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1. INTRODUCTION 

The references at the end of this paper include a number of papers which deal 
with uniform approximation using a generalized weight function. An important 
application of the general theory is to the problem of obtaining starting values 
for the Newton-Raphson iterative schemes for calculating inverses of certain 
functions ([5], [6]). In working in this area it became evident that a theory of 
uniform approximations with restricted ranges was needed. To be specific, 
suppose b, and b2 are real-valued continuous functions on an interval 1, and 
b*(x) > b,(x) for all x E 1. Suppose f E C(I) is to be approximated. Then the 
problem is to find a best uniform approximation toffrom a certain family R 
whose members Y satisfy r E C(Z) and b,(x) G T(X) G b,(x) for all x E I. This 
restricted range problem is a special case of the more general problem treated in 
this paper. 

2. STATEMENT OF THE PROBLEM 

Let X be a compact topological space. Let u and 1 be two given elements of 
C(X) such that Z(x) < u(x) for all x E X. Let P be an n (>,I) dimensional linear 
subspace in C(X), and let Q be an m (al) dimensional subspace in C(X). 
Define 

R=(rrp/q:pEP,qcQ,q(x)>OVxxX}. (1) 

If E represents the real axis, we consider a real-valued function W(x,y), with 
domain X x E, satisfying the following properties: 

If 
D = {(x,y) E X x E: Z(x) < y =G u(x)}, (2) 

.___ 
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then : 
(a) W is continuous over D; 

(b) (x,Y>, (x, 4 E D and y < z * W(X,Y) < Wx, 4; 

(4 (~9 E D - sgn Wx, v) = w Y; 
(d) xEXandy>tl(x) 3 W(x,y)=co; 

(e) x E Xandy < Z(x) 3 W(x,y) = --co. 

A function W with the above properties is called a generalized weight function. 
Note that (2~) is intended to mean W(x, 0) = 0 provided I(x) G 0 G U(X). 

Letf E C(X) be a function to be approximated. Then the problem considered 
in this paper is that of finding an Y E R such that 

sup 1 W[x,f(x) - r(x)]1 = inf sup 1 W[x,f(x) - ?@)]I. (3) 
XQX i%R xeX 

Throughout this paper we shall use the notation 

Mu--d= SUP IWhf(x) - Wll. 
XEX 

We refer to (3) as “the problem to be solved,” and we assume that the problem 
is always such that inf M[f- r] < co. 

ER 

3. APPLICATIONS 

Suppose b, and b2 are functions as in the introduction. Then define 

4.4 -=SW - bd-4 

W =f(x> - U-4 

i 

+a y>u(x) 
W(x, y) = y Z(x) < y G u(x) (4) 

--m y <Z(x). 

For this generalized weight function the problem (3) is the restricted range 
problem given in the introduction. 

The standard one-sided approximation problem can be shown to be of the 
form (3) in the following way. Define 

W-G v) = 1 
+a y>o 
y y<o. (5) 

The problem (3) for the weight function (5) is that of finding an Y E R such that 
f(x) - r(x) G 0 V x E X, and for which 

mEax If(x) - r(x) = i/f- rlj = minimum. 
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Here u(x) E 0. An I(x) could be defined as follows. Let r. be any element of R 
such thatf(x) - ro(x) G 0 V x E X. Define 

l(x) = -I]f- 1011 - 1 I 

Then (5) can be written in the form (4) using the above tl and I. 
The function W(x, y) might be rather complicated. The paper [5] is con- 

cerned with finding an approximation to x1/* on XE [a,b], where 0 < a -C b; 
the approximation is to be used to provide starting values for the standard 
Newton-Raphson iteration to compute an accurate approximation to xl’*. 
It turns out that the problem can be subsumed by (3). Let E > 0 satisfy E < a”*. 
Then define 

+a 
m, v) = 

l 

y>x”Z-E 
(SP Y)Y2 (6) 

2[x - yx”*] y < x1’* - E. 

