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SUMMARY

The identity of cells that establish the hemato-
poietic microenvironment (HME) in human
bone marrow (BM), and of clonogenic skeletal
progenitors found in BM stroma, has long re-
mained elusive. We show that MCAM/CD146-
expressing, subendothelial cells in human BM
stroma are capable of transferring, upon trans-
plantation, the HME to heterotopic sites, coinci-
dent with the establishment of identical suben-
dothelial cells within a miniature bone organ.
Establishment of subendothelial stromal cells
in developing heterotopic BM in vivo occurs
via specific, dynamic interactions with develop-
ing sinusoids. Subendothelial stromal cells re-
siding on the sinusoidal wall are major pro-
ducers of Angiopoietin-1 (a pivotal molecule of
the HSC ‘‘niche’’ involved in vascular remodel-
ing). Our data reveal the functional relationships
between establishment of the HME in vivo, es-
tablishment of skeletal progenitors in BM sinu-
soids, and angiogenesis.

INTRODUCTION

Bone marrow (BM) is the only permanent hematopoietic

organ in humans. During organogenesis, hematopoiesis

is established through interaction of blood-borne hemato-

poietic stem cells (HSCs) with a local stroma of mesenchy-

mal lineage established during ossification (reviewed in

Bianco and Robey, 2000). The critical role of BM stroma
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for homing and long-term maintenance of hematopoiesis

in mammalian bone was classically demonstrated by

transfer of the hematopoietic microenvironment (HME)

to an ectopic site upon in vivo transplantation of either

BM fragments or BM stromal cells (BMSCs; Friedenstein

et al., 1974; Maniatis et al., 1971; Tavassoli and Crosby,

1968). Concurrent formation of heterotopic bone in the

same systems first revealed that progenitors of skeletal

tissues (bone, cartilage, fibrous tissue, adipocytes) are in-

cluded in postnatal BM stroma (Friedenstein, 1990), a no-

tion that later evolved into the current concept that skele-

tal stem cells (SSCs [Bianco and Robey, 2004], also

known as stromal or ‘‘mesenchymal’’ stem cells) coexist

with HSCs in BM. However, the identity of cells that estab-

lish the heterotopic HME, as well as that of putative SSCs,

has remained elusive. Anatomically, BM stroma includes

virtually all nonhematopoietic cells types found in the

BM microenvironment (osteoblasts, endothelial cells, fi-

broblasts, reticular cells [Weiss, 1976]), each of which, in

principle, may play a critical role in hematopoiesis. For ex-

ample, the establishment of an HSC ‘‘niche’’ (Moore and

Lemischka, 2006) in the mouse BM has been ascribed

to osteoblasts residing on bone surfaces (Arai et al.,

2004; Calvi et al., 2003; Zhang et al., 2003), as well as to

endothelial cells lining sinusoids (Kiel et al., 2005), sug-

gesting a potential multiplicity of physiologically important

microenvironments.

Establishment of hematopoiesis within heterotopic os-

sicles formed by transplantation of BM stroma reflects

the interaction of circulating HSCs and progenitors of

the host with a locally established HME. Therefore, trans-

plantation of BMSCs represents an appealing model of

BM organogenesis in which to identify HME-establishing

cells. The value of the system has been limited, however,
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by lack of markers suitable for visualization of specific

stromal cell types other than mature osteoblasts. Whereas

the donor origin of mature osteoblasts and the host origin

of hematopoietic cells colonizing the ‘‘ossicle’’ have been

directly proven (Krebsbach et al., 1997; Kuznetsov et al.,

1997), the host origin of the endothelial cells has

only been surmised, and donor or host origin of stromal

cells proper (e.g., reticular cells) has never been demon-

strated.

Similar limitations have prevented definition of the pre-

cise identity and properties of clonogenic progenitors

found in BM stroma. Whereas the multipotency of a frac-

tion of human skeletal progenitors has been demonstrated

(Kuznetsov et al., 1997), the ability to self-renew has not

been formally determined for any subset of stromal cells,

detracting from the very claim of their ‘‘stemness’’ and

at odds with the general popularity gained by the concept

of ‘‘mesenchymal’’ stem cells. Self-renewal implies re-

constitution of the same compartment of phenotypically

defined progenitor cells in vivo. As applied to stromal pro-

genitor cells, this postulates that (1) the identity/pheno-

type of explanted progenitor cells is defined and (2) cells

with identical phenotype and properties are demonstrated

within the tissues formed de novo following in vivo trans-

plantation. Whereas multiple markers expressed in clono-

genic stromal cells from human BM have been proposed

(Barry et al., 1999; Deschaseaux and Charbord, 2000;

Gronthos et al., 1999; Shi and Gronthos, 2003; Simmons

and Torok-Storb, 1991; Vogel et al., 2003; Zannettino

et al., 2003), none of them have been used (and most are

not suitable) for in situ identification of cells prior to expla-

nation and after in vivo transplantation.

In this study, we show that a specific phenotype de-

fines stromal progenitors in human BM that regenerate

bone and stroma and establish the HME in vivo. Marked

by high expression of melanoma-associated cell adhe-

sion molecule, MCAM/CD146 (Shih, 1999), this pheno-

type is shared by subendothelial cells of BM sinusoids

in situ and is not duplicated by osteoblastic cells capable

of forming heterotopic bone, but not an HME, in vivo. By

following the fate of transplanted, human CD146+ cells

during organogenesis of heterotopic BM, we document

their stepwise regeneration into CD146+ subendothelial

cells in de novo formed BM, from which human

CD146+ clonogenic cells can ultimately be isolated in

culture. Our data suggest self-renewal of CD146+ osteo-

progenitors in vivo as an integral part of angiogenic

events whereby sinusoids are established in vivo prior

to hematopoiesis. Consistent with their nature as suben-

dothelial cells, CD146+ osteoprogenitors, but not their

differentiated osteoblastic progeny, express Angiopoie-

tin-1 (Ang-1), a pivotal regulator both of vascular remod-

eling (Suri et al., 1996) and of the HSC niche (Arai et al.,

2004). Our data anatomically and functionally identify

clonogenic skeletal progenitors with the capacity to

self-renew, reveal their identity as cells that transfer the

HME in vivo, and link their establishment and regenera-

tion in BM to angiogenesis.
RESULTS

BMSCs, But Not Other Osteogenic Cell Strains,
Transfer the HME In Vivo
The ability to establish an HME was evaluated by trans-

