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a b s t r a c t

Glypican-5 (GPC5) belongs to the glypican family of proteoglycans that have been implicated in a variety
of physiological processes, ranging from cell proliferation to morphogenesis. However, the role of GPC5 in
human cancer remains poorly understood. We report that knockdown of GPC5 in bronchial epithelial
cells promoted, and forced expression of GPC5 in non-small lung cancer (NSCLC) cells suppressed, the
anchorage-independent cell growth. In vivo, expression of GPC5 inhibited xenograft tumor growth of
NSCLC cells. Furthermore, we found that GPC5 was expressed predominantly as a membrane protein, and
its expression led to diminished phosphorylation of several oncogenic receptor tyrosine kinases, in-
cluding the ERBB family members ERBB2 and ERBB3, which play critical roles in lung tumorigenesis.
Collectively, our results suggest that GPC5 may act as a tumor suppressor, and reagents that activate
GPC5 may be useful for treating NSCLC.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Glypicans are a family of multifunctional proteoglycans and
widely expressed in both invertebrates and vertebrates as glyco-
phosphatidylinositol (GPI)-anchored membrane-bound proteins
[1–3]. In drosophila, mutation of the glypican gene Dally (division
abnormally delayed) led to cell division defects that severely im-
paired developmental morphogenesis in adult tissues, such as the
eye and the wing [4]. In mammalian cells, six glypicans (GPC1-6)
have been identified. GPC5 was originally isolated as a brain-en-
riched gene and then found to be developmentally regulated in
various organs and tissues, including the central nervous system,
the limb, and the kidney [5,6]. Interestingly, GPC5 gene is located
to the 13q31-32 chromosomal region that is frequently mutated or
amplified in human diseases, including cancer [7–9], suggesting a
candidate role for GPC5 in regulating carcinogenesis.

Lung cancer has become the leading cause of cancer-related
deaths among all human malignancies. Despite our continuous
technical improvements, the five-year survival rate of lung cancer
has not significantly increased during the past decades, partly due
to our incomplete understanding of the biologic processes that
regulate lung tumorigenesis. Notably, several recent studies have
shown that single-nucleotide polymorphisms (SNPs) of GPC5 as-
sociated with the risk of lung cancer [10–13], and the expression
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level of GPC5 was decreased in lung adenocarcinomas compared
to normal lung tissues [10,14], implying that GPC5 may be a tumor
suppressor. However, in vitro studies have generated controversial
results about the role of GPC5 in lung cancer. For instance, one
recent report has shown that higher GPC5 expression was asso-
ciated with lymph node metastasis and poorer prognosis of non-
small cell lung cancer (NSCLC) patients; and overexpression of
GPC5 promoted cell migration [15], suggesting a pro-oncogenic
role for GPC5 in NSCLC. In a sharp contrast, another study showed
that lower GPC5 was associated with lymph node metastasis and
predicted shorter survival of NSCLC patients, and overexpression
of GPC5 in NSCLC cells induced cell cycle arrest and inhibited
migration and invasion in vitro, suggesting a metastasis suppressor
role for GPC5 [16]. Despite these results, the in vivo role of GPC5
remains untested, and mediators of GPC5 are unclear.

To address these issues, we knocked down GPC5 in bronchial
epithelial cells and overexpressed it in non-small cell lung cancer
cells. We found that knockdown of GPC5 promoted, and over-
expression of GPC5 inhibited, the anchorage-independent cell
growth in soft agar, suggesting that GPC5 suppresses the tumor-
igenicity of these cells. Most importantly, overexpression of GPC5
significantly inhibited the growth of xenograft tumors formed by
lung adenocarcinoma cells, indicating that GPC5 acts as a tumor
suppressor in vivo. Furthermore, we provide evidence that GPC5 is
localized exclusively to the cellular membrane, where it may re-
press several oncogenic receptor tyrosine kinases, including RYK,
ERBB2, and ERBB3, to exert its tumor suppressive function.
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. GPC5 is localized exclusively to the membrane. (A) Western blotting of GPC5 for the membrane (M) and cytosolic (C) fraction of H1299 cells transfected with empty
pcDNA3.1 vector of GPC5 cDNA. * indicates non-specific bands. (B) Western blotting of GPC5 for the whole cell lysate of H1299 cells transfected with empty pcDNA3.1 vector
of GPC5 cDNA. * indicates non-specific bands.
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2. Materials and methods