Solutions to (3) using the weight function (6) provide optimal starting value 
functions for the Newton-Raphson iterative calculation of x1’* on [a,b]. 
Notice that (6) is somewhat like (5) and is readily modified to fit the hypotheses 
of (2). 

4. EXISTENCE 

As is usually the case in rational approximation theory, we are not able to 
give a universal existence theorem. Therefore, in this section we restrict our 
attention to the case where Xis a real interval and R consists of functions of the 
form 

P &-I-a,x+ *a* + a,-, xn-1 
r= qEbo+b,x+-*+b,+F-” 

Here n and m are fixed nonzero positive integers. 
PROPOSITION. Let R be the set of ration&functions of the form (3, and let X be 

an interval [u,b]. If there exists an r E R for which M[f - r] < 00, then the 
problem (3) has a solution. 

ProoJ Let 
p = inf Mlf- r]. 

WR 

Then one can restrict one’s attention to those r E R for which M[f - r] G p i- 1. 
Using the properties (2) it follows that there exists a B such that Mlf- r] < 

p + 1 implies IIf- rjj G B. 
From here on the existence proof does not differ appreciably from that in the 

unrestricted range case discussed in [7]. Thus, we omit the details. 
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5. CHARACTERIZATION THEOREM 

As in ordinary uniform rational approximation theory, the key theorem in 
the theory of (3) deals with the question whether or not the origin of a certain 
Euclidean space lies in some particular convex hull. The result for the 
generalized weight function case (2) is somewhat more involved than for 
ordinary rational approximation. 

Consider an r E R, where R is as in (I), for which M[f- r] < io. Then define 

S, = {h -p + rq: p E P, q E Q}. (8) 

The set S, is a linear space of dimension s G n + m - 1. Let g,(x), g2(x), . . ., g,(x) 
denote a basis for S,. For x E X we use the notation 

2 = klG-4, g*(x), . . .? g,(4); 
that is, 2 is an s-tuple whose ith coordinate is g,(x). 

For the particular r under consideration define 

X+ I = {x E X: W[x,f(x) - r(x)] = A4 [f- r]) 

X-, = {x E X: W[x,f(x) - r(x)] = -M[f- r]) 

X+, = {x E X:f(x) - r(x) = u(x)} 

X-2 = {x 6 X: f(x) - r(x) = l(x)). 

These are sets of “critical” points. We shall use the notation given above in 
stating and proving the characterization theorem. First, however, we shall 
discuss certain exceptional cases which are not of general interest. 

Note first that if X+, 17 X-r f o then M[f- r] = 0, and hence r must be a 
solution to (3). Next consider Fig. I. Here we have drawn a graph off(x) - r(x) 
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when W(x, y) is of the form (4). The particular weighted error curve 
W[x, f(x) - r(x)] under consideration has four critical points. Considering 
them from left to right, the first is in both X+, and XtZ, the second is in both 
X-r and X+z, the third is in X+, and the fourth is in X-r. The second point 
characterizes the solution in the sense that if the unweighted errorf(x) - r(x) is 
either increased or decreased at this point then the absolute value of the 
weighted error is increased at this point. We summarize the above observations. 

LEMMA 1. If(X+, U X,,) n (X-, U X-,) # o then r is a solution to (3). 

THEOREM 1. Suppose A4 If- r] < m and (X,, U X,,) fl (X-, U X-,) = @ . 
For this r define 

u,(x) = fl ifx E X+, u x+, 

u,(x) = -1 ifx E x-r u x-2 

x, = x+, u x-1 u x+, u x-2 

H, = the conuex hull of(uJx) 2: x E X,>. 

If r is not a solution to (3) then one of thefollowing holds 

GO 0 $ Hr. 
(b) 0 E ConvexhulZof(a,(x)Z: x E (X+, U X-2)-(X+, U X-,)1. 

Here 0 is the origin in Euclidean s-space while - denotes set subtraction. 

