatives with respect to the v variable. We say
that a function ϑ ∈ C

2,∞
c ([−1,1] × (0, T ) × T) is an entropy sampler, and its conjugated en-

tropy flux sampler Q : [−1,1] × (0, T ) × T is defined up to an additive function of (t, x) by
Q(w, t, x) := ∫ w

ϑ ′(v, t, x)f ′(v) dv. Finally, given a weak solution u to (1.1), the ϑ -sampled
entropy production Pϑ,u is the real number

Pϑ,u := −
∫

(0,T )×T

dt dx
[
(∂tϑ)

(
u(t, x), t, x

) + (∂xQ)
(
u(t, x), t, x

)]
. (2.2)

If ϑ(v, t, x) = η(v)ϕ(t, x) for some entropy η and some ϕ ∈ C∞
c ((0, T ) × T), then Pϑ,u =

℘η,u(ϕ).
The next proposition introduces a suitable class of solutions to (1.1) which will be needed in

the sequel. We denote by MT the set of finite measures on (0, T ) × T that we consider equipped
with the weak∗ topology. In the following, for 
 ∈ MT we denote by 
± the positive and negative
part of 
.

Proposition 2.1. (See [2, Proposition 2.3], [7].) Let u ∈ XT be a weak solution to (1.1). The
following statements are equivalent:

(i) for each entropy η, the η-entropy production ℘η,u can be extended to a Radon measure on
(0, T ) × T, namely ‖℘η,u‖TV := sup{℘η,u(ϕ),ϕ ∈ C∞

c ((0, T ) × T), |ϕ| � 1} < +∞;
(ii) there exists a bounded measurable map 
u : [−1,1]  v → 
u(v;dt, dx) ∈ MT such that for

any entropy sampler ϑ

Pϑ,u =
∫

dv 
u(v;dt, dx)ϑ ′′(v, t, x). (2.3)
[−1,1]×(0,T )×T
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We say that a weak solution u ∈ XT is an entropy-measure solution to (1.1) iff it satisfies
the equivalent conditions of Proposition 2.1. The set of entropy-measure solutions to (1.1) is
denoted by ET ⊂ XT . In general ET � BV([0, T ] × T), the main regularity result for ET being
ET ⊂ C([0, T ];L1(T)), provided f ∈ C2([−1,1]) is such that there is no interval in which f is
affine (see [2, Lemma 5.1]). A Kruzkhov solution to (1.1) is a weak solution u ∈ C([0, T ];L1(T))

such that ℘η,u � 0 in distributional sense, for each convex entropy η. Since a weak solution u

such that ℘η,u � 0 can be shown to be an entropy-measure solution, the entropic condition is
equivalent to 
u(v;dt, dx) � 0 for a.e. v ∈ [−1,1].

2.3. Γ -entropy cost of non-entropic solution

For T > 0, we introduce the functional HT : XT → [0,+∞] as

HT (u) :=
{∫

dv
D(v)
σ (v)


+
u (v;dt, dx) if u ∈ ET ,

+∞ otherwise.
(2.4)

In [2, Proposition 2.6] it is proved that HT is coercive and lower semicontinuous, and that it
vanishes only on Kruzkhov solutions to (1.1).

As noted in [2, Remark 2.7], if u ∈ XT ∩ BV([0, T ] × T) is a weak solution to (1.1), then
u ∈ ET . Let Ju be the jump set of u ∈ ET ∩ BV([0, T ] × T), H1 Ju the one-dimensional Haus-
dorff measure restricted to Ju and, at a point (s, y) ∈ Ju, let n = (nt , nx) ≡ n(s, y) be the normal
to Ju and u− ≡ u−(s, y) (respectively u+ ≡ u+(s, y)) be the left (respectively right) trace of u

(these are well defined H1 Ju a.e., since nx can be chosen uniformly positive, see [2, Re-
mark 2.7]). Then

HT (u) =
∫
Ju

dH1
∣∣nx

∣∣ ∫ dv
D(v)

σ (v)

ρ+(v,u+, u−)

|u+ − u−| (2.5)

where

ρ
(
v,u+, u−) := [

f
(
u−)(

u+ − v
) + f

(
u+)(

v − u−)
− f (v)

(
u+ − u−)]

1[u−∧u+, u−∨u+](v) (2.6)

and ρ+ denotes the positive part of ρ.
In [2] a suitable set ST ⊂ ET of entropy-splittable solutions to (1.1) is also introduced, and

the next result is proved.

Theorem 2.2. (See [2, Theorem 2.5].) For each T > 0, the following statements hold.

(i) The sequence of functionals {Hε;T } satisfies the Γ -liminf inequality Γ -limε Hε;T � HT

on XT .
(ii) Assume that there is no interval where f is affine. Then the sequence of functionals {Hε;T }

is equicoercive on XT .
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(iii) Assume furthermore that f ∈ C2([−1,1]), and D,σ ∈ Cα([−1,1]) for some α > 1/2. De-
fine

HT (u) := inf
{

lim
n

HT (un), {un} ⊂ ST : un → u in XT

}
.

Then the sequence of functionals {Hε;T } satisfies the Γ -limsup inequality Γ -limε Hε;T �
HT on XT .

Note that Γ -limsup inequality is not complete, as it is not known that HT = HT .

2.4. The Jensen and Varadhan functional

Suppose that σ is such that there exists h ∈ C2([−1,1]) such that σh′′ = D, and let g be such
that g′ = h′f ′. For T > 0, we also introduce the Jensen and Varadhan functional H JV

T : XT →
[0,+∞] as

H JV
T (u) :=

⎧⎨
⎩

supϕ∈C∞([0,T ]×T;[0,1]){
∫

T
dx [h(u(T , x))ϕ(T , x) − h(u(0, x))ϕ(0, x)]

− ∫ T

0 dt〈h(u),ϕt 〉 + 〈g(u),ϕx〉} if u is a weak solution to (1.1),
+∞ otherwise.

(2.7)

Note that the definition of H JV
T does not depend on the choice of h, provided it satisfies σh′′ = D.

This functional has been introduced in [10] (in the case D ≡ 1 and f (u) = σ(u) = u(1 − u)).
In [2] it is proved that H JV

T � HT , that H JV
T (u) = HT (u) if f is convex or concave and u has

bounded variation, and that H JV
T < HT if f is neither convex or concave.