plantation of cell strains derived from BMSCs from normal

hematopoietic BM, human trabecular bone cells (HTBs),

periosteal cells (PCs), fibrotic bone marrow of fibrous dys-

plasia of bone (FD; OMIM#174800), and as controls, mus-

cle fibroblasts (MFs) and skin fibroblasts (SFs). By in vitro

differentiation assays commonly used to characterize

‘‘mesenchymal’’ stem cells, all strains (except SFs) gener-

ated adipocyte-like cells or ‘‘mineralization nodules’’ (data

not shown). When transplanted subcutaneously into im-

munocompromised mice, control cell strains (MFs and

SFs) failed to generate either bone or BM (12/12 trans-

plants), while bone-derived cell strains (HTBs and PCs)

generated bone but no heterotopic BM (12/12 transplants

each strain). As previously reported (Bianco et al., 1998),

FD cells, derived from fibrotic, nonhematopoietic BM,

also formed bone but not BM (data not shown). Only

BMSCs derived from hematopoietic BM established

both bone and hematopoietic tissue (12/12 transplants)

(Figure 1A).

CD146 Expression Distinguishes BMSCs
from Other Osteogenic Strains
Characterization of the same cell strains using a panel of

markers (Table S1), including putative markers of ‘‘mesen-

chymal’’ stem cells (CD49a, CD63, CD90, CD105,

CD140b, CD146, STRO-1, and alkaline phosphatase

[ALP]), revealed that high levels of CD63 distinguished

cell strains endowed with osteogenic potential in vivo

(BMSCs, HTBs, PCs, and FD cells) from nonosteogenic

MFs and SFs. Only a characteristic ‘‘high/bright’’ expres-

sion of CD146 distinguished BMSCs from all other (osteo-

genic and nonosteogenic) strains, which, in contrast, were

all noted for a ‘‘low/dim’’ expression of CD146 (Figures 1B

and S1A).

All BM Colony Forming Unit-Fibroblasts and Their
Clonal Progeny, But Not All BM ‘‘Stromal’’ Cells,
Express CD146
Primary cultures of BMSCs were established either as

nonclonal (high density, > 1.6 3 105 cells/cm2) cultures

or by plating BM cell suspensions at clonal density in order

to obtain discrete colonies (colony forming unit-fibroblast

[CFU-F] cultures) (Friedenstein, 1980). Randomly selected

colonies (n = 22) were individually harvested from primary

CFU-F cultures from two donors. Multiclonal strains (n = 3)

were generated by pooling all primary colonies obtained in

CFU-F cultures from three donors (29, 13, and 11 colo-

nies, respectively). CD146 was expressed at high levels

in �99% of cells in 22/22 clones and in 3/3 multiclonal

strains (Figure 2A). In contrast, only �30% of the cells

were CD146+ in 3 nonclonal cultures (Figures 2A and

S1B). FACS analysis revealed that high numbers of

CD146�CD105+ or CD146�ALP+ cells (putatively mature
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osteoblastic cells) were included in nonclonal cultures

(data not shown). Hence, establishing CFU-F cultures

from unfractionated BM, while selecting for clonogenic

cells, also selected for CD146+ cells at the same time.

Figure 1. High Expression of CD146 Distinguishes BMSC,

Capable of Establishing the HME, from Other Osteogenic or

Nonosteogenic Cell Populations

(A) Histology of transplants of human skin fibroblasts (SFs), periosteal

cells (PCs), human trabecular bone cells (HTBs), and bone marrow

stromal cells (BMSCs) harvested at 8 weeks. Neither bone nor BM

formed in transplants of SFs. Bone, but not marrow, formed in trans-

plants of PCs and HTBs. Both bone and marrow formed in transplants

of BMSCs. hac, hydroxyapatite carrier; bm, bone marrow; ft, fibrous

tissue, H&E.

(B) FACS analysis of ‘‘mesenchymal stem cell’’ markers in cultures of

SFs, MFs, HTBs, PCs, FD cells, and BMSCs grown under identical

conditions up to passage 3. CD146high/bright expression distinguishes

BMSCs from all other strains (CD146low/dim). No other single marker

is expressed differentially in BMSCs compared to all other strains.
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These cells initiate the CFU-F cultures from which

CD146high/bright BMSC strains are generated.

All CFU-Fs Are Found, and Most Are Recovered,
in the CD45�CD146+ Fraction of BMNCs
By FACS analysis, CD146+ cells accounted for 0.11% ±

0.02% of total human BM nucleated cells (BMNCs). Con-

sistent with the known expression of CD146 in certain he-

matopoietic cells (e.g., T cells; Pickl et al., 1997),�20% of

CD146+ cells coexpressed CD45 (not shown). CD45�

cells within the BMNC suspensions were therefore mag-

netically separated prior to immunoselection of CD146+

cells. CD146+ cells were enriched�10-fold (1.2% ± 0.9%)

in the CD45� fraction compared to BMNCs. By dual-label

FACS analysis (Figure 2B), CD45�CD146+ cells coex-

pressed ALP (78%–85%) and CD105 (>95%). In contrast,

only �2% of CD45�CD146+ cells coexpressed CD34,

suggesting that >95% of CD45�CD146+ cells in human

BM are not endothelial cells (ECs). CD45� cells were sep-

arated into CD146+ and CD146� fractions by FACS, and

colony forming efficiency (CFE) assays were conducted

on both fractions (Figure 2C, Tables S2 and S3). An aver-

age of 2.6 ± 0.8 CFU-Fs/102 cells were observed in the

CD146+ fraction, which translates into an enrichment of

8.3 3 102 compared to BMNCs and a recovery of �80%

of the total CFU-Fs found in unfractionated BM (Table

S3). No colonies were formed by CD45�CD146� cells

plated at the same or higher density (Figure 2C, Tables

S2 and S3). When sorted and subjected to CFE assays,

total CD34+ cells and the CD146+CD34+ fraction failed to

generate fibroblastic colonies (Table S4).

