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Abstract

To obtain more accurate and reasonable results in the analyses of soil consolidation, the spatial variability of the soil properties should be
considered. In this study, we analyzed the consolidation by vertical drains for soil improvement considering the spatial variability of the
coefficients of consolidation. The coefficients for the variation in the vertical and horizontal coefficients of consolidation in Yeonjongdo, South
Korea were evaluated, and the probability density function (PDF) was assumed by the Anderson–Darling goodness-of-fit test. Standard Gaussian
random fields were generated based on a Karhunen–Loeve expansion, and then transformed using Hermite polynomials in the random field with
the log-Gaussian PDF of the coefficient of consolidation. The average degree of consolidation was subsequently calculated using the finite
difference method coupled with log-Gaussian random fields. In addition, the stochastic response surface method (SRSM) was applied for the
efficient probabilistic uncertainty propagation. A sensitivity analysis was performed for the input parameters of the random field, and the spatial
variability was considered using random variables from the Karhunen–Loeve expansion as the input data for the SRSM. The results indicated that
when considering the spatial variability of soil properties, the probability of failure for the target degree of consolidation was smaller when the
correlation distance was taken into account than when it was not. Additionally, the probability of failure decreased when the correlation distance
decreased. Compared with the Monte Carlo simulation (MCS) results, the SRSM analysis can achieve results of similar accuracy to those
obtained using the MCS analysis with a sample size of 100,000 (numerical runs), and a third-order SRSM expansion with only 333 numerical
runs is sufficient for obtaining the probability with errors less than 0.01.
& 2014 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

It is well-known that soil properties exhibit variation
properties. Nearly all natural soils are highly variable in their
properties and are rarely homogeneous. Soil heterogeneity can
be classified into two main categories. The first category is
lithological heterogeneity and the second is inherent spatial
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soil variability (Elkateb et al., 2002). The variability of soil
properties shows a spatial correlation. Thus, the accuracy and
reliability of the probabilistic analysis decrease when using
only one random variable as the design parameter. Recently,
a considerable number of studies have been conducted on
geotechnical problems that consider the spatial variability of
soil properties with the random field theory (Fenton and
Griffiths, 2001; Sudret and Der Kiureghian, 2002; Popescu
et al., 2005; Cho, 2007). Consolidation is one of the important
geotechnical problems, and it is greatly influenced by the
spatial variability. A few studies have been carried out to
Elsevier B.V. All rights reserved.
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investigate the effects of spatial variability on soil consolida-
tion, and 1-D consolidation analyses have been performed
(Badaoui et al., 2007; Huang et al., 2008). Bari et al. (2012)
investigated the effects of the spatial variability of soil
permeability and volume compressibility on the consolidation
of soft soil by prefabricated vertical drains. However, more
research is needed through a variety of approaches which can
consider their efficiency and applicability.

The probabilistic uncertainty propagation methods available
for these analyses fall into three categories (a) the Monte Carlo
simulation (MCS), (b) the analytical method, and (c) the
response surface method (RSM) (Phoon and Huang, 2007).
The MCS is a universal method that can be applied regardless of
the complexities in the physical model and/or the input
uncertainties. When the models are large or when there are
numerous parameters, however, the MCS can be costly and
time-consuming. Due to these shortcomings of the MCS, a
variety of variance reduction techniques have been proposed to
reduce the number of simulation runs. Alternately, the RSM was
developed by Box and Draper (1987) to replace the expensive
MCS numerical model with an approximation. Isukapalli et al.
(1998) proposed the stochastic response surface method
(SRSM). The SRSM can be viewed as an extension of the
RSM. The main difference between the SRSM and the RSM is
that the inputs for the SRSM are random variables, whereas the
inputs for the RSM are deterministic variables.