2.1. Cell culture and reagents

Cells were cultured in RPMI-1640 medium supplemented with
10% fetal bovine serum (GIBCO) and incubated at 37 degree in a 5%
CO2 humidified incubator. Rabbit anti-E-cadherin, Tubulin, phos-
pho-ERBB2, and phospho-ERBB3 antibodies were from Cell Sig-
naling; rabbit anti-GPC5 (detects N-terminal AAs 46-61:
RGLPDSPRAGPDLQVC) was from Biomatic; and goat anti-Actin was
from Santa Cruz. All chemicals were from Sigma unless specifically
indicated.

2.2. Transfection and antibiotic selection

GPC5 cDNAwas from Origene and subcloned into the pcDNA3.1
plasmid (Invitrogen). GPC5 shRNAs were from Open Biosystems.
For transient transfection, cells were plated at �80% confluence
one day before the transfection. Transfection was performed by
using lipofectamine 2000 (Invitrogen). For stable transfection,
antibiotic selection started 48 hours after transfection.

2.3. Preparation of cell lysate and western blotting

The membrane and cytosolic lysate was prepared by fractio-
nationation using Mem-Per plus membrane extract kit from
Thermo Scientific. Non-fractionated whole cell lysate was pre-
pared by lysing the cells directly in RIPA lysis buffer supplemented
with PMSF, Na3PO4, and proteinase inhibitor cocktail (Santa Cruz).
For Western blotting, 10-30 μg proteins were separated by SDS-
PAGE and transferred onto PVDF membranes. After brief blocking
in 5% skim milk, the membrane was incubated with primary an-
tibodies, followed by HRP-conjugated secondary antibody in-
cubation. Protein bands were visualized by Supersignal ECL sub-
strates (Pierce).

2.4. Human phospho-receptor tyrosine kinase array

The human phospho-receptor tyrosine array kit was purchased
from R&D (ARY001B) and performed as instructed by the
manufacturer.
2.5. Statistics

Statistical significance was determined using two-sided Stu-
dent's t-tests. P values less than 0.05 were considered statistically
significant.

2.6. Xenograft experiment

Wild type 129/sv mice were purchased from Charles Rivers Inc.
All protocols for mouse experiments were approved by the Mayo
Clinic IACUC.

Briefly, �80% confluent cultured cells (1 million cells per in-
jection) were trypsinized, re-suspended in ice-cold PBS, and sub-
cutaneously injected into the flanks of 8-10 weeks old wild-type
129/sv mice. Autopsies were performed at three weeks after
injection.
3. Results