Adventitial Reticular Cells Are the In Situ
Counterpart of CD146+ CFU-Fs in Human BM
In human BM in situ, no labeling for CD146 was observed

in erythroid or myeloid cells, megakaryocytes, endothe-

lial cells, adipocytes, osteoblasts, osteocytes, or endos-

teal cells. Within hematopoietic tissue, CD146 labeling

was restricted to adventitial reticular cells (ARCs; Bianco

and Boyde, 1993; Tavassoli and Friedenstein, 1983;

Weiss, 1976; Westen and Bainton, 1979). ARCs formed

a subendothelial (adventitial) layer in sinusoidal walls,

and projected reticular processes that associated with

hematopoietic cells, away from sinusoidal walls

(Figure 2D). Like the CD146+ CFU-Fs from human BM,

CD146+ ARCs coexpressed endoglin (CD105) and ALP

(both of which were also expressed by additional cell

types in BM) in situ, but not CD34, CD31, or CD45 (not

shown).

Cultured CD146+ Cells Display Mural Cell
Properties
Undifferentiated CD146+ BMSCs expressed transcripts

of early osteogenic progenitors but not of mature osteo-

blasts. Of note, HSC niche-related transcripts (Jagged-1,

N-cadherin, CXCL12 [Sugiyama et al., 2006], and SCF

[Duncan et al., 2005; Nagasawa et al., 1996; Zhang et al.,

2003]) were highly expressed (Figure S2). Consistent with



Figure 2. CD146+ Stromal Cells Are the CFU-Fs and Derive from Adventitial Reticular Cells
(A) FACS analyses of randomly selected clones, formed in primary CFU-F cultures (4 clones representative of 22). CD146 is highly expressed in vir-

tually all cells in each clone. Representative FACS analyses of multiclonal (29 pooled colonies) and nonclonal primary cultures of BMSCs. Whereas

CD146 is highly expressed in virtually all cells in a multiclonal strain, only �30% of cells are CD146+ in a nonclonal primary culture.

(B) Dual-label FACS analyses of magnetically separated CD45�marrow cells. CD45�CD146+ cells coexpress CD105 (�99%) and alkaline phospha-

tase (ALP; �80%). Only a minor fraction coexpresses CD34.

(C) CD146+ and CD146� fractions within CD45� cells were separated by FACS. One hundred cells were plated in 100 mm dishes (1.6 cells/cm2).

Clonogenic cells were found only in the CD45�CD146+ fraction.

(D) Sections of human bone marrow immunolabeled for CD146 counterstained with hematoxylin. Labeling is restricted to adventitial cells of sinusoids

(double arrows), extending ‘‘reticular’’ processes (single arrows) among hematopoietic cells.
their origin from ARCs, cultured CD146+ cells failed to ex-

press endothelial markers or to differentiate into ECs when

exposed to specific conditions. In contrast, they ex-

pressed a host of markers of subendothelial cells (mural

cells/pericytes, MC [Jain, 2003], such as a-smooth muscle

actin, NG2, calponin 1 and 3, PDGFRb; Figure S2). Factors

known to regulate mural cell growth and phenotype dur-

ing the maturation phase of angiogenesis (Hirschi and

D’Amore, 1996; Jain, 2003), such as FGF-2 and TGF-b1,

modulated the mural cell phenotype and the proliferation
of CD146+ cells, in an opposite fashion (Figure S3).

Whereas FGF-2 stimulated the proliferation of CD146+

cells, TGF-b1 inhibited it, consistent with the effects of

these factors on mural cells (Hirschi and D’Amore, 1996;

Jain, 2003). When cocultured with endothelial cells,

CD146+ stromal cells behaved like mural cells; i.e., they

directed the assembly and timed remodeling of pseudo-

vascular structures in vitro, in sharp contrast with con-

trol, nondescript fibroblasts or unrelated cell types

(Figure S4).
Cell 131, 324–336, October 19, 2007 ª2007 Elsevier Inc. 327



Figure 3. Development of Heterotopic

Bone and BM in Transplants of BMSCs

(A–D) 4 weeks post-transplantation. Abundant

new bone has formed along with mesenchymal

fibroblastic tissue (ft in B and C). No hemato-

poiesis is detectable. Bone contains fully dif-

ferentiated osteoblasts (D, ob) and osteocytes

(D, arrows).

(E–H) 7 weeks post-transplantation. Large cal-

iber, branching sinusoids have formed within

the fibroblastic tissue.

(I–L) 8weeks post-transplantation. Hematopoi-

etic cell clusters (hem) are obvious around

sinusoids. hac, hydroxyapatite carrier; mk,

megakaryocytes. H&E.
CD146+ Cells form Bone and Hematopoiesis-
Associated Human Stromal Cells In Vivo
We next asked if CD146+ clonogenic cells could give rise

to hematopoiesis-associated human stromal cells in vivo.

Three BMSC strains, initiated by 11, 13, and 17 CD146+

CFU-Fs, respectively, were culture-expanded and trans-

planted subcutaneously into immunocompromised mice.