3. Quasi-potentials

We want to study the quasi-potentials Vε,V,V JV : [−1,1] × U → [0,+∞] associated re-
spectively with Hε;T , HT and H JV

T , and defined as

Vε(m,uf ) := inf
{
Hε;T (u), T > 0, u ∈ XT : u(0) ≡ m, u(T ) = uf

}
, (3.1)

V (m,uf ) := inf
{
HT (u), T > 0, u ∈ XT : u(0) ≡ m, u(T ) = uf

}
, (3.2)

V JV(m,uf ) := inf
{
H JV

T (u), T > 0, u ∈ XT : u(0) ≡ m, u(T ) = uf

}
. (3.3)

Note that, if uf ≡ m, then Vε(m,uf ) = V (m,uf ) = V JV(m,uf ) = 0. On the other hand, when-
ever m = +1 or m = −1, if uf �≡ m, then

∫
dx uf (x) �= m and thus Vε(m,uf ) = V (m,uf ) =

V JV(m,uf ) = +∞, since Hε;T (u) = HT (u) = H JV
T (u) = +∞ whenever u ∈ XT is such that∫

T
dx u(s, x) �= ∫

T
dx u(t, x) for some s, t ∈ [0, T ]. Therefore, in the following we focus on the

case m ∈ (−1,1).
Our main result is the following. For m ∈ (−1,1) define the Einstein entropy hm ∈

C([−1,1]; [0,+∞]) ∩ C2((−1,1)) as the unique function such that σ(v)h′′
m(v) = D(v) for

v ∈ (−1,1), hm(m) = 0, h′
m(m) = 0, and let

Wm(uf ) :=
∫

dx hm

(
uf (x)

) ∈ [0,+∞].

T
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Note that, if
∫

T
dx uf (x) = m, Wm(uf ) can also be written by the more explicit but less evocative

formula

∫
T

dx

uf (x)∫
m

dw
[
uf (x) − w

]D(w)

σ(w)
.

Theorem 3.1.

(i) Assume

lim
α↓0

α2
[

1

σ(−1 + α)
+ 1

σ(1 − α)

]
= 0. (3.4)

Then

Vε(m,uf ) =
{

Wm(uf ) if
∫

T
dx uf = m,

+∞ otherwise

for any ε > 0, for any m ∈ (−1,1) and uf ∈ U .
(ii) Assume f ∈ C2([−1,1]) is such that there is no interval in which f is affine. Assume also

that for some δ0 > 0 the set {v ∈ [−1,1]: f ′′(v) = 0} ∩ [m − δ0,m + δ0] is finite. Then

V (m,uf ) =
{

Wm(uf ) if
∫

T
dx uf = m,

+∞ otherwise

for any m ∈ (−1,1) and uf ∈ U .
(iii) Assume the same hypotheses of (ii) and furthermore that there exists h ∈ C2([−1,1]) such

that σh′′ = D. Then

V JV(m,uf ) =
{

Wm(uf ) if
∫

T
dx uf = m,

+∞ otherwise

for any m ∈ (−1,1) and uf ∈ U .

Note that (3.4) is verified if σ does not vanish, or vanishes slower than quadratically in −1
and +1.

Observe that Hε;T has a quadratic structure (see (4.1)), so that the proof of Theorem 3.1(i)
is an infinite-dimensional version of Freidlin–Wentzell theorem [9, Theorem 4.3.1]. However
this is not the case for HT . In particular, since HT (u) = +∞ if u is not an (entropy-measure)
solution to (1.1), the main technical difficulty in the proof of Theorem 3.1(ii) is to show that one
can find a solution u to (1.1) such that u connects in finite time a profile v ∈ U close in L∞(T)

to the constant profile m, to m itself. We remark that the quasi-potential problem for HT is at
this time being addressed in [1] in the case of Dirichlet boundary conditions. While this setting
is quite similar to ours, the difficulties are completely different. In the boundary driven case, the
entropic evolution connects a non-constant profile to a constant in finite time, so for T large it is
not difficult to solve the minimization problem (3.2) far from the boundaries. On the other hand,
new challenging difficulties appear in (3.2) when dealing with weak solutions to (1.1) featuring
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discontinuities at the boundary (boundary layers). Of course, this problem does not appear at all
on a torus.

Remark 3.2. Let T1, T2 > 0, and let u1 ∈ XT1 , u2 ∈ XT2 . Define the measurable function
u : [0, T1 + T2] × T → [−1,1] by u(t, x) = u1(t, x) if t ∈ [0, T1], and u(t, x) = u2(t − T1, x) if
t ∈ (T1, T1 + T2]. Then u ∈ XT1+T2 iff u1(T1) = u2(0) and in such a case

Hε;T1+T2(u) = Hε;T1(u1) + Hε;T2(u2).

Furthermore if the hypotheses of Theorem 3.1(ii) hold, then

HT1+T2(u) = HT1(u1) + HT2(u2).

Proof. A change of variables in the definition (2.1) shows that Hε;T1(u1) + Hε;T2(u2) can be
still written in the form (2.1) with T = T1 + T2, where now the supremum is carried over all the
test functions ϕ ∈ C∞

c ((0, T1) ∪ (T1, T1 + T2) × T). However, if u1(T1) = u2(0), the supremum
carried over such test functions coincides with the supremum carried over C∞

c ((0, T1 +T2)×T).
Namely, Hε;T1(u1) + Hε;T2(u2) equals the definition of Hε;T1+T2(u).

By (2.4) it follows that HT1+T2(u) = +∞ whenever HT1(u1) = +∞ or HT2(u2) = +∞.
Assume instead HT1(u1),HT2(u2) < ∞. Under the assumptions of Theorem 3.1(ii), the bound-
edness of HT implies strong continuity in L1(T) as remarked below Proposition 2.1. There-
fore if u1(T1) = u2(0) then u ∈ C([0, T1 + T2];L1(T)) and u ∈ ET1+T2 . By (2.2), (2.3) and
the L1(T) continuity of u1, u2 and u, it follows that 
u(v; {T1} × T) = 
u1(v; {T1} × T) =

u2(v; {0} × T) = 0 for a.e. v ∈ [−1,1]. Thus 
u(v;dt, dx) = 
u1(v;dt, dx) in [0, T1] × T
and 
u(v;dt, dx) = 
u2(v;d(t − T1), dx) in [T1, T1 + T2] × T, and the equality follows
from (2.4). �

Since Hε;T (m) = HT (m) = 0, by Remark 3.2, the infima in (3.1), (3.2) are attained in the
limit T → +∞.

4. Proof of Theorem 3.1 for Vε

Given a bounded measurable function a � 0 on [0, T ] × T let D1
a;T be the Hilbert space

obtained by identifying and completing the functions ϕ ∈ C∞([0, T ] × T) with respect to the
seminorm [∫ T

0 dt〈ϕx, aϕx〉]1/2. Let D−1
a;T be its dual space. The corresponding norms are denoted

respectively by ‖ · ‖D1
a;T

and ‖ · ‖D−1
a;T

.

Remark 4.1. Let a � 0 be a bounded measurable function on [0, T ] × T. Let F,G ∈
L2([0, T ]×T) be such that Fx, (aG)x ∈ D−1

a;T . Assume that
∫

T
dx G(t, x) = 0 for a.e. t ∈ [0, T ].