3.1. Detection of GPC5 in the cellular membrane fraction

To develop a biochemical approach for detecting cellular loca-
lization of GPC5, we transiently expressed a full length human
GPC5 cDNA in a lung cancer cell line (H1299 cells), isolated both
the membrane and the cytosolic cell fractions from the transfec-
tants, and performed Western blotting for GPC5. The results
showed that GPC5 was exclusively expressed in the membrane
fraction of GPC5-transfected H1299 cells but was non-detectable
in the cytosol (Fig. 1A). Endogenous GPC5 was also non-detectable
in the control empty vector-transfected H1299 cells. Notably, be-
sides the core protein (�40 kDa), several forms of glycanated
GPC5 protein, including a major form of �80 kDa and multiple
smears ranging from 100 to 300 kDa (likely to be the highly gly-
canated forms) could be detected (Fig. 1A; asterisks indicate non-
specific bands). Although Western blotting for non-fractionated
whole cell lysates was able to detect both the core and glycanated
GPC5, it failed to distinguish glycanated GPC5 from several non-
specific bands (Fig. 1B, indicated by asterisks). Collectively, our
results suggest that GPC5 is localized to the cellular membrane
faction, which is consistent with its role as a GPI-anchored protein,
and cell fractionation may be a useful approach for specifically
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Fig. 2. GPC5 suppresses the tumorigenicity of lung cancer cells. (A) Western blotting of the whole cell lysate and the membrane and cytosolic factions of HCC827 cells stably
expressing GPC5 or an empty pcDNA3.1 vector. The membrane protein E-cadherin was included as a control for successful membrane fractionation. Actin was included as a
internal protein loading control. N.S.B.: non-specific band. (B) Soft agar colony formation assay for HCC827 cells stably expressing GPC5 or an empty pcDNA3.1 vector.
(C) Western blotting for whole cell lysate of H157 cells stably expressing GPC5 or an empty pcDNA3.1 vector. (D) Soft agar colony formation assay for H157 cells stably
expressing GPC5 or an empty pcDNA3.1 vector. (E) Western blotting for BEAS-2B cells stably expressing GPC5 shRNAs or control scrambled shRNA vector. (F) Soft agar colony
formation assay for BEAS-2B cells stably expressing GPC5 shRNA or control scrambled shRNA vector. Note: in B, D, and F, * indicates t-test po0.05.
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detecting membrane GPC5 and its glycanated forms.

3.2. GPC5 suppressed lung cancer cell growth in Vitro and in Vivo

To examine the role of GPC5 in lung cancer, we generated
HCC827 and H157 lung cancer cells that stably overexpress GPC5
(Fig. 2A and C). We found that the overexpression of GPC5 sig-
nificantly suppressed soft agar colony growth of both cell lines
(Fig. 2B and D). On the contrary, stable knockdown of GPC5 in a
human non-tumorigenic bronchial epithelial cell line (BEAS2B
cells) promoted their soft agar colony formation ability (Fig. 2E),
suggesting that loss of GPC5 may also facilitate the malignant
transformation of the lung epithelia. Notably, unlike the transient
GPC5 overexpressing H1299 transfectants (Fig. 1), all the above
stable GPC5 transfectants only expressed the �80 kDa glycanated
GPC5, but not the core protein (�40 kDa) or the putative highly



GPC5

E-cadherin

Membrane
ve

ct
or

G
P

C
5 

#1

G
P

C
5 

#2

ve
ct

or

G
P

C
5 

#1

G
P

C
5 

#2

ve
ct

or

G
P

C
5 

#1

G
P

C
5 

#2

Cytosol
Whole
lysate

Membrane

531LN2

H1299
GPC5

X
en

og
ra

ft
tu

m
or

 w
ei

gh
t (

g)

Vector
(0.23±0.09 g)

GPC5 #1
(0.08±0.04g)

GPC5 #2
(0.12±0.05 g)

*
*

83 kDa

118 kDa

Fig. 3. GPC5 suppresses the xenograft tumor growth of 531LN2 lung adenocarci-
noma cells. (A) Western blotting of the whole cell lysate and the membrane and
cytosolic factions of 531LN2 cells stably expressing GPC5 or an empty pcDNA3.1
vector. The membrane protein E-cadherin was included as a control for successful
membrane fractionation. (B and C) Photos (B) and quantification (C, by weight) of
the xenograft tumors formed by 531LN2 cells stably expressing GPC5 or an empty
pcDNA3.1 vector. Cells (1 million per injection) were subcutaneously into the flanks
of 8-10 weeks old wild type 129/sv mice, and autopsy was performed at three
weeks after the injection. Note: each of the symbols in Fig. 3C indicates an in-
dividual tumor. * indicates t-test po0.05.