The purpose of this paper is twofold. Firstly, the effects of
the spatial variability of the coefficient of consolidation (c) on
the consolidation by vertical drains was investigated. The
statistical properties of the vertical and horizontal coefficients
of the consolidation (cv and ch, respectively) in Yeonjongdo
were evaluated by field data, and the probability density
function (PDF) was assumed to be a three-parameter log-
Gaussian distribution by the Anderson–Darling goodness-of-fit
test. In particular, we generated the log-Gaussian random field
considering the statistical properties of the field, and the
positive correlation between cv and ch to obtain more reason-
able results. A consolidation analysis was carried out by the
finite difference method (FDM) coupled with log-Gaussian
random fields, and a probabilistic analysis was performed
using the MCS with a sample size of 100,000. Secondly, we
assessed the performance of the SRSM for conducting the
efficient uncertainty propagation of geotechnical problems
with spatial variability. The standard random variables of the
random field were subsequently used as input data for the
SRSM analysis, and a sensitivity analysis was performed to
assess the impact of changes in the input parameters on the
output results. As a result, the accuracy of the SRSM analysis
results was verified by comparing them with the MCS results.

2. Random field

2.1. Spatial variability of soil

The spatial correlation of soil properties in geotechnical
problems is known to influence the soil behavior. As soil
behaviors are utilized as locally averaged values, rather than
extreme values, spatial variability has been recognized as an
important issue. Additionally, traditional statistical parameters,
such as mean and variance, are one-point statistical parameters
that cannot accurately capture the features of the spatial
structure of the soil (El-Ramly et al., 2002).
Vanmarcke (1983) used a scale of fluctuation to describe the

spatial extent of the soil properties that show a strong spatial
correlation. The spatial variations in the soil properties can be
effectively described by their correlation structure within the
framework of random fields. DeGroot and Baecher (1993)
used the autocovariance distance, which is defined as the
distance to which the autocovariance function decays to 1/e
(where e is the base of the natural logarithms), to describe the
spatial extent.
An autocorrelation function for geotechnical problems was

presented by Rackwitz (2000). In this study, the following
exponential autocorrelation function is used:

ρðx1; x2Þ ¼ e�jx1� x2j=r ð1Þ
where r is the correlation distance.

2.2. Karhunen–Loeve expansion

In the late 1980 s, a number of techniques were developed to
define discrete random fields, including the midpoint method,
the spatial averaging method, and the shape function method.
These early methods are relatively inefficient, and a large
number of random variables are required to achieve a good
approximation. Since that time, more efficient random field
discretization methods, using the series expansion method,
have been developed. Among these, the K–L expansion is
preferred when an exponential autocorrelation function is used,
because it provides the most accuracy (Sudret and Der
Kiureghian, 2000).
The K–L expansion of a random field with a mean value

(μω) and variance (σ2ω) is written as (Spanos and Ghanem,
1989)

ωðx; θÞ ¼ μωðxÞþ ∑
1

i ¼ 1
σω

ffiffiffiffi
λi

p
f iðxÞξiðθÞ; xAΩ; ð2Þ

where λi and f iðxÞ are, respectively, the eigenvalue and eigenfunc-
tion of the covariance function Cðx1; x2Þ, and ξiðθÞ presents the
uncorrelated zero mean random variable. For practical implementa-
tion, the discretization of random field ωðx; θÞ is obtained by
truncating the series expansion at the M-th term, namely,

ωðx; θÞ ¼ μωðxÞþ ∑
M

i ¼ 1
σω

ffiffiffiffi
λi

p
f iðxÞξiðθÞ ð3Þ

The number of truncated terms depends on the ratio of the
correlation length to the domain size (Zhang and Lu, 2004).
Generally, larger ratios of correlation length to domain size require
smaller terms expansion.