Then

(
Fx, (aG)x

)
D−1

a;T
=

T∫
0

dt〈F,G〉

where (·,·)D−1 denotes the scalar product in D−1
a;T .
a;T
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By a standard application of the Riesz representation theorem (see [2, Lemma 3.1]), we have that
if Hε;T (u) < +∞ then

Hε;T (u) = ε−1

2

∥∥∥∥ut + f (u)x − ε

2

(
D(u)ux

)
x

∥∥∥∥
2

D−1
σ(u);T

. (4.1)

If
∫

T
dx uf (x) �= m, then Theorem 3.1(i) follows from the conservation of the total mass of

functions u ∈ XT with Hε;T (u) < +∞. On the other hand, if
∫

T
dx uf (x) = m, the proof of the

theorem is a consequence of the following lemmas. In fact from Lemma 4.2 we get Vε(m,uf ) �
Wm(uf ), and from Lemmas 4.2 and 4.3 we have Vε(m,uf ) � Wm(uf ) + γ for each γ > 0.

Lemma 4.2. Assume (3.4), let T > 0 and u ∈ XT be such that Hε;T (u) < +∞, u(0, x) ≡ m,
u(T , x) = uf (x). Then

∫
T

dx hm(uf (x)) < +∞, ut + f (u)x, (D(u)ux)x ∈ D−1
σ(u);T and

Hε;T (u) =
∫
T

dx hm

(
uf (x)

) + ε−1

2

∥∥∥∥ut + f (u)x + ε

2

(
D(u)ux

)
x

∥∥∥∥
2

D−1
σ(u);T

.

Lemma 4.3. For each γ > 0, there exist T > 0 and u ∈ XT such that Hε;T (u) < +∞, u(0) ≡ m,
u(T ) = uf and

ε−1

2

∥∥∥∥ut + f (u)x + ε

2

(
D(u)ux

)
x

∥∥∥∥
2

D−1
σ(u);T

� γ.

Proof of Lemma 4.2. We first assume that there exists δ > 0 such that for a.e. (t, x) ∈ [0, T ]×T,
−1 + δ � u(t, x) � 1 − δ, so that σ(u) is uniformly positive. It follows that (D(u)ux)x, f (u)x ∈
D−1

σ(u);T so that, since Hε;T (u) < +∞, by (4.1) we also have ut ∈ D−1
σ(u);T . In particular there

exists θ ∈ L2([0, T ] × T) such that ut = θx weakly. Therefore

Hε;T (u) = ε−1

2

∥∥∥∥ut + f (u)x − ε

2

(
D(u)ux

)
x

∥∥∥∥
2

D−1
σ(u);T

= ε−1

2

∥∥∥∥ut + f (u)x + ε

2

(
D(u)ux

)
x

∥∥∥∥
2

D−1
σ(u);T

− (
θx + f (u)x,

(
D(u)ux

)
x

)
D−1

σ(u);T

= ε−1

2

∥∥∥∥ut + f (u)x + ε

2

(
D(u)ux

)
x

∥∥∥∥
2

D−1
σ(u);T

−
T∫

0

dt

〈
θ,

D(u)

σ (u)
ux

〉
+

〈
f (u),

D(u)

σ (u)
ux

〉

where in the last line we used Remark 4.1, as for each t ∈ [0, T ]∫
dx

D(u(t, x))

σ (u(t, x))
ux(t, x) =

∫
dx h′

m

(
u(t, x)

)
x

= 0.
T T
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Similarly we have 〈f (u(t)),
D(u(t))
σ (u(t))

ux(t)〉 = 0 and integrating by parts:

−
T∫

0

dt

〈
θ,

D(u)

σ (u)
ux

〉
=

T∫
0

dt
〈
θx,h

′
m(u)

〉 =
T∫

0

dt
〈
ut , h

′
m(u)

〉

=
∫
T

dx hm

(
u(T , x)

) − hm

(
u(0, x)

)
.

Lemma 4.2 is therefore established for each u ∈ XT bounded away from −1 and +1. For a
general u ∈ XT such that u(0, ·) ≡ m ∈ (−1,1), and δ > 0, let us define

uδ(t, x) = (1 − δ)u(t, x) + δm.

Provided (3.4) holds, the sequence {uδ} ⊂ XT converges to u as δ → 0, and is such that: for δ > 0,
uδ is bounded away from −1 and +1; uδ(0, ·) ≡ m,

∫
T

dx h(uδ(T , x)) → ∫
T

dx h(u(T , x));
Hε;T (uδ) → Hε;T (u);

∥∥∥∥uδ
t + f

(
uδ

)
x

+ ε

2

(
D

(
uδ

)
uδ

x

)
x

∥∥∥∥
2

D−1
σ(uδ);T

→
∥∥∥∥ut + f (u)x + ε

2

(
D(u)ux

)
x

∥∥∥∥
2

D−1
σ(u);T

.

Therefore, since Lemma 4.2 holds for uδ for each δ > 0, it also holds for u. �
The following result is well known [8].

Theorem 4.4. Let uf ∈ U and let v : [0,∞) × T → R be the solution to (1.2) with initial da-
tum uf . Then limt→∞ ‖v(t) − m‖L∞([0,T ]×T) = 0 where m = ∫

T
dx uf (x).

Proof of Lemma 4.3. Let v : [0,∞) × T → R be the solution to (1.2) with initial datum
v(0, x) = uf (−x), and for T1, T2 > 0 let u ∈ XT1+T2 be defined as

u(t, x) =
{

(1 − t
T1

)m + t
T1

v(T2,−x) for t ∈ [0, T1],
v(T1 + T2 − t,−x) for t ∈ [T1, T1 + T2].

Since u satisfies ut + f (u)x + ε
2 (D(u)ux)x = 0 for t ∈ [T1, T1 + T2], we have by Remark 3.2

ε−1

2

∥∥∥∥ut + f (u)x + ε

2

(
D(u)ux

)
x

∥∥∥∥
2

D−1
σ(u);T1+T2

= ε−1

2

∥∥∥∥ut + f (u)x + ε

2

(
D(u)ux

)
x

∥∥∥∥
2

D−1
σ(u);T1

� 3ε−1

2

[
‖ut‖2

D−1
σ(u);T1

+ ∥∥f (u)x
∥∥2

D−1
σ(u);T1

+
∥∥∥∥ε

2

(
D(u)ux

)
x

∥∥∥∥
2

D−1

]
. (4.2)
σ(u);T1
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Let now δ > 0 (to be chosen below) be small enough to have −1 < m − δ < m + δ < 1, and
define

Cσ,δ := max
v∈[m−δ,m+δ]

1

σ(v)
< +∞,

cf (t) :=
∫
T

dx σ
(
u(t, x)

) ∫
T

dx
f (u(t, x))

σ (u(t, x))
,

Cf,δ := max
v∈[m−δ,m+δ]f (v) − min

v∈[m−δ,m+δ]f (v),

CD := max
v∈[−1,1]

D(v)2

2
.

Let also θ ∈ L2([0, T1] × T) be defined by

θx(t, x) = v(T2,−x) − m

T1
,

∫
T

θ(t, x)

σ (u(t, x))
= 0.

