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1. Introduction

The paper is concerned with nonlinear diffusion in a spatial region where the diffu
is a given function of the dependent variable, and where the dependent variable is sp
on the boundary as a time-independent function of position. The steady (or equilib
state is specified by a boundary value problem, while the unsteady state is determ
an initial boundary value problem in which the dependent variable is specified at a
(initial) time. (The initial value corresponds to an initial perturbation from the steady s

The paper commences (Section 2) with the specification of the steady and un
problem as aforesaid, and with the initial boundary value problem for the perturbatio
difference between the dependent variables in the unsteady and steady states). Th
lowed (Section 3) by an analysis of the perturbation problem in the particular case
porous mediummodel, which is characterized by a diffusivity which vanishes when the
pendent variable vanishes.The dependent variable in this context is usually interprete
a mass concentration. An integral, positive definite measure of the perturbation (Liapu
functional) at any time is introduced (cf. [1]) and we derive a differential inequality
this. We deduce an upper inequality estimate for the Liapunov functional descriptive
global decay to zero, with time, of the perturbation. Another upper estimate for the
of the aforesaid functional is obtained in the case where the boundary value and t
tial perturbation are both bounded below by a positive constant; this is done by com
a previous result (obtained in [1]) together with the maximum principle. The first d
result is shown to be better than the second for sufficiently small times provided th
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initial value of the unsteady (perturbed) state is sufficiently far away from equilibrium
section concludes with an analysis of the corresponding ‘backwards in time’ initial bo
ary value problem for the perturbation: an inequality estimate for the Liapunov func
is obtained which shows that it grows with time, and one deduces that the solution ca
exist for finite time.

The estimates referred to in the last paragraph imply properties that can be expre
‘stability’ terms. The first two estimates obtained imply global/unconditional stability,
particular (global) positive definite measure, of the steady state, and these are valid h
far the initial state is removed from equilibrium. Moreover, the phenomenon describ
the ‘backwards in time estimate’ is an example of an ‘explosive instability.’

Section 4 concerns diffusion in a medium whose (nonlinear) diffusivity in the st
state is bounded below by a positive constant, and, in some circumstances, also b
above by a positive constant; this contrasts with the Section 3 where a particular diffu
appropriate to a porous medium was assumed. Theorems are proved concerning th
wise asymptotic exponential stability of the steady state. The paper concludes (Sec
with some remarks concerning the porous medium in the one-dimensional case. On
hand, it is shown explicitly that the assumptions underlying Section 4 are satisfied,
on the other, an intuitive picture is given of the evolution of the unsteady to the stead
in circumstances where the initial state is far from equilibrium. In the latter case, we
out the relevance of Theorems 1 and 2 to this picture.

The results obtained in this paper represent a development of results obtained f
linear diffusion in a previous paper [1]. In the latter paper similar issues were address
the basic assumption therein was that the diffusivity was bounded below by a given p
constant. One of the (conceptually simple) Liapunov functionals introduced therein i
used here. The results obtained in this paper provide further evidence of its versa
already in evidence in other contexts, both thermal and thermo-mechanical [2–4,6].

2. Steady, unsteady, and perturbation problems

Consider a spatial regionΩ with smooth boundary∂Ω . ConsiderT (x, t) satisfying
(with k(T ) denoting the diffusivity atT )

∂T

∂t
= ∇2

[ T∫
0

k(τ ) dτ

]
in Ω (1)

subject to

T (x, t)= �T (x) on∂Ω (2)

and subject to

T (x,0)= f (x) in Ω. (3)

This is referred to as the unsteady state problem.
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The corresponding steady state solutionU(x) satisfies

∇2

[ U(x)∫
0

k(τ ) dτ

]
= 0 inΩ (4)

subject to

U(x)= �T (x) on∂Ω. (5)

The perturbation defined by

u= T −U (6)

satisfies, with

Φ(u;U)=
u∫

0

dū

ū∫
0

k(τ +U)dτ, (7)

the initial boundary value problem

∂u

∂t
= ∇2Φu in Ω (8)

subject to

u(x, t)= 0 on∂Ω (9)

and

u(x,0)= f (x)−U(x). (10)

In (8) and subsequently the subscriptu means partial differentiation with respect tou.