2.3. Hermite polynomial chaos expansion

Hermite polynomials utilize a series of orthogonal polynomials
to facilitate the stochastic analysis. The output Y is approximated
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by a Hermite polynomial chaos expansion, as given by

Y ¼ a0H0þ ∑
n

i1 ¼ 1
ai1H1ðξi1 ðθÞÞþ ∑

n

i1 ¼ 1
∑
i1

i2 ¼ 1
ai1i2H2ðξi1ðθÞ; ξi2 ðθÞÞ

þ ∑
n

i1 ¼ 1
∑
i1

i2 ¼ 1
∑
i2

i3 ¼ 1
ai1i2i3H3ðξi1 ðθÞ; ξi2 ðθÞ; ξi3ðθÞÞþ⋯ ð4Þ

where fξik gpk ¼ 1 is a set of standard Gaussian random variables, ai
is the deterministic polynomial chaos expansion coefficient, and
Hpðξi1 ;⋯; ξipÞ are multi-dimensional Hermite polynomials of
degree p. Eq. (4) can be written in a simpler form as

Y ¼ ∑
1

i ¼ 0
aiHiðξðθÞÞ ð5Þ

2.4. Methodology of generating non-Gaussian random fields

Although Gaussian random fields are often used for model-
ing uncertainties with spatial variability for convenience or for
a lack of available data, the Gaussian model is not applicable
in many situations (Cho, 2010). In this study, Hermite
polynomials are used to represent the non-Gaussian random
fields. Phoon (2003) proved that any random variable can be
expanded as a sum of the Hermite polynomials.

In Eq. (5), if μω is zero and σω is one, standard Gaussian
random fields are generated by the K–L expansion. The
probability distribution can be transformed using Hermite
polynomials in the standard Gaussian space. Non-Gaussian
random fields can be transformed to replace ξðθÞ in Eq. (5),
with ωðx; θÞ in Eq. (2), as follows:

Yðx; θÞ ¼ ∑
1

i ¼ 0
aiHiðωðx; θÞÞ ð6Þ

where Yðx; θÞ is the non-Gaussian random field and i is the
Hermite polynomial term. The probability distribution of the
random field is determined by coefficient ai.

3. Stochastic response surface method

3.1. Stochastic input data

The spatial variability can be assessed using uncorrelated
random variables from the K–L expansion as the input data
for the SRSM analysis. The number of random variables in
the SRSM is equal to the number of terms used in the
K–L expansion. The convergence and accuracy of the K–L
Fig. 1. Schematic dep
expansion depend on the terms in the truncated K–L expan-
sion. In physical systems, it is expected that the material
properties vary smoothly at the scale of interest for most
applications. Therefore, only a few terms for the K–L
expansion can capture most of the uncertainty in the process
(Huang et al., 2007).

3.2. Selection of collocation points

The collocation points are selected following the orthogonal
collocation method proposed by Villadsen and Michelsen
(1978). The collocation points can be replaced by the roots
of the next higher order polynomial. As the polynomial chaos
expansion uses the Hermite polynomial as a basis function, the
collocation points are combinations of the roots of the Hermite
polynomial. When 3rd order Hermite polynomals were used,
the combinations of the roots of the fourth-order Hermite
polynomial (7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
37

ffiffiffi
6

pp
) and zero were used as the colloca-

tion points. This is because zero lies in regions of the highest
probability, although zero is not one of the roots.

3.3. Implementation of SRSM

The implementation of the SRSM is to determine the
coefficients of the polynomial chaos expansion. The coeffi-
cients of the polynomial chaos expansion are obtained using
the model outputs at the selected collocation points.
Fig. 1 shows a schematic depiction of the SRSM. The

matrix of the SRSM can be expressed as

H½ � a½ � ¼ Y½ � ð7Þ
where H½ � is a matrix of the Hermite polynomials, a½ � is a
coefficient vector, and Y½ � is a response vector with the ith
component given by Yðξi1 ; ξi2 ; ξi3 ; ⋯ ; ξid Þ. Applying the
least squares method, the analytical solution can be expressed
as follows:

a½ � ¼ H½ �T H½ �� ��1
H½ �T Y½ � ð8Þ

4. Probabilistic analysis

4.1. Study area

The study area is located in Yeonjongdo, South Korea. The
groundwater level is almost close to the surface, so the ground
is saturated. In accordance with the United Soil Classification
iction of SRSM.