Analysis of transplants harvested at 4, 7, and 8 weeks re-

vealed a defined developmental sequence in which bone

formation preceded the appearance of a sinusoidal sys-

tem, and ultimately of hematopoiesis. At 4 weeks, abun-

dant human bone was associated with a hematopoiesis-

free, human fibroblastic tissue (Figures 3A–3D and 4A–

4D), noted for high expression of FGF-2 (Figure S5). Be-

tween 4 and 7 weeks, capillary-type vessels permeating

this tissue remodeled into a system of large, branching si-

nusoids (Figures 3E–3H), reminiscent of those found in BM

in situ. The endothelium of sinusoids was murine, and ad-

ventitial cells were human (Figures 4E–4H) and were es-

tablished prior to appearance of hematopoiesis. Active

TGF-b1 was localized to the developing sinusoidal wall

(Figure S5). Murine hematopoietic tissue colonized the

ossicle by 8 weeks (Figures 3I–3L). At this time, human

stromal cells appeared as ARCs in the sinusoidal wall

(Figures 4I–4L).

CD146+ ARCs Regenerate CD146+ ARCs In Vivo
Prior to transplantation, each cell strain homogeneously

(�100%) expressed CD146 at high levels (Figure 5A).

Four weeks post-transplantation, only �3% of the hu-
328 Cell 131, 324–336, October 19, 2007 ª2007 Elsevier Inc.
man cells retained expression of CD146, all of which

were physically associated with blood vessel walls

in vivo (Figures 5B and S6). Differentiated human osteo-

blasts on bone and human fibroblastic tissue associ-

ated with bone did not express CD146. As sinusoids

developed, CD146+ cells remained associated with

their walls and elongated over their abluminal surfaces

(Figures 5C and S6). Once hematopoiesis was estab-

lished by 8 weeks, human CD146+ cells demonstrated

exactly the same adventitial position, reticular morphol-

ogy, and physical association with hematopoietic cells

as the CD146+ ARCs observed in human BM in situ

(Figures 5C and S6). No CD146 immunoreactivity was

observed in heterotopic ossicles devoid of hematopoie-

sis formed by transplanted human HTBs or PCs (data

not shown).

Having determined that CD146+ cells establish bone

and human CD146+ stromal cells at heterotopic sites,

we asked if single CD146+ CFU-Fs could generate both

bone and hematopoiesis-supporting stroma. Four clonal

strains, each derived from a single CFU-F, were isolated

as described (Bianco et al., 1998; Kuznetsov et al.,

1997), separately expanded through 20 population dou-

blings in culture, and transplanted to generate heterotopic

ossicles for histological study. At 8 weeks, complete ossi-

cles, including bone, sinusoids, adipocytes, and CD146+

ARCs (Figure 5D, Table S5), were generated by 2/4

clones, providing evidence for the ability of a single

CD146+ cell to establish both heterotopic bone and the

HME.



Figure 4. Development of Human Stro-

mal Cells in the Chimeric Heterotopic

BM—Immunolabeling for Human Mito-

chondria

(A–D) 4 weeks post-transplantation. The fibro-

blastic tissue (ft), bone-forming osteoblasts on

bone surfaces (D, ob), and osteocytes within

newly formed bone (D, arrows) are human.

(E–H) 7 weeks post-transplantation. ECs lining

sinusoids (s) are murine (F–H, small arrows),

whereas adventitial cells are human (F–H, large

arrows).

(I–L) 8 weeks post-transplantation. Osteocytes

within bone are human. Hematopoietic cells in

newly formed marrow spaces (hem) and ECs

lining sinusoids (J–K, small arrows) are murine.

Stromal cells at the abluminal side of sinusoids,

or interspersed among hematopoietic cells,

are human (J–L, large arrows), as are bone-lin-

ing cells (L, double small arrow). hac, hydroxy-

apatite carrier.
Secondary Passage of CD146+ CFU-Fs
Having shown that CD146+ cells could give rise to hetero-

topic stromal cells with anatomy and phenotype identical

to those of the originally explanted cells, we sought evi-

dence that CFU-Fs could be secondarily passaged as fur-

ther indication of the self-renewal capacity of CD146+

stromal cells. Additional transplants were generated with

cell strains originating from a limited number of CFU-Fs

(10 and 12, respectively, in two experiments). At 8 weeks,

transplants were harvested and collagenase-digested to

generate single-cell suspensions. Total human cells

were magnetically sorted, either after short-term culture

(Figure 6A) or directly from the fresh cell suspension

(Figure 6B), based on hCD44 expression, which allowed

for recovery of �2 3 104 and �1.5 3 104 human cells, re-

spectively (Table S6). Aliquots of 2 3 103 and 5 3 103 cells

were plated at clonal density. One and six discrete colo-

nies were observed and harvested at 2 weeks, which

translates into an estimated number of secondary CFU-

Fs of 10 and 18, respectively, in the original cell suspen-

sions (Table S6). FACS analysis showed homogeneous,

high expression of CD146 in all colonies (Figures 6A and

6B).

In separate experiments (Figures 6C and 6D), trans-

plants generated by five clonal strains, each of which

was individually expanded from single CFU-Fs, were

similarly collagenase-digested to generate cell suspen-

sions. Greater than 1 3 106 total cells were obtained in
2/5 transplants generated by the progeny of a single

CFU-F. A 2–5 3 105 aliquot from each of the five cell sus-

pensions liberated by collagenase was used for FACS

analysis and revealed a frequency of hCD146+ cells of

0.09%–0.4% (Table S6). From the two collagenase-re-

leased populations with the largest numbers of cells,

the remaining aliquots were magnetically sorted directly

for human CD146+ cells, resulting in �2.1 3 103 and

�4.0 3 103 cells, and plated in culture at a density of

1.6 cells/cm2. This resulted in the generation of 3 and 2

secondary CFU-Fs, which translates into an estimated

total number of 4 and 3 assayable CFU-Fs from the orig-

inal total cell suspension, respectively. No colonies were

generated from CD146� cells, plated at the same or

higher (160 cells/cm2) density. All of the colonies gener-

ated by the secondary CFU-Fs expressed CD146 at

high levels (Figures 6C and 6D). Thus, heterotopic ossi-

cles generated either by multiple CFU-Fs or by single

CFU-Fs contained a number of assayable CD146+

CFU-Fs similar to or greater than the number of originally

explanted, culture-initiating CD146+ CFU-Fs.