Proof. Suppose that I =p/q is not a solution to (3). Then there exists an 
r* E p*/q* such that r* E R and 

Mlf- r*] < M[f- r]. (9) 

Observe that if t E X+, then 

Wt, f 0) - 4 01 > WC f(t) - r*(t)l, (10) 
and also W[t,f(t) - r(t)] > 0. Similarly, if t E X-r then 

WLf(t> - r(t)1 < Wkf(t> - r*(t)1 (11) 
and W[t,f(t) - r(t)] < 0. Thus if t E X,, U X-r then each of the following is a 
consequence of (2) and the previous definitions. 

u,(t) WLf(t) - WI > dt) WJV) - r*(t)1 
40 V(t) - WI > 4) [f(t) - r*(t)1 
u,(t) b*(t) - r(t>l> 0 (12) 

4) b*(t) - q*(t) WI ’ 0. 
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Next observe that if t E X+, then using (2), and noting that am = -tl, 

u,(t) [r*(t) - r(t) 12 0 (13) 

4) [P*(f) - q”(G @>I 2 0. 

Finally, if t E Xe2 then u,(t) = -1, 

and the inequality (13) follows. 
To summarize our progress so far, we have proved that if r is not a solution 

to (3) then the function h = p* - q* r is a point of S, satisfying 

(a) o,(x) h(x) > 0 V x E X+, U X-, 
(14) 

(b) u,(x)h(x) > 0 V x E X+, U X-z. 

If 0 E H, then there exist points xl, x2, . . ., x, E X, and constants a,, a2, . . ., a,, 
where k G s + 1, such that 

a, > 0 i=l,...,k 

j, ai = 1 

0 = 5 ai Ur(XJ 7Zi-i. 
I=1 

Using our basis for S,, the last equality becomes 

0 = i a, ur(xl)gj(xl) j = 1, . . ., s. 
i=l 

Suppose that 

Then 

(15) 

(16) 
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with strict inequality if any of the points xi is in X+ , U X-i. However, using (15) 
and (16) 

= j$, bj 2 ai ur(xi> gjtxi) = O* 
i=l 

Thus we conclude that no xi is in X+, U X-.1. This completes the proof of 
Theorem 1. 

At this point we recall the following definition. If H is a finite dimensional 
subspace of C(X) of dimension k, it is called a Haar subspace if every nonzero 
element of H has at most k - 1 zeros. 

The following lemma yields immediately a corollary to Theorem 1. 

LEMMA 2. Let H be a Huar subspace of C(X) with a basis h,(x), . . ., h,(x). 
Let Y be a closed subset of X and let u,(y) be a continuous nonvanishing real- 
valuedfunction on Y. Then 

0 E Convex hull MY) My), h(y), . . ., k,(y)l: Y E Y> 
ijfh E Hand a,(y) h(y) > 0 for ally E Y imply h 3 0. 

(17) 

Proof. Assume (17) holds. If there is a nonzero h E H such that ur(y)h(y) > 
0 V y E Y, then urh has at most k < 12 zeros xi, . . ., x,. Thus there exists an 
h,, E H such that u,(xJ h,(xJ = 1 for i = 1, . . ., k. Consequently, for sufficiently 
small h > 0, u,(h + xh,) is strictly positive on Y. This contradiction completes 
the first half of the proof. The remaining part of the lemma is a standard 
result [2]. 

COROLLARY 1. Suppose that the hypotheses of Theorem 1 are satisfied, and 
that S, is a Haar subspace of C(X). Then 0 $ Hr. 

THEOREM 2. Suppose that M[f - r] = d < M andr is a solution to (3). Define 

S,={f:xEX+1 UX,,} 

s* = (-2 : x E x-1 u x.-,} 

H, = Convex hull of S, U S1. 

Then the origin of Euclidean s-space lies in H,. 
27 



408 LOEB, MOURSUND, AND TAYLOR 

ProojI We first consider two uninteresting cases. If M[f - r] = 0 then each 
point of Xis in both X+, and X-i. Thus if t E Xis arbitrary, Z E S, and 4 E S,. 
Since 0 = (+) [? - Z ] the result is proved. 