By Theorem 4.4, there exists τδ > 0 such that ‖v(t) − m‖L∞(T) � δ for each t � τδ . By Re-
mark 4.1 and (4.2), since ut = θx weakly, we have for each T2 � τδ

ε−1

2

∥∥∥∥ut + f (u)x + ε

2

(
D(u)ux

)
x

∥∥∥∥
2

D−1
σ(u);T1+T2

� 3ε−1

2

T1∫
0

dt

〈
θ,

θ

σ (u)

〉
+

〈
f (u) − cf ,

f (u) − cf

σ (u)

〉
+

〈
D(u)ux,

D(u)ux

σ (u)

〉

� 3ε−1

2
Cσ,δ

[ T1∫
0

dt〈θ, θ〉 + T1C
2
f,δ + T1CD

〈
v(T2)x, v(T2)x

〉]
. (4.3)

By standard parabolic estimates we have

+∞∫
0

dt〈vx, vx〉 < +∞.

In particular there exists T2,δ > τδ such that 〈v(T2,δ)x, v(T2,δ)x〉 < δ. Note that, as δ → 0,
Cσ,δ stays bounded, while Cf,δ , 〈θ, θ〉 and 〈v(T2,δ)x, v(T2,δ)x〉 vanish. Therefore the right-hand
side of (4.3) can be made arbitrarily small provided δ is small enough. �
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5. Proof of Theorem 3.1 for V and V JV

Define the parity operator P : U → U by Pu(x) = u(−x) and for T > 0 the time–space parity
operator P T : XT → XT by P T u(t, x) = u(T − t,−x). Define the time reversed quasi-potential
V : U × [−1,1] → [0,∞] as

V (ui,m) := inf
{
HT (u), T > 0, u ∈ XT : u(0) = ui, u(T ) ≡ m

}
.

Lemma 5.1. Assume f ∈ C2([−1,1]) is such that there is no interval in which f is affine. Let
T > 0, uf ∈ U and m = ∫

T
dx uf (x). Then

V (m,uf ) = V (Puf ,m) + Wm(uf ).

Proof. By the assumptions on f , as remarked below Proposition 2.1, ET ⊂ C([0, T ];L1(T)). In
particular Eqs. (2.2)–(2.3) extend to any ϑ ∈ C2,∞([−1,1] × [0, T ] × T) (now ϑ(0) and ϑ(T )

need not to vanish) as

∫
T

dx ϑ
(
u(T , x), T , x

) − ϑ
(
u(0, x),0, x

)

−
∫

[0,T ]×T

dt dx
[
(∂tϑ)

(
u(t, x), t, x

) + (∂xQ)
(
u(t, x), t, x

)]

=
∫

[−1,1]×[0,T ]×T

dv 
u(v;dt, dx)ϑ ′′(v, t, x). (5.1)

Note that for u ∈ ET and v ∈ [−1,1]


PT u(v;dt, dx) = −
u

(
v;d(T − t), d(−x)

)
.

Therefore assuming also u(0) ≡ m, u(T ) = uf , we have for each η ∈ C2([−1,1]) with η(m) = 0

∫
dv η′′(v)
+

u (v;dt, dx) −
∫

dv η′′(v)
+
PT u

(v;dt, dx)

=
∫

dv η′′(v)
+
u (v;dt, dx) −

∫
dv η′′(v)
−

u

(
v;d(T − t),−dx

)
=

∫
dv η′′(v)
+

u (v;dt, dx) −
∫

dv η′′(v)
−
u (v;dt, dx)

=
∫

dv η′′(v)
u(v;dt, dx) =
∫

dx η
(
u(T , x)

) − η
(
u(0, x)

)
=

∫
dx η

(
uf (x)

)
(5.2)
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where we used (5.1) with ϑ(v, t, x) = η(v). If σ is bounded away from 0, then (5.2) evaluated
for η = hm immediately yields

HT (u) = HT

(
P T u

) + Wm(uf ). (5.3)

If σ vanishes at −1 or +1, then (5.3) is obtained by monotone convergence, when considering
in (5.2) a sequence {ηn} ⊂ C2([−1,1]) such that: ηn(m) = 0; 0 � (ηn)′′ � h′′

m; and for all v ∈
[−1,1], ηn(v) ↑ hm(v) and (ηn)′′(v) ↑ h′′

m(v).
Optimizing in (5.3) over T and u we get V (m,uf ) � V (Puf ,m) + Wm(uf ). Replacing uf

by Puf and thus Puf by P(Puf ) = uf , we get the reverse inequality. �
Definition 5.2. We say that ui ∈ U is piecewise constant iff there is a finite partition of T in
intervals such that ui is constant on each interval. For T > 0, we say that u ∈ XT is piecewise
constant iff u ∈ C([0, T ];L1(T)) and there exists a finite partition of [0, T ] × T in connected
sets with Lipschitz boundary such that u is constant on each set of these.

The following lemma is the main technical difficulty of this paper, and its proof is postponed
at the end of this section.

Lemma 5.3. Assume the same hypotheses of Theorem 3.1(ii). For each γ > 0, there ex-
ist T γ , δγ > 0 such that the following holds. For each piecewise constant ui ∈ U satisfy-
ing

∫
T

dx ui(x) = m and ‖ui − m‖L∞(T) � δγ , there exists uγ ∈ XT γ such that uγ (0) = ui ,
uγ (T γ ) ≡ m and HT γ (uγ ) � γ .

The next corollary relaxes the condition in Lemma 5.3 requiring ui to be piecewise constant.

Corollary 5.4. Assume the same hypotheses of Theorem 3.1(ii). For each γ > 0, there
exist T γ , δγ > 0 such that the following holds. For each ui ∈ U satisfying

∫
T

dx ui(x) = m

and ‖ui − m‖L∞(T) � δγ , there exists uγ ∈ XT γ such that uγ (0) = ui , uγ (T γ ) ≡ m and
HT γ (uγ ) � γ .

Proof. For a fixed γ > 0, let T γ and δγ > 0 be as in Lemma 5.3. For ui ∈ U such that
‖ui − m‖L∞(T) � δγ , where m = ∫

T
dx ui(x), let {un

i } ⊂ U be a sequence of piecewise con-
stant functions converging to ui in U and satisfying

∫
T

dx un
i (x) = m and ‖ui − m‖L∞(T) � δγ .

For each n, by Lemma 5.3 there exist un,γ such that un,γ (0) = un
i , un,γ (T γ ) ≡ m and

HT γ (un,γ ) � γ . Therefore, since HT γ has compact sublevel sets (see [2, Proposition 2.6]), there
is a (not relabeled) subsequence {un,γ } converging to a uγ in XT γ , and HT γ (uγ ) � γ . By the
definition of convergence in XT γ , un,γ (0) and un,γ (T γ ) converge in U to uγ (0) and uγ (T γ )

respectively, and thus uγ (0) = ui and uγ (T γ ) ≡ m. �
We recall a result in [6, Chapter 11.5], [12].