Fig. 3. Probability histogram and cumulative distribution function. (a) Vertical
coefficient of consolidation, (b) horizontal coefficient of consolidation.

Table 1
The three parameters of the log-Gaussian distribution for the coefficient of
consolidation.

Parameter μ σ γ

cv �4.605 0.40618 �0.00394
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System (USCS), most of the soils are classified as CL, ML,
and SM. When the depth is more than 20 m, the soil types are
weathered soil and weathered rock. Therefore, the consolida-
tion analysis conditions assume that the analysis range is up to
20 m from the surface and that the drainage condition is in one
direction (upward).

Fig. 2 shows cv according to depth. When the depth
increases, the soil layer changes, but there is no relationship
between cv and depth since the coefficient of correlation is
�0.18. Therefore, 1459 data for cv were used to analyze the
statistical properties and applied to the probabilistic analysis.

ch Data are small in quantity (only 32 data) and the
measured depth is approximately 9–10 m. Therefore, the
correlation does not consider the relationship between ch and
depth. Fig. 3 shows the probability density and cumulative
distribution functions (CDF) for cv and ch.

To find the appropriate PDF, the Anderson–Darling
goodness-of-fit test is performed for the cv data. The results
show that the three-parameter log-Gaussian distribution is the
most appropriate when compared with other distributions
(Gaussian, two-parameter Log-Gaussian, gamma, weibull,
logistic, and general extreme value). The PDF of the three-
parameter log-Gaussian distribution is given by

f ðx; μ; σ; γÞ ¼ 1

ðx�γÞσ ffiffiffiffiffi
2π

p exp � lnðx�γÞ�μ½ �2
2σ2

� �
ð9Þ

where μ is the scale parameter, σ is the shape parameter that
affects the shape of the distribution, and γ is the threshold
parameter. Then, Y ¼ lnðx�γÞhas a Gaussian distribution with
mean μ and variance σ2. It is assumed that the PDF of ch is the
same as cv, because the amount of data for ch is insufficient for
finding the PDF. The three parameters of the PDF are given in
Table 1.

To assess how closely the two data sets (experimental CDF
and fitted CDF) agree, the P–P (probability–probability) plot
was plotted and is shown in Fig. 4. The P–P plots are
approximately linear. Therefore, the fitted PDF is the correct
model. The statistical properties of cv and ch are given in
Table 2.
Fig. 2. cv According to depth and coefficient of correlation.

ch �3.485 0.38076 0.00069
The correlation distance of the consolidation coefficient is
not yet well known. For many soil properties, the vertical
correlation distance is approximately 1–6 m, while the hor-
izontal correlation distance is approximately 2–60 m (Huber
et al., 2011; Phoon and Kulhawy, 1999). However, the
horizontal domain is smaller than the vertical domain. In
addition, a small correlation distance is more important for
evaluating the applicability of the SRSM, because the number
of terms in the K–L expansion increases for a specified
accuracy as the correlation distance becomes smaller. There-
fore, we assume that the correlation distances are 1 m and 2 m,
and that the horizontal correlation distance is equal to the
vertical correlation distance.
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Table 2
Statistical properties of the coefficient of consolidation.

Coefficient
of
consolidation

Mean
(cm2/s)

Standard
deviation

Coefficient
of variation
(%)