3. Results for the porous medium

The diffusivityk(τ )—appropriate to the porous medium—is taken to be

k(τ )= τn−1, (11)

n being a constant such thatn > 1; τ is always positive,supposing that the depende
variablesT ,U are positive throughout, including, in particular,

�T > 0, f > 0. (12)

In addition, we shall suppose throughout thatthe solutions considered are classical.How-
ever, the results of Theorem 1 continue to hold under less stringent assumptions,
allow for the possibility thatT may be zero and that it may have discontinuous derivat
(see Remark 1).

The functionΦ defined by (7) plays a central role in the ensuing analysis. Exp
calculations using (7), (11) gives
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Φ(u;U)= {
n(n+ 1)

}−1[
(u+U)n+1 −Un+1 − (n+ 1)Unu

]
, (13)

Φu(u;U)= n−1[(u+U)n −Un]. (14)

Some properties ofΦ are now noted. It is clear that

Φ(0, ·)=Φu(0, ·)= 0. (15)

Using the foregoing properties ofΦ, Taylor’s theorem (remainder form) gives

Φ(u;U)= [
θ(u+U)+ (1− θ)U]n−1

u2/2, (16)

whereθ is such that 0< θ < 1. It follows from this, bearing in mind the assumptio
U + u � 0, U � 0, thatΦ is positive definite inu. The following important property i
proved in Appendix A:

Φ2
u �KnΦ2n/(n+1), (17)

where

Kn = (n+ 1)2n(n+1)−1
n−2. (17′)

We now define the Liapunov functional

E(t)=
∫
V

Φ(u;U)dV. (18)

In view of the positive-definiteness property ofΦ this is a satisfactory global measure
the perturbationu at any timet . We wish to obtain an inequality estimate forE(t) in terms
of data, and to deduce therefrom thatE(t)→ 0 ast → ∞, giving global convergence, i
the measureE, of the unsteady to the steady state.

Now

dE

dt
=

∫
V

Φuut dV =
∫
V

Φu∇2Φu dV = −
∫
V

(∇Φu)2 dV (19)

using (8), (9) together with the divergence theorem. Application of the Poincaré ineq
to the term on the right-hand side of (19) gives

dE

dt
� −λ1

∫
Φ2
u dV (20)

whereλ1 is the lowest ‘fixed-membrane’ eigenvalue ofV . Applying (17), we obtain

dE

dt
= −λ1Kn

∫
Φ2n(n+1)−1

dV. (21)

Denoting the volume of the regionΩ byV , application of Hölder’s inequality to (21) give

dE

dt
� −λ1KnV

−(n−1)(n+1)−1
E2n(n+1)−1

, (22)

recalling (18). Integration of the differential inequality (22) gives

E(t)�
[
E−σ (0)+ λ1KnσV

−σ t
]−σ−1

, (23)
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where we have, for convenience, put

σ = σ(n)= (n− 1)(n+ 1)−1.

One deduces from (23) that

E(t)→ 0, t → ∞, (24)

giving convergence, in the measureE, of the unsteady to the steady state. We embody
foregoing results in a theorem.

Theorem 1. The unsteady stage converges to the steady state in the case of a
medium for which(1)–(5), (11)hold, in accordance with(23), (24)bearing in mind defini-
tions(6)–(8).

Remark 1. It is easily verified that Theorem 1 continues to hold when the fundam
assumptions (in italics) in the first paragraph of Section 3 are relaxed somewhat, as fo
(i) f = 0 within a regular closed surface contained within the region,f > 0 is a smooth
function defined outside it, andf is continuous across it; (ii) for a continuous range
time subsequent tot = 0, T = 0 within a regular (moving) closed surface, outside
surfaceT (> 0) is a classical solution subject to the relevant boundary conditions, andT is
continuous across the surface; across the moving surface, the partial derivatives ofT may
be discontinuous but are such that

∂T n/∂ν+ = 0,

∂/∂ν+ denoting the normal derivative to the surface from the side in whichT > 0. The
latter condition—which may be interpreted physically as a zero mass flux condition a
the surface, or as a consequence of the Rankine–Hugoniot condition (e.g., [5])—ar
the application of the divergence theorem in connection with (19). Other relaxations
fundamental assumptions are also possible.

Remark 2. In the terminology of stability (e.g., [6]), the steady (or equilibrium) stat
globally (or unconditionally) stable in the measureE.

Suppose that the boundary and initial values are strictly positive, i.e., that there
a positive numberδ such that�T (x) > δ, f (x) > δ. Then, by the maximum principle, on
has, for 0� α < 1,

U + αu= (1− α)U + α(u+U)� δ.
It follows that the diffusivityk(·) is such that

k(U + αu)� δn−1.