Theorem 5.5. Assume f ∈ C2([−1,1]), and that there is no interval in which f is affine. Let
ui ∈ U and let u : [0,∞) × T → R be the Kruzkhov solution to (1.1) with initial datum ui ∈ U .
Then

lim
t→∞

∥∥u(t) − m
∥∥

L∞([0,T ]×T)
= 0

where m = ∫
dx ui(x).
T
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Proof of Theorem 3.1(ii). Fix ui ∈ U and γ > 0. Let T γ and δγ be as in Corollary 5.4, let
u : [0,+∞) → U be the Kruzkhov solution to (1.1) with initial datum ui , and let m =∫

T
dx ui(x). By Theorem 5.5, there exists τγ such that |u(τγ )−m|L∞(T) � δγ . By Corollary 5.4

there exists ũ ∈ XT γ such that ũ(0) = u(τγ ), ũ(T γ ) ≡ m and HT γ (ũ) � γ . Define u ∈ Xτγ +T γ

by

u(t, x) :=
{

u(t, x) if t � τγ ,

ũ(t − τγ , x) if τγ � t � τγ + T γ .

Then, by Remark 3.2, Hτγ +T γ (u) = Hτγ (u) + HT γ (ũ) � γ . Therefore V (ui,m) = 0 and the
proof is thus complete since Lemma 5.1 holds. �

The remaining of this section is devoted to the proof of Lemma 5.3.

Remark 5.6. Let m ∈ (−1,1), assume the same hypotheses of Theorem 3.1(ii), and let δ0 be
defined accordingly. Then, taking perhaps a smaller δ0, one can assume [m − δ0,m + δ0] ⊂
(−1,1) and that one (and only one) of the following holds:

(A) in the interval [m − δ0,m + δ0], f is either strictly convex or strictly concave.
(B) f is either strictly convex in [m − δ0,m] and strictly concave in [m,m + δ0], or strictly

concave in [m − δ0,m] and strictly convex in [m,m + δ0].

With no loss of generality, we will assume f convex in [m − δ0,m + δ0] if case (A) holds, and
f concave in [m − δ0,m] and convex in [m,m + δ0] if (B) holds.

Remark 5.7. Let T > 0 and assume u ∈ ET to be piecewise constant according to Definition 5.2.
Then the jump set of u consists of a finite number of segments in [0, T ] × T. In particular there
exist a finite sequence 0 = T 0 < T 1 < · · · < T n = T , and, for k = 1, . . . , n, finite sequences
{wk

j }j=1,...,Nk
⊂ [−1,1] such that for t ∈ (T k−1, T k), u(t) is piecewise constant with jump set

consisting of a finite set of points {xk
j (t)}k=1,...,Nk

∈ T, and the traces of u(t) at xk
j (t) are wk

j

(from the right) and wk
j−1 (from the left, where we understand wk

0 ≡ wk
Nk

).
In particular, by (2.5) we have that

HT (u) =
n∑

k=1

(
T k − T k−1) Nk∑

j=1

∫
dv

D(v)

σ (v)

ρ+(v,wk
j ,w

k−1
j )

|wk
j − wk−1

j | . (5.4)

If u ∈ ET is piecewise constant, and u−, u+ are the left and right traces of u at a given point in
the jump set of u, we say that the shock between u− and u+ is entropic iff ρ(v,u−, u+) � 0 for
almost every v, while it is anti-entropic iff ρ(v,u−, u+) � 0 for almost every v. If f is convex
or concave, each shock is either entropic or anti-entropic, but in the general case the sign of
ρ(v,u−, u+) may depend on v.

Lemma 5.8. Let m ∈ (−1,1), and δ0 ≡ δ0(m) > 0 be as in Remark 5.6. Let ui ∈ U be piecewise
constant and such that

∫
T

dx ui(x) = m and ‖ui − m‖L∞(T) � δ0. Then for each T ,γ > 0 there
exists w ∈ XT piecewise constant such that ‖w − m‖L∞([0,T ]×T) � ‖ui − m‖L∞(T), w(0) = ui ,
and H (w) � γ .
T
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Fig. 1. In the figure, we have f (u) = u3 − u, m = 0 and M = 2. Consider a discontinuity between the values u−
1 = −δ

and u+
1 = δ. Then U1 is chosen as the abscissa of the point at which a line passing in (−δ, f (−δ)) is tangent to the graph

of f . The values U1 + k
M

(u+
1 − U1) for k = 1,2 are the abscissas of the intersections of the dashed lines with the graph

of f .

The proof of Lemma 5.8 will be divided in three steps. The main idea is to construct a
piecewise smooth weak solution w, by splitting each shock appearing in the initial datum in
an entropic part and an anti-entropic part, the anti-entropic part being split itself in M small
anti-entropic shocks, with M a large integer, see Fig. 1. For such a solution to exist, the points at
which the shocks are split have to be carefully chosen. We are then able to define w up to the first
time at which two (or more) shocks collide. Defining then w recursively, we prove that there can
be only a finite number of times at which the shocks collide, and thus w is well defined globally
in time. Finally, we show that HT (w) can be made arbitrarily small by choosing M large.

Proof of Lemma 5.8. As noted in Remark 5.6, we assume f to be strictly convex in [m,m+δ0].
Hereafter we let δ := ‖ui − m‖L∞(T) � δ0.

Step 1 (Evolution of shocks). Let x1, . . . , xN ∈ T be the points at which the discontinuities of
ui are located. With a little abuse of notation, we also denote by ui : R → [−1,1] and xj ∈
[0,1] ⊂ R the lift of ui and xj to R, and we assume xj < xj+1 for j = 1, . . . ,N − 1. For
j = 1, . . . ,N and n ∈ Z, let xj+nN = xj + n ∈ R, and for j ∈ Z let u−

j and u+
j be respectively

the left and right traces of ui at xj . Define

Uj :=
{

max{w ∈ [u−
j , u+

j ]: ρ(v,w,u−
j ) � 0, ∀v ∈ [−1,1]} if u−

j < u+
j ,

min{w ∈ [u+
j , u−

j ]: ρ(v,w,u−
j ) � 0, ∀v ∈ [−1,1]} if u+

j < u−
j .