Regulated Production of Ang-1
by CD146+ Stromal Cells
Ang-1 (a ligand of the Tie-2 tyrosine kinase receptor spe-

cifically expressed in ECs and HSCs [Davis et al., 1996;

Dumont et al., 1992; Hsu et al., 2000; Iwama et al., 1993;

Sato et al., 1993]) is produced by MCs in development
Cell 131, 324–336, October 19, 2007 ª2007 Elsevier Inc. 329



Figure 5. Self-Renewal of CD146+ Cells In Vivo

(A) FACS analysis prior to transplantation. Homogeneous expression of high levels of CD146.

(B) Serial sections of transplants of the same strain at 4 weeks, stained for CD146 and human mitochondria, respectively. The vast majority of human

cells in the ossicle, including osteoblasts (red arrows) are CD146�. CD146+ cells are restricted to an adventitial layer in vessel walls.

(C) Development of CD146+ ARCs in the heterotopic BM. At 4 weeks, small mononuclear CD146+ cells associate with blood vessels. At 7 weeks,

elongated CD146+ cells are found over and around sinusoids. At 8 weeks, reticular processes of CD146+ cells establish contacts with hematopoietic

cells (h). mk, megakaryocyte; blue arrow, endothelium; red arrows, hematopoietic cells between endothelial and CD146+ cells.

(D) Transplantation of a single CFU-F derived cell strain. At 14 days, the colony formed by a single CFU-F was isolated with a cloning cylinder and

individually expanded. Bottom left, FACS analysis of the expanded clone at passage 3, demonstrating the homogeneous expression of CD146

(and the coexpression of ALP in a subset of the clonal population). Top right, histology of the heterotopic ossicle (8 weeks) formed by the expanded

clonal population. Bone, sinusoids (sin), adipocytes (ad), and hematopoiesis (hem) are shown. Bottom right, human CD146+ adventitial reticular cells

in the same heterotopic ossicle.
and regulates microvessel assembly and remodeling in

mice (Suri et al., 1996). Reported to be produced by oste-

oblasts, Ang-1 has also been implicated as a key compo-

nent of the HSC niche in postnatal murine bone (Arai et al.,

2004). Since our data implicated CD146+ cells in estab-

lishment of both the sinusoidal wall structure and the

HME in vivo, we investigated Ang-1 expression. In human

BM in situ, Ang-1 immunoreactivity was restricted to

ARCs with no signal over bone surfaces where differenti-

ated osteoblasts reside (Figure 7A). In the heterotopic os-

sicles prior to the establishment of hematopoiesis, Ang-1

was localized to mesenchymal cells around sinusoids but
330 Cell 131, 324–336, October 19, 2007 ª2007 Elsevier Inc.
not to osteoblasts (Figure 7B). Once hematopoiesis was

established, ARCs adjacent to sinusoids expressed Ang-

1, whereas Tie-2 was localized to sinusoidal endothelium

and to rare, small cells of hematopoietic habit, adjacent to

the sinusoidal wall (Figure 7C). Undifferentiated CD146+

BMSCs produced abundant Ang-1 in vitro but did not ex-

press Tie-2. When BMSCs were induced to differentiate

into osteoblasts in vitro, both Ang-1 and CD146 expres-

sion were potently downregulated (Figures 7D–7G), in

agreement with our in vivo data. Interestingly, gene knock-

down of either CD146 or Ang-1 in CD146+ stromal cells

significantly interfered with their ability to direct the



Figure 6. Secondary Passage of CD146+ CFU-Fs

CD146+ CFU-Fs were recovered from heterotopic ossicles generated by transplanting the progeny of either a limited number of CFU-Fs (A, n = 10; B,

n = 12) or a single CFU-F (C and D). In (A) and (B), hCD90+/hCD44+ cells were sorted after short-term culture (A) or directly from the collagenase-

generated cell suspension (B). All colonies obtained by plating sorted cells at clonal density were homogeneously CD146high. In (C) and (D), CD146+

cells were sorted directly from the cell suspension obtained from single CFU-F-generated ossicles. All colonies (C, 3 colonies; D, 2 colonies) obtained

by replating the sorted cells at clonal density expressed CD146 at high levels. No colonies were obtained from the CD146� population (not shown).
assembly and remodeling of pseudovascular structures in

vitro (Figure S7), suggesting that both CD146 and Ang-1

expressed in stromal cells may participate in stromal-

endothelial interactions. Both CD146 and Ang-1 were also

downregulated by FGF-2 (Figure S8) in the context of the

complex effects exerted by this factor on the growth and

differentiation of CD146+ cells in culture. Notably, in trans-

plants generated with FGF-2-treated CD146+ cells, the

ability of the latter to establish CD146+ stromal cells and

the HME in vivo was abrogated, while their ability to

form bone remained unscathed (Figure S8), indicating

that the two abilities can be dissociated from one another

in a single-cell population otherwise competent to both

functions.
DISCUSSION

The notion that BM includes skeletal progenitor (stem)

cells and the notion that BM stroma provides cues for

homing, maintenance, proliferation, and maturation of

hematopoietic progenitors both emanate from the same

classical transplantation experiments. The multipotency

of at least a subset of CFU-Fs supports the view that a sec-

ond type of stem cell (skeletal [Bianco and Robey, 2004],

stromal [Owen and Friedenstein, 1988], or ‘‘mesenchy-

mal’’ [Caplan, 1991]) coexists with HSCs in BM. Due to the

lack of markers suited to bridge the gap between in situ,

ex vivo, and in vivo observations, the in situ counterpart

of CFU-Fs has previously remained unknown, and the
Cell 131, 324–336, October 19, 2007 ª2007 Elsevier Inc. 331



Figure 7. Expression of Ang-1 and Tie-2

(A) Ang-1 immunoreactivity in sections of human BM is restricted to ARCs (arrows) and absent over bone surfaces. ad, adipocytes.