It follows from previous work [1] that, in these circumstances, we have

Theorem 2. If

�T (x) > δ, f (x) > δ,

δ being a positive constant, the convergence of the unsteady to the steady state for a
medium, as specified, is in accordance with



226 J.N. Flavin, S. Rionero / J. Math. Anal. Appl. 281 (2003) 221–232

r than
o for

lways
se to

em 2,

m

e pre-

e

osive
E(t)�E(0)exp(−2δn−1λ1t),

bearing in mind definitions(18), (6), (7).

Remark 3. The question arises as to when the upper bound given by (23) is bette
the exponential one given in Theorem 2. It is easily verified that this is, in fact, s
sufficiently smallt , provided that

Eσ (0)V−σ > 2δn−1(Knσ)
−1,

i.e., if, in a sense, the initial state is sufficiently far from equilibrium. If, however,E(0)
satisfies an inequality complementary to the latter, then the exponential bound is a
better than that given by (23), i.e., if, in a sense, the initial state is sufficiently clo
equilibrium.

Stated otherwise, the decay arising in (23) is slower than that arising in Theor
except, possibly, in an initial time interval.

Further, by lettingn→ 1, one finds from (24) that

E(t)�E(0)exp(−2λ1t), (25)

in agreement with a previous result (e.g., [1]).
If we now consider thebackwards in timeversion of the initial boundary value proble

in u, this means formally replacing (8) by

−∂u
∂t

= ∇2Φu (26)

the remaining specifications remaining formally unchanged, a virtual repetition of th
vious argument gives[

E(t)
]−σ �E−σ (0)− λ1KnσV

−σ t.

It is plain, in view of the nonnegativity ofE(t), that

t �
[
E(0)V−1]−σ [λ1Knσ ]−1, (27)

i.e., the time interval for which a solution exists for the backwards in time i.b.v.p. foru, is
bounded (in terms of data). Naturally, for times for which there is existence, one has

E(t)�
[
E−σ (0)− λ1KnσV

−σ t
]−σ−1

. (28)

These results are embodied in the following theorem.

Theorem 3. For the backwards in time initial boundary value problem inu, specified
by (26), (9), (10), etc., the solution fails to exist for timest in excess of right-hand sid
of (27), but for times for which it does exist the estimate(28)holds.

Remark 4. The phenomenon to which Theorem 3 refers is an example of an “expl
instability” in the terminology of Straughan [7].
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4. Pointwise, local stability results for porous and other media

In the remaining part of the paper, the formulation of the steady and unsteady stat
already given in (1)–(10), smooth solutions being envisaged, but restrictions onk(·) at the
steady state are introduced in connection with theorems proved, but these do not as
particular functional form fork(·). It proves convenient, henceforward, however, to us
slightly different notation: instead ofΦ (defined by (7)), we write

F(U + u)=
U+u∫
0

k(τ ) dτ, F ′(U + u)= k(U + u).

Theorem 4. LetF ∈ C2(�) and{∇2F(U)= 0, x ∈Ω,
U = �T (x), x ∈ ∂Ω, (29)

{
U1 = infΩ U(x) >−∞,
U2 = supΩ U(x) <∞, (30)

Ω being bounded regular domain. If there exists a positive constantm such that

F ′[U(x)] � 2m, ∀x ∈Ω, (31)

thenU is stable in the pointwise norm.

Proof. We begin by noticing that, in view ofF ′ ∈ C(�), it follows that on any closed
subset[a, b] with a = const<U1, b = const>U2, F ′ is uniformly continuous and henc
∀η > 0, ∃ε(η) > 0 such that

|U ′′ −U ′|< ε
implies

F ′(U ′)− η� F ′(U ′′)� F ′(U ′)+ η, U ′,U ′′ ∈ [a, b]. (32)

Therefore by choosing

U ′ =U(x), η=m, (33)

and setting

U ′′ =U ′ + u, (34)

from (31)–(34) it turns out that there exists a positive constantε such that

|u|< ε ⇒ F ′[U(x)+ u] �m> 0, ∀x ∈Ω. (35)