Since f is convex in [m,m + δ0], if u−
j < u+

j and Uj � v � v′ � u+
j , or if u+

j < u−
j and u+

j �
v′ � v � Uj then

f (u−
j ) − f (Uj )

u−
j − Uj

� f (Uj ) − f (v)

Uj − v
� f (v) − f (v′)

v − v′

where we understand f (w)−f (w)
w−w

= f ′(w) for w ∈ [−1,1].
Therefore, fixed an integer M � 2, it is possible to define the map w

ui

j : [0,+∞) × R →
[m − δ,m + δ] as (see Fig. 2)
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Fig. 2. In the figure, we have f (u) = u3 − u, m = 0, and the initial datum ui having two jumps between the values −δ

and δ. The figure shows w at different times t ∈ [0, T (ui )].

w
ui

j (t, x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u−
j if x − xj � f (u−

j )−f (Uj )

u−
j −Uj

t,

Uj if x − xj ∈ [f (u−
j )−f (Uj )

u−
j −Uj

t,M
f (Uj )−f (Uj + u

+
j

−Uj

M
)

Uj −u+
j

t],

Uj + k
M

(u+
j − Uj ) if x − xj ∈ [M f (Uj + k−1

M
(u+

j −Uj ))−f (Uj + k
M

(u+
j −Uj ))

Uj −u+
j

t,

M
f (Uj + k

M
(u+

j −Uj ))−f (Uj + k+1
M

(u+
j −Uj ))

Uj −u+
j

t]
for k ∈ {1, . . . ,M − 1},

u+
j if x − xj � M

f (Uj + M−1
M

(u+
j −Uj ))−f (u+

j )

Uj −u+
j

t.

(5.5)

Note that this definition makes sense in the case Uj = u−
j or Uj = u+

j . We also let X−
j (t) :=

xj + f (u−
j )−f (Uj )

u−
j −Uj

t , X+
j (t) := xj + f (Uj + M−1

M
(u+

j −Uj ))−f (u+
j )

Uj −u+
j

t and

T (ui) := inf
{
t � 0: min

j

[
X−

j (t) − X+
j−1(t)

] = 0
}
.

We next define wui : [0, T (ui)] × R → [m − δ,m + δ] as

wui (t, x) = w
ui

j (t, x) if x ∈ [
X+

j (t),X−
j+1(t)

]
.

wui is a weak solution to (1.1) in [0, T (ui)] × R, since it is piecewise constant and satisfies the
Rankine–Hugoniot condition along the shocks. Since it is also 1-periodic on R, it defines a map
wui : [0, T (ui)] × T → [m − δ,m + δ] such that wui (0) = ui and wui ∈ ET (ui).
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Step 2 (There is a finite number of shocks merging). We next define recursively, for k � 1, T k ∈
[0, T ] and wk : [T k−1, T k] × T → [m − δ,m + δ] (where T 0 = 0) by

T 1 := T (ui) ∧ T ,

w1 := wui ,

T k := [
T k−1 + T

(
wk−1(T k−1))] ∧ T for k � 2,

wk(t, x) := wwk−1(T k−1)
(
t − T k−1, x

)
for k � 2.

We want to show that there exists a K ∈ N such that T K = T .
By definition, for each k � 1 and t ∈ (T k−1, T k), the discontinuities of wk(t) are either en-

tropic or non-entropic. On the other hand, at the times T k at which two or more shocks collide,
one and only one of the following may happen.

– At a point y ∈ T, two or more entropic shocks of wk merge at time T k . Then wk+1 has one
entropic shock in [T k,T k+1] starting at y.

– At a point y ∈ T one or more entropic shocks of wk merge with one or more anti-entropic
shocks. Then either wk+1 has one entropic shock starting at y, or wk+1 has a anti-entropic
shocks starting at y, for some integer a, 0 � a � M .

Note that, at a time T k , one or more of the merging here described may happen at different
points y ∈ T, but at no point there can be a shock merging involving only anti-entropic shocks.
The last statement can be proved by exhaustion, and – roughly speaking – it is a consequence
of the well-known instability of anti-entropic shocks. Let us detail the case of convex f (corre-
sponding to (A) in Remark 5.6). Anti-entropic shocks are then increasing, and according to the
Rankine–Hugoniot condition, the higher the shock the higher its speed. Therefore, two or more
anti-entropic shocks that are close enough, will separate as time increases rather than colliding.
The case (B) of Remark 5.6 is treated similarly.

Summarizing the previous remark, at a given shocks merging: either the number of entropic
shocks stays constant and the number of anti-entropic shocks decreases by at least one; or the
number of entropic shocks decreases by at least one, and the number of anti-entropic shocks may
either decrease, or increase (by at most M). It follows that there can be at most a finite number
of shocks merging, and in particular a finite number of times at which shocks merge. Recalling
that N was the total number of discontinuity points of ui , and that by definition w1 has at most
N entropic shocks and N M anti-entropic shocks, it follows that for each k, wk has at most
(2N − 1)M anti-entropic shocks, the remaining shocks being entropic. Therefore the sequence
{T k} has no accumulation points before T , and it will hit T for k large enough.

Step 3 (Computing HT ). We can thus define w : [0, T ] × T → [m − δ,m + δ] by requiring
w(t, x) = wk(t, x) for t ∈ [T k−1, T k]. w is piecewise constant and it satisfies the Rankine–
Hugoniot condition along the shocks, therefore, since wk−1(T k) = wk(T k), w ∈ ET . As noted
above, in each time interval [T k−1, T k], w has at most (2N −1)M shocks. Moreover, by the def-
inition (5.5), the left and the right traces of w at an anti-entropic shock differ at most by 2δ0/M .
Therefore we can bound the sum in (5.4) as
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HT (w) � T (2N − 1)M sup
u−,u+∈[m−δ0,m+δ0]

|u+−u−|� 2δ0
M

∫
dv

D(v)

σ (v)

ρ+(v,u+, u−)

|u+ − u−|

� T (2N − 1)M

[
max

v∈[m−δ0,m+δ0]
D(v)

σ (v)

]

× sup
|u+−u−|� 2δ0

M

[
|u+ − u−|

2

[
f

(
u+) + f

(
u−)] −

u+∫
u−

dv f (v)

]

= T (2N − 1)M

[
max

v∈[m−δ0,m+δ0]
D(v)

σ (v)

]

× sup
|u+−u−|� 2δ0

M

[ |u+ − u−|
2

[
f

(
u+) − f

(
u−) − f ′(u−)(

u+ − u−)]

−
u+∫

u−
dv

[
f (v) − f

(
u−) − f ′(u−)(

v − u−)]]

� CT (2N − 1)M−2

where in the last inequality we used the standard Taylor remainder estimate and C is a constant
depending only on f , D, σ . Namely, HT (w) is arbitrarily small provided M is chosen sufficiently
large. �

In the following, whenever m + δ,m + δ′ ∈ [−1,1], we introduce the short hand notation
R(δ, δ′) for the Rankine–Hugoniot velocity of a shock between the values m + δ and m + δ′,
namely

R(δ, δ′) := f (m + δ) − f (m + δ′)
δ − δ′

and we understand R(δ, δ) = f ′(m + δ). We also introduce

C(δ, δ′) :=
∫

dv
ρ(v,m + δ,m + δ′)

|δ − δ′|

= |δ − δ′|
2

[
f (m + δ) + f (m + δ′)

] −
m+δ∫

m+δ′
dv f (v).

The following lemma introduces an explicit solution to (1.1), with initial datum having only
two discontinuities and final datum being constant.