The second uninteresting case occurs when M[f - r] > 0 and 

(X,, n X-2) u (X-, n x+2> # 63. 

In this case also there exists a t E X such that I E S, and -4 E S,. 
For the remainder of the proof we assume 0 < Mlf- r] = d < co and 

(X,, n x-,) u (X-1 n X,,) = 0. (18) 

With these hypotheses the following notation is well defined. 

The convex hull H, under consideration is the convex hull of {u&c)$: x E X,}. 
Suppose that the theorem is false. Then by a classical result [2] there exists an 

h E S,, where 
hz-p*+rq* 

such that 
u,(x) h(x) > 0 V x E X,. (19) 

Setting r = p/q, define 

Observe that 

rh 3 P - xP* 
qp- 

-Ah 
r-rA=--. 

4-h” 

Because q(x) > 0 V x E X, 3 hi > 0 such that if 0 G X G h, then q(x) - 
hq*(x) > 0 V x E X. We shall restrict our arguments to such A. 

Observe that 

f(x) - cd-4 =f(x> - 44 + PC-4 - 491 

(21) 

We shall show that there exists a constant A6 > 0 such that if 0 < h G A, then 

M[f - rA] < M If- r]. (22) 
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To begin the argument note that X+, and Xw2 are compact; hence, using (18) 
it follows that there exists a dl > 0, where d, < d, such that 

W[x,f(x) - r(x)] >, -d, v x E x+, 

FV[x,f(x) - r(x)] G d, V x E K2. 

Note also that x E X+, imples f(x) - r(x) > I(x) and x E Xdz implies f(x) - 
r(x) =c u(x). 

We now examine the set X,,. Let t E X+, be arbitrary. Then there exists a 
number p(t) satisfying0 < p(t) G A, such that if 0 G h G ~(2) then the following 
hold. 

f(t) - IA(t) 2 u(t’ i I(‘) . 

Note that h(x) is continuous, and there exists a neighborhood of t in which 
ur h > 0. Consequently by continuity arguments we conclude that there exists 
an open neighborhood N(t) about f such that x E N(t) and 0 G X G p(t) imply 

W[x,f(x) - rA(x)] > - (v) 
(23) 

u(x) >f(x) - rh(x) > Z(x). 

The sets N(x), x E X+z, form an open cover of X+,. Suppose iV(x,), . . ., 
N(x,) is a finite subcover. Let 

h2 = min I 
l<i<k 

-5 = u WXJ. 
I<iGk 

Then if x E ZI and 0 G X G A,, (23) holds. 
Using a similar argument for the points of Xe2 we conclude that there exist 

an open set 2, containing X7+ and a A, satisfying 0 < hj G A?, such that if 
x EZ2andO<X<h,then 

3d+d, 
WxJW - r,dx)l < ___ 4 (24) 

Z(x) <f(x) - f-h(x) < u(x). 

Let Y = X - (2, U Z,). Then Y is compact and contains no points of X+, or 
X-2. Consequently there exists a constant c > 0 such that x E Y implies 

l(x)fc<f(x)-r(x)<u(x)-c. (25) 



410 LOEB, MOURSUND, AND TAYLOR 

Thus there exists a A, satisfying 0 < X, < A, such that 0 G X < A, and x E I’ 
imply 

/(x) crJ’(x) - Q(X) c 24(X). 

For notational convenience define 

e(x) =f(x) - r(x) 
s(x) = sgn e(x). 

(26) 

Using the compactness of X,, U X-t and (19) it follows that 

Now define 

i3r 
[ 

min s(x) h(x) > 0. 
xext1 ux-I 1 

Z3 = {x E X: ) W[x, e(x)]) > d/2 and S(X) h(x) > a/2}. (27) 

Observe that Z3 is open. Thus X - .Z3 is compact and disjoint from X+, U X-I. 
Consequently there exists a constant c, > 0 such that for all x E X - Z3, 

[ W[x,e(x)]l G cl cd. 