ERBB2 ERBB3

vector

GPC5

RYK

pERBB2

pERBB3

ERBB2

ERBB3

Tubulin

V
ec

to
r

G
P

C
5 

#1
G

P
C

5 
#2

199 kDa

199 kDa

199 kDa

199 kDa

38 kDa

Fig. 4. GPC5 suppresses the tyrosine phosphorylation of oncogenic RTKs.
(A) phospho-RTK array of HCC827 cells expressing GPC5 or an empty pcDNA3.1
vector revealed that GPC5 suppresses the phosphorylation of RYK, ERBB2, and
ERBB3 (circled). (B) Western blotting for 531LN2 cells expressing GPC5 or an empty
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glycanated form of GPC5 (�100–300 kDa), suggesting that the
�80 kDa glycanated GPC5 may be more stable than other forms of
this proteoglycan. To determine the role of GPC5 in vivo, we uti-
lized a syngeneic lung tumor model that we recently developed
[17]. As shown in Fig. 3, overexpression of GPC5 in the 531LN2
lung adenocarcinoma cells (Fig. 3A and B) significantly suppressed
their subcutaneous xenograft tumor growth (Fig. 3C). Collectively,
these in vitro and in vivo results suggest that GPC5 acts as a tumor
suppressor.

3.3. GPC5 suppressed receptor tyrosine kinases RYK and ERBBs

Previous studies have shown that the membrane-bound GPC5
may not function as a receptor for a specific ligand or growth
factor. Instead, it may bind to and regulate the activity of other
membrane receptors and their downstream signaling pathways
[11,18]. In lung cancer, extensive studies have shown that receptor
tyrosine kinases (RTKs), such as the EGFR/ERBB family of RTKs
(EGFR and ERBB2-4), play oncogenic roles in lung tumorigenesis
[19,20]. Thus, we performed a phospho-receptor tyrosine kinase
array for the GPC5-expressing HCC827 cells. The results revealed
that the tyrosine phosphorylation of several receptor tyrosine ki-
nases, including RYK, ERBB2, and ERBB3 (Fig. 4A), were sig-
nificantly suppressed by GPC5 expression. We also confirmed
these findings by performing Western blotting for the GPC5-ex-
pressing 531LN2 cells (Fig. 4B). Interestingly, GPC5 dramatically
depleted the expression of total ERBB2 and ERbb3 (Fig. 4B), in-
dicating that it inhibits these ERBB family members by suppres-
sing their expression. Together, these results suggest that GPC5
may exert its tumor suppressive function by repressing these on-
cogenic RTKs.
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4. Discussion

Although GPC5 was proposed to have a tumor suppressive
function in lung cancer based on genetic and expression analyses
[10,11], in vivo assessment of its role is lacking, and in vitro studies
have led to completely opposite conclusions about its association
with clinical outcome of NSCLC patients [15,16]. For instance, a
recent report has shown that GPC5 overexpression promotes the
migration of NSCLC cells, and high levels of GPC5 correlate with
poor prognosis in NSCLC [16]. In contrast to this report, another
study has shown that GPC5 inhibits NSCLC metastasis, and high
levels of GPC5 correlate with better prognosis [15]. The biologic
basis for such divergence is unclear. Here, we provide the first
in vivo evidence that GPC5 acts as a tumor suppressor (Fig. 3).
Interestingly, our results also revealed that multiple forms of GPC5
can be simultaneously detected (Fig. 1). It would be interesting to
determine whether these different forms of GPC5 are present in
patient tissues and have distinct prognostic values.

Our findings are also different from those using rhabdomyo-
sarcoma cells or gastric cancer cells, where GPC5 may act as an
oncogene to promote tumor cell growth by activating the Hedge-
hog signaling [21,22]. Notably, our results showed that GPC5 ex-
pression strongly suppressed several RTKs that are important for
lung tumorigenesis, including the ERBB family members (ERBB2
and ERBB3), suggesting that GPC5 may regulate different signaling
pathways in distinct types of cancer. Thus, targeting GPC5 may
lead to distinct outcomes; while GPC5 antagonists may be useful
to treat rhabdomyosarcoma or gastric cancer, reagents that acti-
vate GPC5 may be useful for treating NSCLC patients.
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