Assume now—by way of contradiction—thatU is unstable in the pointwise norm. The
there existsu(x, t) andt̄ such that


supΩ |u(x,0)|< ε/2,
supΩ |u(x, t̄ )| = ε,

¯
(36)
supΩ |u(x, t)|< ε, t ∈ [0, t[.
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Therefore—in view of (36)—(35) holds∀t ∈ [0, t̄[ and hence (39) of [1]1 holds∀t ∈ [0, t̄ ].
Starting from (39) of [1] and continuing as in [1] it turns out that

sup
Ω

∣∣u(x, t)∣∣ � sup
Ω

∣∣u(x,0)∣∣ � ε/2, ∀t ∈ [0, t̄[,
hence in contradiction with (36) it follows that

sup
Ω

∣∣u(x, t̄ )∣∣ = lim
t→t̄

sup
∣∣u(x, t)∣∣ � ε/2. ✷

Theorem 5. Let the assumption of Theorem4 hold. ThenU is pointwise attractive.

Proof. One has to show that

lim
t→∞

∣∣u(x, t)∣∣ = 0 a.e. inΩ. (37)

Theorem 4 ensures that

sup
Ω

∣∣u(x,0)∣∣< ε ⇒ sup
Ω

∣∣u(x, t)∣∣< ε, ∀Ω × �÷, (38)

hence (35) implies

F ′[U(x)+ u(x, t)] �m, ∀(x, t) ∈Ω × �÷.
By taking into account (34) of [1] it turns out thatU is asymptotically exponentially stab
in theL2(Ω)-norm:∫

Ω

u2dΩ � 2

m
E(0)e−2mλ1t , (39)

whereλ1 andE(t) are as previously defined.
The proof of Theorem 5 is then completed by recalling that in (iii) of Remark 4 o

it has been shown that the asymptotic exponential stability in theLp(Ω)-norm (p > 0)
implies the pointwise attractivity. In fact, in the case at hand, denoting byΩ∗(t) the largest
subset ofΩ such that at timet

u2(x, t)� e−mλ1t a.e. inΩ∗, (40)

and setting

Ω1(t)=Ω −Ω∗(t), (41)

from (40)–(41), it turns out that{ |u(x, t)| � e−(mλ1t )/2 a.e. inΩ1(t),

meas(Ω −Ω1)� (2/m)E(0)e−mλ1t ,
(42)

hence, by lettingt → ∞, (36) immediately follows. ✷
Although (40)–(41) essentially already show that, under (31), the pointwise deca

exponential type, let us show that on requiring thatF ′(U + v) be also bounded when|u| is
small, the following theorem of asymptotic decay holds.

1 It should be noted, however, thatT ,u of this paper appear asu,v, respectively, in [1].
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Theorem 6. Let the assumption of Theorem4 hold and let

F ′[U(x)] �m1, ∀x ∈Ω, (43)

m1 being a( positive) constant. ThenU is asymptotically exponentially stable in the poi
wise norm.

Proof. From (32)–(34) it turns out that there exists a positive constantε such that

|u|< ε, e.g.,M � F ′(U)�m, ∀x ∈Ω,
withM =m1 +m. Let

sup
Ω

∣∣u(x,0)∣∣< ε.
Then Theorem 4 implies∣∣u(x, t)∣∣< ε, ∀(x, t) ∈Ω × �+,

and hence, in view of (31) and (43), it follows that

M � F ′[U(x)+ u(x, t)] �m, ∀(x, t) ∈Ω × �+. (44)

Therefore the assumptions of Theorem 3b of [1] are satisfied and it turns out that∥∥u(x, t)∥∥∞ �Nm−1 exp
{−λ1m(t − t0)/2

}
with N andt0 positive constants. ✷
Remark 5. The existence of three positive constantsε,M∗,m∗ such that

|u|< ε ⇒ M∗ � F ′[U(x)+ u] �m∗ > 0, ∀x ∈Ω, (45)

plays a fundamental role in Theorem 6. We notice that often (45), with an explicit
for ε, can be obtained immediately from the expression ofF ′(U + u) and

m1 � F ′[U(x)] � 2m, ∀x ∈Ω, (46)

or by requiring appropriate behaviour ofF ′′. For instance, if∣∣F ′′(T )
∣∣< α = const, ∀T ∈ �,

then from

F ′(U + u)= F ′(U)+ F ′′(U + θu)u, 0< θ < 1,

it immediately follows that

F ′(U)− α|u| � F ′(U + u)� F ′(U)+ α|u|, ∀x ∈Ω.
Hence—in view of (46)—it turns out that

|u|<m/α ⇒ m� F ′(U + u)�m1 +m, ∀x ∈Ω.
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5. Porous medium: one-dimensional case

We conclude the paper with a few remarks. These make a connection between t
texts of Sections 3 and 4: considering the steady state for a porous medium (as envis
Section 3) in the one-dimensional case, it is shown explicitly that the underlying ass
tions of Theorem 4 of Section 4 are satisfied.