(B) Localization of Ang-1 to ARCs in heterotopic ossicles. Prior to establishment of hematopoiesis (4 weeks post-transplantation), Ang-1 immunore-

active-mesenchymal cells reside in presumptive marrow spaces in the vicinity of developing sinusoids. After establishment of hematopoiesis, retic-

ular cells in the hematopoietic space and in the vicinity of sinusoids express Ang-1. Osteoblasts are not labeled. ob, osteoblasts; hac, hydroxyapatite

carrier; sin, sinusoid; arrows, ARCs.

(C) Expression of Tie-2 in heterotopic ossicles is restricted to sinusoidal endothelium (blue arrows) and to rare small mononuclear cells adjacent to the

luminal or abluminal side of endothelium (black arrows).

(D and E) Expression and regulation of CD146 and Ang-1 in CD146+ cells induced to differentiate into osteoblasts in vitro. PD, pre-differentiation; M,

mineralization conditions. (D) Matrix mineralization. (E) Upregulation of markers of mature osteoblasts (BSP, osteocalcin) and downregulation of

CD146 and Ang-1 mRNAs (qPCR, fold change over PD). Error bars indicate ± standard deviation (SD).
332 Cell 131, 324–336, October 19, 2007 ª2007 Elsevier Inc.



very self-renewal of stromal progenitors, a defining char-

acteristic of stem cells, has not been formally demon-

strated. Expression of high levels of CD146, a cell adhesion

molecule of the immunoglobulin superfamily expressed

in a restricted range of normal cells (Shih, 1999), identifies

all ex vivo assayable CFU-Fs, and a specific subset of stro-

mal cells in situ. Explantable CFU-Fs exhibit the same

phenotype as adventitial reticular cells (ARCs), which re-

side in bone marrow sinusoids next to the endothelial

layer, strongly indicating that ARCs are in fact the cells

explanted ex vivo as CFU-Fs. We have now shown that

following transplantation of CD146+ stromal cells, a small

subset retain CD146 expression, dynamically associate

with developing sinusoids, and eventually regenerate het-

erotopic human cells with the anatomy and phenotype of

ARCs.

We have also shown that transplantation of cell popula-

tions derived from either a limited number of CD146+ CFU-

Fs or single CD146+ CFU-Fs results in the re-establish-

ment, in the heterotopic ossicles, of CD146+ CFU-Fs

that can be secondarily passaged and directly assayed.

By providing evidence for the ability of CD146+ stromal

cells to function as self-renewing, clonogenic skeletal pro-

genitors, our data outline the long sought anatomical iden-

tity of SSCs (‘‘mesenchymal’’ stem cells) in human BM and

a crucial feature of their phenotype. While our data provide

evidence for the self-renewal and multipotency of CD146+

CFU-Fs, a larger-scale study would be necessary to accu-

rately determine the actual frequency of in vivo assayable,

multipotent, and self-renewing clonogenic progenitors

within our population of phenotype-defined cells. Even

though such frequency would appear to be high based

on our data (50%), the relative weight of inherent biologi-

cal heterogeneity, versus heterogeneity relative to the

specific experimental assay and its constraints (including

culture and transplantation conditions), remains to be

further analyzed.

As portrayed in our system, self-renewal of adventitial

reticular cells originally explanted as CD146+ CFU-Fs is in-

scribed into dynamic organogenic events, which are part

of the stepwise reconstitution, in vivo of the HME. The es-

tablishment of subendothelial ARCs at heterotopic mar-

row sinusoids involves the interaction of transplanted cells

with host endothelial cells and the remodeling and matu-

ration of sinusoidal vessels. A lead to the identification of

mechanisms dictating the establishment of skeletal pro-

genitors in BM during organogenesis, and their regenera-

tion in our model, can be found in this context. In the mat-

uration phase of angiogenesis, the mitotic quiescence of

the perivascular mesenchymal cells that are recruited to

a subendothelial mural cell fate is induced via direct inter-

action with endothelial cells and may be mediated by TGF-

b1, locally activated at the interface of endothelial and

subendothelial cells (Antonelli-Orlidge et al., 1989; Jain,
2003; Sato and Rifkin, 1989). Conceivably, the establish-

ment of quiescent skeletal progenitors at the sinusoidal

wall during organogenesis may depend on mechanisms

similar to those establishing mitotically quiescent mural

cells in other tissues, a view that is consistent with our

in vivo and ex vivo data.

How the ability to generate differentiated bone-forming

cells and bone tissue relates to the ability to support he-

matopoiesis (both shared by the BM stroma as a whole)

has long remained elusive. Recent data suggest that oste-

oblasts (differentiated bone-forming cells residing on

bone surfaces) directly maintain a niche for HSCs (Calvi

et al., 2003; Moore and Lemischka, 2006; Zhang et al.,

2003), a view that would easily account for the fact that

transplantation of BM stroma leads to the formation of he-

matopoiesis-accommodating bone. In search for the spe-

cific cell type in BM stroma that is capable of establishing

the HME at heterotopic sites, however, we have shown

that this ability is not synonymous with the ability to gener-

ate differentiated osteoblasts and bone tissue in vivo.

Cell strains originating from CD146high/bright clonogenic

progenitors in BM form bone and transfer the HME in vivo.

CD146low/dim cell strains originating from specific anatom-

ical compartments of bone other than BM space (trabec-

ular bone or periosteum) do establish differentiated oste-

oblasts and bone upon in vivo transplantation but do not

transfer the HME. Furthermore, in a cell population com-

petent to form bone and establish the HME in vivo, the

two functions can be experimentally dissociated from

one another, as seen, for example, as the effect of FGF-

2 treatment in our data.