Lemma 5.9. Assume the same hypotheses of Theorem 3.1(ii) and let γ > 0. Let m ∈ (−1,1)

and let δ0 = δ0(m) be defined as in Remark 5.6. Then for each δ1 ∈ (0, δ0) there exists δ2 ≡
δ2(δ1) ∈ (0, δ0) such that for each δ2 ∈ (0, δ2) the following holds. For a fixed arbitrary x0 ∈ T
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let ud ≡ u
δ1,δ2
d ∈ U be defined as

ud(x) :=
{

m + δ1 if |x − x0| � δ2
2(δ1+δ2)

,

m − δ2 otherwise,

and let

τ ≡ τ δ1,δ2 := 1

|R(δ1,0) − R(0,−δ2)| .

Then τ < ∞, and there exists u ∈ Xτ such that u(0) = ud , u(τ) ≡ m and

Hτ (u) �
[

max
v∈[m−δ0,m+δ0]

D(v)

σ (v)

]
C(δ1,0)+ + C(0,−δ2)

+

|R(δ1,0) − R(0,−δ2)| . (5.6)

Proof. Fix δ1 ∈ (0, δ0). By the definition of δ0, R(δ1,0) �= f ′(m) and assuming f strictly convex
in [m,m+δ0] (see Remark 5.6), we have R(δ1,0) > f ′(m). Recalling the definition of ρ in (2.6),
still by the convexity of f in [m,m + δ0], we have ρ(v,m,m + δ1) < 0 for v ∈ (m,m + δ1) and
C(δ1,0) > 0. In particular there exists δ2 small enough such that for each δ2 ∈ (0, δ2) and each
v ∈ (m − δ2,m + δ1)

R(δ1,0) − R(0,−δ2) > 0, (5.7)

ρ(v,m − δ2,m + δ1) < 0. (5.8)

Let us now fix δ2 ∈ (0, δ2). By (5.7) τ δ1,δ2 is finite. With no loss of generality we may assume
x0 = δ2

2(δ1+δ2)
, as the general case is obtained by a space translation of the solution u given below

by the quantity x0 − δ2
2(δ1+δ2)

. Define

u(t, x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m if |x − [R(δ1,0) + R(0,−δ2)] t
2 | � [R(δ1,0) − R(0,−δ2)] t

2 ,

m + δ1 if |x − δ2
2(δ1+δ2)

− [R(δ1,0) + R(δ1,−δ2)] t
2 |

� δ2
2(δ1+δ2)

− [R(δ1,0) − R(δ1,−δ2)] t
2 ,

m − δ2 otherwise.

It follows that u(0) = ud and u(τ) ≡ m. Moreover u is a piecewise constant weak solution to
(1.1). For a fixed t ∈ (0, T ), u(t) has three discontinuity points, where its value jumps from m

to m + δ1, from m + δ1 to m − δ2 and from m − δ2 to m. In particular Hτ (u) can be calculated
by (5.4). The shock between the values m + δ1 and m − δ2 is entropic by (5.8), and thus it gives
no contributions to the sum (5.4). By the convexity assumption on f in [m,m + δ0], the shock
between m and m+δ1 is anti-entropic, namely ρ(v,m+δ1,m) � 0. Moreover the shock between
m − δ2 and m is either entropic (if case (A) in Remark 5.6 holds) or anti-entropic (if case (B) in
Remark 5.6 holds). Therefore (5.4) yields
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Hτ (u) = τ

[∫
dv

D(v)

σ (v)

ρ+(v,m,m − δ2)

δ2
+

∫
dv

D(v)

σ (v)

ρ+(v,m + δ1,m)

δ1

]

= [∫ dv
D(v)
σ (v)

ρ(v,m,m−δ2)
δ2

]+ + ∫
dv

D(v)
σ (v)

ρ(v,m+δ1,m)
δ1

R(δ1,0) − R(0,−δ2)

�
[

max
v∈[m−δ0,m+δ0]

D(v)

σ (v)

] [∫ dv
ρ(v,m,m−δ2)

δ2
]+ + ∫

dv
ρ(v,m+δ1,m)

δ1

R(δ1,0) − R(0,−δ2)

namely (5.6). �
Remark 5.10. Let s1, . . . , sn : [0, T ] → T be a finite collection of Lipschitz maps, and let
F : [0, T ] × T → R be a bounded function, such that F is Lipschitz in each connected compo-
nent of [0, T ]×T\⋃n

i=1 Graph(si) (F may feature discontinuities on the graphs of the curves si ,
i = 1, . . . , n). Assume either inft,x F (t, x) � ess supi,t ṡi (t) or supt,x F (t, x) � ess infi,t ṡi (t).
Then, for each fixed s0 ∈ T, there exists a unique Lipschitz map s : [0, T ] → T such that s(0) = s0
and ṡ(t) = F(t, s) for a.e. t ∈ [0, T ].

Proof of Lemma 5.3. Fix γ > 0. Recall the definition of δ0 ≡ δ0(m) in Remark 5.6; as noted
in Remark 5.6 we may assume f to be strictly convex in [m,m + δ0]. We thus have R(δ1,0) >

f ′(m), ρ(v,m + δ1,m) � 0 for each δ1 ∈ (0, δ0). Then by explicit computation

lim
δ1↓0

lim
δ2↓0

lim
δ↓0

sup
δ′,δ′′∈[−δ,δ]

|C(δ1, δ
′)| + |C(δ′′,−δ2)| + |C(δ1,−δ2)|

R(δ1,0) − f ′(m)
= 0.

In particular, defining δ2(·) as in Lemma 5.9, there exist δ1 ≡ δ
γ

1 ∈ (0, δ0), δ2 ≡ δ
γ

2 ∈
(0, δ2(δ1)) and δ ≡ δγ ∈ (0, δ1 ∧ δ2) such that

[
max

v∈[m−δ0,m+δ0]
D(v)

σ (v)

]
sup

δ′∈[−δ,δ]
C(δ1,0) + |C(δ′,−δ2)| + C(δ1,−δ2)

R(δ1,0) − f ′(m)
� γ

8
, (5.9)

R(δ1,0) − f ′(m)

4
� R(δ1,0) − R(0,−δ2)

2

� inf
δ′,δ′′∈[−δ,δ]

R(δ1, δ
′) − R(δ′′,−δ2), (5.10)

inf
δ′,δ′′∈[−δ,δ]

∣∣R(δ′,−δ2) − R(δ′, δ′′)
∣∣ > 0, (5.11)

inf
δ′,δ′′∈[−δ,δ]

∣∣R(δ1, δ
′′) − R(δ′, δ′′)

∣∣ > 0, (5.12)

ρ(v,m − δ,m + δ1) > 0 for v ∈ (m − δ,m + δ1), (5.13)∣∣ρ(v,m + δ,m − δ2)
∣∣ > 0 for v ∈ (m − δ2,m + δ). (5.14)

Let now ui ∈ U be an arbitrary piecewise constant profile such that ‖ui − m‖L∞(T) � δ. Fix

T := 4
′ .
R(δ1,0) − f (m)
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By Lemma 5.8 there exists a piecewise constant map w ≡ wT ,γ/4 : [0, T ] × T → [m − δ,m + δ]
such that w(0) = ui and HT (w) � γ /4.