By a standard continuity argument there exists a X5 satisfying 0 < As G h, such 
thatO<h<h,andxEX-Z,imply 

Let Z, be the closure ofZ,. Then for x E Z, 

Let 

) W[x, e(x)] 1 > d/2, s(x) h(x) > 2” . 

p=inf(]yj: ~W[x,y]j~d/2forsomex~ZJ. 

Then TV > 0 by the compactness of Z, and the properties of W(x, u). Finally, 
select A, such that 0 < X6 G A,, and 0 G h G A, implies 11~ - r,J <TV. Then if 
xEZ4andO<A<A6wehave 

sgn [f(x) - cd41 = w UC4 - 441, 
Moreover, if x E 2, and 0 < X G A, then 

I WOW - cd41 I < d. (29) 

The inequalities (28) and (29) taken together imply that if 0 c x < h, then (22) 
is satisfied. 

COROLLARY 2. Let f E C(X) and suppose r E R is a solution to (3). If S, is a 
Haar subspace and (X,, n X-,) U (AT-, fl X+,) = o then r is unique. 



UNIFORM RATIONAL WEIGHTED APPROXIMATIONS 411 

Proof. Tf fe R then r =f. Thus if r. is any solution to (3) we must have 
r. = r. 

Suppose then that f $ R and ro, r are both solutions to (3). Then for all 
x E x, 

This implies 
44 k0W - 4-412 0. 

If r. E PO/q0 where q. > 0 then for all x E X, 

u&4 [PO(~) - 90(x) r(x)1 2 0. 
Using Lemma 2 we conclude p. - q. r = 0; so r. = r. 

THEOREM 3. Let Xbe an interval [a, b] and let r be such that co > M[f - r] > 0. 
?f S, is a Haar subspace and (X+, fl X+J U (X-, n X-,) = .@ , then r is a 
solution to (3) iff there existpoints x1 c x2 c . . . c x,+ , in X, such that 

ur(xt) = (-l)‘+’ 4x1) i=2 ,...,s+l. 

Here s is the dimension of S,. 

Proof. By Corollary 1 and Theorem 2, r is a solution iff 0 E H,. By a standard 
argument ([I], page 74) 0 E H, iff there exist s + 1 points x1 < x2 < . . . < x,+r 
in X, such that a,(~*) = (-l)‘+’ u,(xJ, i = 2, . . ., s -t 1. 

REFERENCES 

1. E. W. CHENEY, “Introduction to Approximation Theory.” McGraw-Hill Book Co., 
New York, 1966. 

2. H. G. EGGLESTON, “Convexity.” Cambridge University Press, Cambridge, 1958. 
3. D. G. MOURSUND, Chebyshev approximation using a generalized weight function. 

SZAMJ. Numer. Anal. 3 (1966), 435450. 
4. D. G. MOURSUND, Computational aspects of Chebyshev approximation using a gen- 

eralized weight function. SIAM. J. Numer. Anal. 5 (1968), 126-137. 
5. D. G. MOURSUND, Optimal starting values for the Newton-Raphson calculation of &. 

Comm. ACM. 10 (1967), 430-432. 
6. D. G. MOURSUND AND G. D. TAYU)R, Optimal starting values for the Newton-Raphson 

calculation of inverses of certain functions. SIAM J. Numer. Anal. 5 (1968), 138-150. 
7. D. G. MOURSUND AND G. D. TAYLOR, Uniform rational approximation using a general- 

ized weight function. Submitted to a technical journal. 
8. J. R. RICE, “The Approximation of Functions,” Vol. I. Addison-Wesley, Reading Mass., 

1964. 
9. L. L. SCHUMAKER AND G. D. TAYLOR, On approximation by polynomials having 

restricted ranges, II. Submitted to a technical journal. 
IO. G. D. TAYLOR, On approximation by polynomials having restricted ranges, I. SIAM J. 

Numer. Anal. To appear. 