PDF Autocorrelation
distance (m)

cv 0.00692 0.00459 66.3 Log- 1.0
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4.2. Generating log-Gaussian random fields

cv and ch have different variations. Therefore, each 1-D
log-Gaussian random field must be generated for cv and ch.
However, it is well known that there is a positive correlation
between cv and ch. In the random field, the average and the
distribution of properties are determined by random variables.
If the same random variables are used for each term in the
random fields, a positive correlation between cv and ch can be
considered, and thus, more reasonable results can be obtained.
Therefore, the standard Gaussian random fields were generated
using the same random variables, and then transformed into
log-Gaussian random fields using each Hermite polynomials
with 5 terms. Fig. 5 shows the correlation between the average
cv and ch in random fields.
. 4. P–P plot. (a) Vertical coefficient of consolidation, (b) horizontal
efficient of consolidation.
Fig. 6 shows that the CDFs of cv and ch in the generated log-
Gaussian random field are in good agreement with the fitted
log-Gaussian CDFs. Therefore, it can be seen that generated
log-Gaussian random fields effectively reflect the statistical
properties of c.
Gaussian
(3-
parameter)

2.0
Not considered

ch 0.03362 0.01254 37.3 Log-
Gaussian
(3-
parameter)

1.0
2.0
Not considered

Fig. 5. Correlation between cv and ch in random fields. (a) Using different
random variables, (b) using the same random variables.



Fig. 6. Comparison of fitted log-Gaussian CDF and that generated in random
field CDF. (a) Vertical coefficient of consolidation, (b) horizontal coefficient of
consolidation.

Fig. 7. Schematic view of soil cylinder with vertical drain.
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4.3. Consolidation analysis

Preconsolidation is a technique used to minimize the effect
of settlements on structures and to improve the strength of the
soil. Vertical drains have been widely used to accelerate the
consolidation process in soft soil under conditions of surcharge
loading. Fig. 7 shows a soil cylinder with a vertical drain.
Vertical drains are installed in a triangular pattern with a drain
spacing (S) of 6.0 m and a drainage diameter of 0.15 m.
For soft soil improvement by vertical drains, most of the

settlement is due to radial drainage consolidation, and the
vertical flow is often ignored. However, vertical drainage is
included in the analysis when the 2-dimensional flow in the
soil deposit is taken into account.
The general analysis of vertical drainage consolidation has

used Terzaghi's theory (1923) to estimate the dissipation rate
of the excess pore pressure and to evaluate the average degree
of consolidation (U). Rendulic (1935) developed a solution for
1-D consolidation by radial flow based on Terzaghi's theory.
The flow of these two drainage consolidation analyses can be
expressed as

∂u
∂t

¼ cv
∂2u
∂z2

þch
∂2u
∂r2

þ 1
r

∂u
∂r

� �
ð10Þ

where u, t, z, and r are the pore pressure, time, depth
coordinate, and radial coordinate, respectively. In our study,
we did not consider the smear effect, and U was obtained
through the FDM.

4.4. Sensitivity analysis

The convergence and accuracy of the K–L expansion
depend on the expansion terms, and the accurate random
fields can be represented by many terms. However, this
approach increases the computational effort. In particular, the
computational efficiency of the SRSM is determined according
to the number of random variables. Therefore, the sensitivity
analysis was performed for random variables to determine the
number of random variables in the SRSM.
Sensitivity is a measure of the impact of change in one input

parameter on the output results. Complex models, for which
analytical sensitivity equations are not easily derived, generally
result in the need to use the perturbation method. The
sensitivity coefficients are calculated using the following
difference forms:

Si;j ¼
∂yi
∂xj

� Δyi
Δxj

ð11Þ

where i is the index for the i-th model dependent variable and
j is the index for the j-th model input parameter. Δyi is the
change in yi due to an infinitesimal change (Δxj) in xj.
The sensitivity gradient was calculated using the linear

regression equation; a large sensitivity gradient means that the
effect of the random variable on the consolidation analysis
results is large. Fig. 8 shows the sensitivity gradient for each
random variable. When the number of terms for the random
field increases, the eigenfunction exhibits oscillations whose
frequencies increase. However, the eigenvalue rapidly
decreases, and the square root of the eigenvalue is used to
represent the randomness of the random field. Therefore, the
sensitivity rapidly decreases as the number of terms in the
random field increases. The number of random variables for
the SRSM analysis can be determined based on how many
large errors are allowable. Assuming that a 30-term expansion



Fig. 8. Sensitivity gradient for random variables.