We consider

Tt = [F(T )]xx, 0 � x � 1, t ∈ �+,
T (x,0)= f (x), x ∈ [0,1],
T (1, t)= T2, ∀t ∈ �+,
T (0, t)= T1, ∀t ∈ �+,

T2 andT1 (< T2) being positive constants andF = T n (n > 1). The steady solution satis
fies 


[F(U)]xx = 0,

U(0)= T1,

U(1)= T2,

and thus

Un =Ax +B
with {

B = T n1 ,
A= T n2 − T n1 ,

leading to

U = [(
T n2 − T n1

)
x + T n1

]1/n

and

T1 = inf[0,1]U, T2 = sup
[0,1]

U

with F ′(T )= n(U + u)n−1. It immediately follows that

|u| � T1

2
⇒ M =

(
T2 + T1

2

)n−1

� F ′(U + u) > n
(
T1

2

)n−1

= 2m> 0.

Remark 6. One may similarly show that, in the one-dimensional case, the assump
underlying Theorem 4 are satisfied in the case 0< n< 1.

We conclude this section with an intuitive picture of the likely evolution, to the ste
state, of an initially perturbed state with compact support, again in the one-dimen
case of a porous medium. Specifically, we suppose that (withx1, x2 being constants)

f (x)= 0 (x1< x < x2), f (x) > 0 elsewhere in[0,1].
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As suggested by the evolution of the point source profile (e.g., [9]), the extremities
support are expected to move towards one another with finite speed, and eventually t
Referring to the time at which they meet as the ‘critical time,’ one expects the evolut
the profile prior to the critical time to be ‘slow’ while its evolution subsequent to the cri
time is expected to be ‘fast.’ One expects the evolution in the latter case to be gover
Theorem 2 (assuming that the (new) time origin is taken subsequent to the critical
while that in the former case is expected to be governed by Theorem 1. Moreov
evolution of the profile discussed above is consistent with what is envisaged in Rem
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Appendix A

We here prove the inequality

Φ2
u �KnΦ2n(n+1)−1

, (A.1)

where

Kn = (n+ 1)2n(n+1)−1
n−2, (A.2)

assuming that

U + u� 0, U � 0, n� 1. (A.3)

Excluding the trivial caseU = 0 for which the inequality plainly holds, we write

p = u/U + 1, (A.4)

and (A.1) is equivalent to

(pn − 1)2 � n−2n(n+1)−1[
p(pn − 1)− n(p− 1)

]2n(n+1)−1
. (A.5)

Excluding the casep = 1 for which (A.5) is trivially true, the proof of (A.5) is equivalen
to proving

inf
p>0

h(p)= n−2n(n+1)−1
, (A.6)

where

h(p)= (pn − 1)2
[
p(pn − 1)− n(p− 1)

]−2n(n+1)−1
. (A.7)
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To prove the latter, note that


limp→0h(p)= n−2n(n+1)−1
,

limp→1h(p)= +∞,
limp→∞ h(p)= 1;

(A.8)

the proof is completed if we can prove thath(p) is decreasing forp > 1, and increasing
for 1>p > 0.

This latter is equivalent to proving that(p �= 1)

g(p)= (pn − 1)
[
p(pn − 1)− n(p− 1)

]−n(n+1)−1
(A.9)

is decreasing with respect top (p > 1), increasing with respect top (0< p < 1). Now
differentiation establishes that

P(p)g′(p)= −(n− 1)pn + npn−1 − 1, (A.10)

whereP(p) is a positive quantity which does not need to concern us. Now write

r(p)= −n(n− 1)pn + npn−1 − 1, (A.11)

whence

r ′(p)= −(n− 1)pn−2(p− 1). (A.12)

Now r(1)= 0,r ′(p) < 0 forp > 1, follow from (A.11), (A.12), whenceg′(p) < 0 (p > 1).
Forp < 1, r ′(0) > 0 whenceg′(p) > 0 (0<p < 1). This completes the proof.✷
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