Let the Lipschitz map s1, s2 : [0,+∞) → T be defined as the solutions to the Cauchy prob-
lems ⎧⎨

⎩ ṡ1(t) = f (m + δ1) − f (w(t, s1(t)))

m + δ1 − w(t, s1(t))
≡ R

(
δ1,w

(
t, s1(t)

) − m
)
,

s1(0) = 0,⎧⎨
⎩ ṡ2(t) = f (m − δ2) − f (w(t, s2(t)))

m − δ2 − w(t, s2(t))
≡ R

(
w

(
t, s2(t)

) − m,−δ2
)
,

s2(0) = 0.

Despite the right-hand sides are discontinuous, these equations are well posed since w is piece-
wise constant and conditions (5.11)–(5.12) hold, so that Remark 5.10 applies.

With a little abuse of notation, we also denote by s1 and s2 the lift of s1 and s2 on R. Note
that, by (5.10), s1(t) − s2(t) is increasing in t and letting T > 0 be the first time t at which
s1(t) − s2(t) = 1, we have still by (5.10)

T � T . (5.15)

We also set x0 := s1(T ) ≡ s2(T ) ∈ T, and let ud ≡ u
δ1,δ2
d , τ ≡ τ δ1,δ2 be defined as in Lemma 5.9

(with δ1, δ2 and x0 defined as above in this proof), and let v ∈ Xτ be the solution to (1.1) whose
existence is proved in Lemma 5.9. We finally let (see Figs. 3 and 4)

uγ (t, x) :=

⎧⎪⎨
⎪⎩

m + δ1 if t ∈ [0, T ] and x ∈ A1(t),

m − δ2 if t ∈ [0, T ] and x ∈ A2(t),

w(t, x) if t ∈ [0, T ] and x /∈ A1(t) ∪ A2(t),

v(t − T ,x) if t ∈ [T ,T + τ ]
where for t � 0

A1(t) :=
{
x ∈ T:

∣∣∣∣x − 1

2

[
s1(t) + R(δ1,−δ2)t

]∣∣∣∣
� 1

2

[
s1(t) − R(δ1,−δ2)t

]}
,

A2(t) :=
{
x ∈ T:

∣∣∣∣x − 1

2

[
R(δ1,−δ2)t + s2(t)

]∣∣∣∣
� 1

2

[
R(δ1,−δ2)t − s2(t)

]}
.

Note that u
γ

|[0,T ] ∈ XT is piecewise constant, and it is the gluing of solutions to (1.1) satisfying
the Rankine–Hugoniot condition at the borders of {(t, x) ∈ [0, T ] × T: x ∈ Ai(t)} (for i = 1,2).
We thus have u

γ

|[0,T ] ∈ ET and uγ ∈ ET +τ .

In order to calculate HT (u
γ
|[0,T ]), we will use Remark 5.7. Note that for each t ∈ [0, T ] the set

of discontinuity points of uγ (t) consists of the discontinuity points of w(t), and the discontinu-
ities at s1(t), at s2(t) and at R(δ1,−δ2)t . Because of assumptions (5.11)–(5.12), there is at most
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Fig. 3. In the figure, we have f (u) = u3 − u, m = 0, and the initial datum ui having two jumps between the values −δ

and δ, so that w is the same as in Fig. 2. Here the figure shows uγ at a small time 0 < t < T and at time T .

Fig. 4. In the figure, we have f (u) = u3 − u, m = 0, and the initial datum ui having two jumps between the values −δ

and δ. The figure shows uγ at different times t ∈ (T ,T + τ ].

a finite number of times t ∈ [0, T ] at which s1(t) and s2(t) may overlap with a discontinuity
of w(t, ·). Note that assumption (5.13) implies ρ(v,w,m + δ1) � 0, for each v ∈ [−1,1] and
w ∈ [m − δ,m + δ], so that the shock of uγ at s1 is entropic and it does not appear in the sum
(5.4). Conversely ρ(v,m − δ2,m + δ1) � 0, so that the shock along the curve t �→ R(δ1,−δ2)t

appears in the sum (5.4). Finally, by (5.14), ρ(v,w(t, s2(t)),m−δ2) is either negative or positive
for each t ∈ [0, T ] and v ∈ [−1,1], depending on whether case (A) or (B) of Remark 5.6 holds
for f . By Remark 3.2 and recalling that v satisfies (5.6)
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HT +τ

(
uγ

) = Hτ (v) + HT

(
u

γ

|[0,T ]
)
� Hτ (v) + HT (w)

+
T∫

0

dt

[∫
dv

D(v)

σ (v)

ρ+(v,m − δ2,w(t, s2(t)))

δ2

+
∫

dv
D(v)

σ (v)

ρ+(v,m + δ1,m − δ2)

δ1 + δ2

]

� γ

4
+

[
max

v∈[m−δ0,m+δ0]
D(v)

σ (v)

]
C(δ1,0)+ + C(0,−δ2)

+

|R(δ1,0) − R(0,−δ2)|

+
T∫

0

dt

[∫
dv

D(v)

σ (v)

ρ(v,m − δ2,w(t, s2(t)))

δ2

]+

+
∫

dv
D(v)

σ (v)

ρ(v,m + δ1,m − δ2)

δ1 + δ2

� γ

4
+

[
max

v∈[m−δ0,m+δ0]
D(v)

σ (v)

]

×
[
C(δ1,0)+ + C(0,−δ2)

+

|R(δ1,0) − R(0,−δ2)| + T C(δ1,−δ2) + T sup
δ′∈[−δ,δ]

C(δ′,−δ2)
+
]
.

By (5.15) and (5.10) we thus obtain

HT +τ

(
uγ

)
� γ

4
+

[
max

v∈[m−δ0,m+δ0]
D(v)

σ (v)

]

× 2C(δ1,0)+ + 2C(0,−δ2)
+ + 4C(δ1,−δ2) + 4 supδ′∈[−δ,δ] C(δ′,−δ2)

+

R(δ1,0) − f ′(m)

� γ

4
+ 6

[
max

v∈[m−δ0,m+δ0]
D(v)

σ (v)

]

× C(δ1,0) + C(δ1,−δ2) + supδ′∈[−δ,δ] |C(δ′,−δ2)|
R(δ1,0) − f ′(m)

.

Therefore HT +τ (u
γ ) � γ by (5.9). �

Proof of Theorem 3.1(iii). We assume
∫

T
dx uf (x) = m, the proof being trivial otherwise. Since

H JV
T � HT we have V JV � Wm(uf ) by Theorem 3.1(ii). The converse inequality is obtained by

taking ϕ ≡ 1 in the very definition of H JV . �
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