Fig. 9. Average errors of failure probability for number of terms and
correlation distance.

Fig. 10. Cumulative distribution functions of U for autocorrelation distance.
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is sufficient, the CDF becomes consistent with the CDF for
which the K–L expansion with a sufficient number of terms
increases. When compared with the results of the 30-term K–L
expansion, the average errors of the failure probability in the
range of 0.75–0.95 are shown in Fig. 9.

The average errors of the failure probability decrease when
the number of terms increases. Smaller errors are shown for a
correlation distance of 2 m. This is because when the correla-
tion distance is large, the eigenvalue rapidly decreases
according to the terms expansion.

In this study, five random variables are considered for the
SRSM analysis. The random fields of cv and ch are discretized
into five random variables ðξ1; ξ2; ξ3; ξ4; ξ5Þ.

4.5. Effects of spatial variability of c

To analyze the difference in the results of U by the spatial
variability, the MCS is performed for the correlation distance
with a sample size of 100,000. Fig. 10 shows the CDF of U
for an elapsed time of 25 days. If spatial variability is
not considered, the correlation distance is considered to be
infinite (1 m). The probability of failure decreases when the
correlation distance increases, and the highest probability of
failure appears when the spatial variability is not considered.
The reason is that cv and ch are the same at all points; and thus,
they are treated as one random variable. Therefore, the
probability that cv and ch are lower than the failure threshold
at all points is higher than that when considering the spatial
variability. When Utarget is close to the average U, the
difference between the probability of failure, according to
the correlation distance, is small because the average U is the
same regardless of the correlation distance, and the cumulative
distribution curve is crossed at the average U.
4.6. Probabilistic analysis using SRSM

The SRSM is applied to consolidation analyses that consider
the spatial variability. The five random variables
ðξ1; ξ2; ξ3; ξ4; ξ5Þ in the random fields are used as input
data for the SRSM analysis. A polynomial chaos expansion is
performed with the 2nd, 3rd, and 4th order expansions using
Hermite polynomials, and the limit state function is Hermite
polynomials in the SRSM. The number of unknown coeffi-
cients is 21, 56, and 126 for the 2nd, 3rd, and 4th order
conditions, respectively.
The collocation points are selected as combinations of the

root of the 3rd, 4th, and 5th order Hermite polynomials. As a
result, there are 35 (¼243), 55 (¼3125), and 55 (¼3125)
possible collocation points for the random variables. As the
number of possible collocation points is greater than the
number of coefficients, the points closest to the origin are
selected, because they lie in the regions of higher probability.
In our study, the collocation points are divided into groups
according to their distances from the origin. If the limit state
function is linear, the distance can be regarded as a reliability
index (β), which means that there is a range of possible
probabilities. Therefore, the approximate range in probability
can be inferred by the distance, although the true limit state
function is non-linear.
Fig. 11 shows the range in U for the groups and the

approximate probability range in the response surface.



Fig. 11. Range in degree of consolidation for a group. (a) Correlation distance
of 1 m, (b) correlation distance of 2 m.

Table 3
Probability that U is less than Utarget (Utarget¼0.80).

Correlation
distance (m)

Method The probability of failure (%)
Groups

1–4 1–5 1–6 1–7 1–8 1–9

1.0 SRSM (2nd) 8.26 7.86 7.71 – – –

SRSM (3rd) 17.16 9.26 1.65 9.11 8.86 –

SRSM (4th) – – – – 8.61 8.89
MCS 8.96

2.0 SRSM (2nd) 10.86 10.61 10.56 – – –

SRSM (3rd) 15.61 1.75 1.6 11.91 11.71 –

SRSM (4th) – – – – 11.96 12.01
MCS 11.96

Table 4
Probability that U is less than Utarget (Utarget¼0.85).