Establishment of the HME at heterotopic sites occurs

via a defined developmental sequence in which bone for-

mation regularly precedes the appearance of a heterotopic

bone marrow stroma and ultimately of heterotopic hema-

topoiesis. Whereas the establishment of osteoblasts and

bone may be necessary as part of this developmental se-

quence, additional events precede the establishment of

hematopoiesis within bone at heterotopic sites: the re-

modeling of the local vasculature into a sinusoidal system

and the establishment of a CD146+ stromal population at

the sinusoidal wall. Although these events involve the in-

teraction of different cell types, including both donor-

and host-derived (endothelial) cells in our system, trans-

planted CD146+ stromal progenitors critically contribute

to their unfolding in vivo. Of note, neither a sinusoidal sys-

tem nor a local population of human CD146+ stromal cells

are established in vivo when human CD146� cell popula-

tions are transplanted that are competent to generate

bone and osteoblasts in vivo but unable to transfer the

HME.

The link between establishment of subendothelial cells

in BM and establishment of the HME finds in Ang-1 (Davis

et al., 1996) an important molecular correlate. As the
(F) Western analysis demonstrating depletion of CD146 and Ang-1 protein and ELISA demonstrating depletion of secreted Ang-1. m, medium; ID,

immunodepleted medium; IP, immunoprecipitated medium.

(G) Tie-2 expression in HUVEC and lack of Tie-2 expression in BMSCs and BMSCs exposed to endothelial differentiation medium (BMSC-E).
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ligand of the Tie-2 receptor that is specifically expressed

in ECs and HSCs, Ang-1 plays pivotal roles both in angio-

genesis and hematopoiesis. Distinct from the growth-pro-

moting effects of VEGF, the role of Ang-1 in angiogenesis

is specifically related to establishment of MCs and to re-

modeling of vascular plexuses (Suri et al., 1996). Consid-

ering that in development Ang-1 is both a product and

a regulator of pericytes/mural cells, Ang-1 expression in

BM CD146+ cells is consistent with their overall ‘‘mural’’

cell phenotype and subendothelial position. We have

shown that in human BM and in heterotopic ossicles in

vivo, human stromal cells are major producers of Ang-1,

and Ang-1 production is regulated in vitro when stromal

cells are induced to differentiate into osteoblasts or ex-

posed to angiogenesis-regulating factors, such as FGF-

2, that act in vivo on the peri-endothelial mesenchyme.

Vascular remodeling is a significant component of BM or-

ganogenesis. This process establishes a unique system of

large, slow flow sinusoids conducive for bidirectional cell

traffic between BM and peripheral blood. As portrayed

in our in vivo transplantation system, timed remodeling

of capillaries into sinusoids, before the establishment of

hematopoiesis, is coupled to the physical association of

CD146+ subendothelial cells with nascent or growing ves-

sels. Ang-1 may contribute to sinusoid remodeling in post-

natal BM when systemically delivered (Hattori et al., 2001),

and we have observed that BMSC-directed patterning and

remodeling of pseudovascular structures in vitro is altered

by Ang-1 (and CD146) gene silencing. This suggests that

Ang-1 (and CD146), expressed locally in BMSCs, may be

part of the molecular machinery regulating vascular remod-

eling through a local interaction of endothelial and suben-

dothelial cells, which may contribute to the organization

of the unique vascular structure of the bone marrow.

Current evidence suggests that Ang-1 also directly con-

tributes to HSC regulation (Arai et al., 2004) by interacting

with HSC-expressed Tie-2. A body of evidence also sug-

gests that endosteal (Calvi et al., 2003; Zhang et al., 2003)

and sinusoidal surfaces (Kiel et al., 2005), but also

CXCL12-expressing ‘‘reticular’’ cells within the hemato-

poietic space (Sugiyama et al., 2006), may represent spe-

cific sites of HSC regulation (‘‘niches’’). Our data show that

CD146+ stromal progenitors indeed physically coincide

with reticular cells and express CXCL12, Ang-1, and mul-

tiple other gene products that have been implicated in

HSC regulation. As osteoblast progenitors, CD146+ stro-

mal cells generate osteoblasts, which form bone and are

regarded as critical components of an endosteal HSC

niche. As (self-renewing) progenitors of sinusoidal adven-

titial reticular cells, CD146+ stromal cells contribute to the

organization, and become an integral part, of the structure

of sinusoidal walls, in the vicinities of which HSCs have

been directly localized (Kiel et al., 2005). Skeletal progen-

itors residing over sinusoids may thus contribute to hema-

topoietic regulation within the BM—either directly at the

sinusoidal wall where they reside as adventitial reticular

cells or through their osteoblastic progeny at endosteal

surfaces. For example, CD146+ subendothelial cells ex-
334 Cell 131, 324–336, October 19, 2007 ª2007 Elsevier Inc.
pressing HSC regulators such as Ang-1 or CXCL12 would

be strategically positioned to facilitate the homing of blood

borne hematopoietic progenitors to the marrow environ-

ment or to contribute to a steady-state sinusoidal niche

where HSCs can be localized. By generating, or contribut-

ing to, functionally distinct cell types (osteoblasts and

ARCs) and structures (bone surfaces and sinusoidal ablu-

minal surfaces), CD146+ skeletal progenitors play a pivotal

role in the development of the HME, as recapitulated in our

in vivo system, and contribute to establishing and organiz-

ing the very diversity of physiologically important and spa-

tially distinct microenvironments within the BM. Our data

also indicate that properties of CD146+ subendothelial

cells, such as Ang-1 expression, that are relevant to he-

matopoietic regulation may be modulated when skeletal

progenitors are themselves recruited to cell proliferation

or osteogenic differentiation or exposed to vasculogenic

cues. These cellular events are inscribed, in vivo, in funda-

mental organogenic processes such as skeletal growth,

lifelong bone remodeling, and adaptation, to which skele-

tal progenitors critically contribute. Hence, the complex

interplay of osteogenesis and hematopoiesis in develop-

ment, physiology, and disease may be seen as rooted

into a unique functional interplay of two systems of pro-

genitor/stem cells that takes place in the bone marrow

environment at specific sites.