Correlation
distance (m)

Method The probability of failure (%)
Groups

1–4 1–5 1–6 1–7 1–8 1–9

1.0 SRSM (2nd) 26.27 26.47 26.47 – – –

SRSM (3rd) 26.22 27.32 27.32 27.27 27.27 –

SRSM (4th) – – – – 27.27 27.45
MCS 27.37

2.0 SRSM (2nd) 28.12 28.22 28.42 – – –

SRSM (3rd) 28.57 29.82 29.82 29.37 29.32 –

SRSM (4th) – – – – 29.42 29.43
MCS 29.28
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The groups are selected to include the target degrees of
consolidation (Utarget) and added until the error (the difference
between the results by the selected groups and the results by
the next added group) is acceptably small. The results of the
reliability analysis using the SRSM according to the colloca-
tion points (groups) and the expansion order are summarized in
Tables 3 and 4.

The results show that approximately 211, 333, 573 colloca-
tion points are needed for the 2nd, 3rd, and 4th order SRSM,
respectively.

Fig. 12 shows the CDFs of the degree of consolidation
obtained from the MCS with a sample size of 100,000 and the
SRSM analysis (2nd, 3rd, and 4th order). The SRSM
approximates a limit state function by fitting the multi-
dimensional polynomial. Therefore, the SRSM can give biased
approximations of the failure probability for cases in which the
true limit state function is highly nonlinear, and many input
variables are considered. Although the biases are present, the
results of the probabilistic analysis using the SRSM are in
good agreement with those using the MCS, and very small
numerical runs are required compared to the MCS. The
absolute values for the difference in the probability of failure
were about 0.05–1.40%, and when using high-order polyno-
mials, smaller errors occurred. Thus, it can be concluded that
the SRSM can achieve satisfactory results for a reliable
analysis of U considering the fact that the spatial variability
and the accuracy can be improved by adopting additional
collocation points or using higher-order expansions.

5. Conclusions

This study has investigated the effects of the spatial
variability of the consolidation coefficient on consolidation
by vertical drains in the Yeonjongdo region, and has utilized
the SRSM to conduct efficient uncertainty propagation of
geotechnical problems with spatial variability. The statistical
properties of c in the study area were analyzed by the field
data. The results show that the appropriate PDF for c was the
three-parameter log-Gaussian distribution, and that the coeffi-
cient of variation for cv was greater than that of ch. To consider
the spatial variability and probabilistic distribution of c,
standard Gaussian random fields were generated based on



Fig. 12. Comparison of CDFs of degree of consolidation by reliability analysis
methods. (a) Correlation distance of 1 m, (b) correlation distance of 2 m.
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the K–L expansion, and transformed to log-Gaussian random
fields using Hermite polynomials for vertical and horizontal
consolidation. In particular, considering that the statistical
properties of cv and ch are different, each 1-D random field
was generated considering the positive correlation between cv
and ch.

As a result, when considering the spatial variability of soil
properties, the probability of failure for the target U is smaller
than that determined with the conventional probabilistic
analysis method, and as the correlation distance decreases,
the probability of failure also decreases.

The SRSM analysis was used for an efficient probabilistic
analysis of consolidation, and 2nd, 3rd, and 4th order Hermite
polynomial expansions were used for the response surface
function. We considered five random variables for the terms in
the K–L expansion as the input data for the SRSM analysis.
Compared with the MCS results, the SRSM analysis generated
results with similar accuracy to those obtained using the MCS
with a sample size of 100,000, the accuracy of the SRSM was
able to be improved with a higher-order expansion, and the
third-order expansion was found to be sufficient for obtaining
a failure probability with errors less than 0.001. Although
the SRSM also requires the generation of a large number of
realizations, the realizations for the response surface function
require very little computational effort compared to numerical
model runs. In particular, the probabilistic analysis of geo-
technical problems with a large ratio of correlation length to
domain size can be quickly and accurately performed using the
SRSM because the random field requires only a small number
of terms in the K–L expansion.
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