EXPERIMENTAL PROCEDURES

Reagents

Antibodies for cell sorting and flow cytometry are listed in Table S1 and

for immunohistochemistry and western blotting in Table S7. Primers

for RT-PCR are listed in Table S8.

Culture and Characterization of Cell Strains

BMSCs, PCs, HTBs, and stromal cells from the nonhematopoietic

bone marrow of fibrous dysplastic bone (FD) were isolated by estab-

lished methods (Bianco et al., 1998; Kuznetsov et al., 1997; Miura

and O’Driscoll, 1998; Robey and Termine, 1985). Samples were ob-

tained with informed consent per institutionally approved protocols.

Human foreskin fibroblasts (SFs) were from A. Orecchia, IDI, Rome,

Italy. Human muscle fibroblasts (MFs) were from G. Cossu, DIBIT-

HSR, Milan, Italy. After primary culture, all strains were cultured under

identical conditions in a-MEM (Invitrogen)/20% FBS, 100 U/ml penicil-

lin, and 100 mg/ml streptomycin, prior to analysis. Expression of

markers was assessed using a FACSCalibur flow cytometer and Cell-

Quest software (Becton Dickinson Biosciences, San Diego, CA).

In vitro differentiation assays were done by established methods

(Bianco et al., 2006).

Cell Sorting

1 3 107 freshly isolated BMNCs were resuspended in HBSS/30 mM

HEPES (Sigma, St. Louis, MO), 100 U/ml penicillin, 100 mg/ml strepto-

mycin, 1% BSA (Sigma) and incubated on ice for 30 min. Cells were

pelleted in HBSS/2 mM EDTA, 1% BSA, resuspended in 1 ml blocking

buffer, and incubated with anti-CD45 conjugated magnetic beads (Mil-

tenyi Biotec, Auburn, CA) for 20 min on ice. Cells were separated into

CD45� and CD45+ fractions using a MiniMACS magnetic column sep-

aration unit per the manufacturer’s instructions (Miltenyi). CD45� cells

were incubated with PE-conjugated anti-CD146 antibody, and

CD146+ and CD146� cells were separated using a FACS DIVAntageSE

flow cytometer (BD Biosciences Labware, San Diego, CA).



CFE Assays and CFU-F Cultures

CFE was assessed as described (Kuznetsov et al., 1997). Plating den-

sities were 0.1–10 3 103/cm2 for total BMNCs and 1.6–1.6 3 104 cells/

cm2 for separated fractions of BM cells. Colonies (>50 cells) were

counted after 14 days. Multiclonal strains were established by passag-

ing all colonies obtained in primary CFU-F cultures. Individual colonies

(clones) were isolated from primary CFU-F cultures using cloning cyl-

inders (Kuznetsov et al., 1997). Nonclonal BMSC cultures were ob-

tained by passaging primary cultures established at nonclonal density

(>105 total nucleated cells/cm2).

Histology

Heterotopic ossicles were processed as reported (Bianco et al., 1998).

Sections of human iliac crest biopsies (three subjects) with normal BM

were cut from archival paraffin blocks on file in our department. Human

specificity of the CD146 antibody was verified on sections of mouse

bone/BM and of heterotopic ossicles formed by murine BMSCs (Kuz-

netsov et al., 2004). Immunolocalization was performed using standard

immunoperoxidase (DAB reaction) and sections were counterstained

with hematoxylin.

In Vivo Transplantation

In vivo transplantation of different cell strains was performed as

reported (Krebsbach et al., 1997; Kuznetsov et al., 1997). All animal

procedures were approved by the relevant institutional committee.

2 3 106 cells were allowed to attach to hydroxyapatite/tricalcium

phosphate particles (40 mg, 100–200 mm; Zimmer, Warsaw IN) and

embedded in a fibrin gel. Carrier-cell constructs, and carrier alone

as control, were transplanted subcutaneously into 8- to 15-week-

old female nih/nu/xid/bg mice (Harlan-Sprague Dawley, Inc., Indianap-

olis, IN).

Secondary Passage of CD146+ CFU-Fs

Cell cultures were initiated either from a limited number of CFU-Fs (10

and 12 in two experiments) or from single CFU-Fs (n = 5). Heterotopic

ossicles were harvested at 8 weeks, washed in HBSS/30 mM HEPES,

100 U/ml penicillin, 100 mg/ml streptomycin, and digested twice with

100 U/ml Chlostridium histolyticum type II collagenase (Invitrogen) in

PBS/3 mM CaCl2 for 40 min at 37�C. 5 3 105 cells obtained from the

two digestions were used for FACS analysis of hCD146 expression.

Cell suspensions derived from multiclonal generated ossicles were

used to magnetically separate human cells based on hCD44 expres-

sion using MiniMacs (Miltenyi), either after short-term culture or di-

rectly from the fresh cell suspension. hCD44+ cells (�20,000 and

�15,000 in two experiments) were recovered, resuspended in me-

dium, and 2,000 and 5,000 cells, respectively, were plated in culture

at clonal density (1.6 cells/cm2). Cultures were scored for colony for-

mation at 2 weeks. The discrete colonies obtained were harvested

and analyzed by FACS for expression of hCD90, hCD44, and

hCD146. Cell suspensions obtained by collagenase digestion of ossi-

cles generated by transplanting the progeny of single CFU-Fs were

used to sort hCD146+ cells directly. These were then replated at clonal

density (1.6 cells/cm2) to assay for secondary CFU-Fs. The discrete

colonies obtained were harvested and analyzed for expression of

hCD90, hCD44, and hCD146.

Supplemental Data

Supplemental Data include Supplemental Results, Supplemental Ex-

perimental Procedures, eight figures, and nine tables and can be found

with this article online at http://www.cell.com/cgi/content/full/131/2/

324/DC1/.
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