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Classical (Pavlovian) conditioning procedures can be used to bias the appearance of physical stimuli.
Under natural conditions this form of perceptual learning could cause perception to become more accu-
rate by changing prior belief to be in accord with what is statistically likely. However, for learning to be of
functional significance, it must last until similar stimuli are encountered again. Here, we used the appar-
ent rotation direction of a revolving wire frame (Necker) cube to test whether a learned perceptual bias is
long lasting. Apparent rotation direction was trained to have a different bias at two different retinal loca-
tions by interleaving the presentation of ambiguous cubes with presentation of cubes that were disam-
biguated by disparity and occlusion cues. Four groups of eight subjects were subsequently tested either 1,
7, 14, or 28 days after initial training, respectively, using a counter-conditioning procedure. All four
groups showed incomplete re-learning of the reversed contingency relationship during their second ses-
sion. One group repeated the counter-conditioning and showed an increase in the reverse bias, showing
that the first counter-conditioning session also had a long-lasting effect. The fact that the original learn-
ing was still evident four weeks after the initial training is consistent with the operation of a mechanism
that ordinarily would improve the accuracy and efficiency of perception.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The role played by previous experience in determining how
things look has been of interest for more than 300 years (Berkeley,
1709). Documenting a change in appearance caused by learning
can be difficult, however, because observers may not accurately
remember how a thing looked in the past. A strategy for overcom-
ing this difficulty is to use perceptually bistable stimuli, because
once the visual system itself makes the noisy dichotomous deci-
sion, the observer can effortlessly report the result of the visual
system’s decision (Backus, 2009, 2011; chap. 6; Pylyshyn, 1999).

A revolving wire-frame Necker cube is such a stimulus. It is per-
ceived at stimulus onset to be rotating in one of exactly two direc-
tions, i.e., it is perceptually bistable. Furthermore, the apparent
rotation direction of the cube can be conditioned to depend on ret-
inal location, an effect that persists for at least 24 h (Backus &
Haijiang, 2007; Haijiang et al., 2006; Harrison & Backus, 2010a).
Specifically, if a cube presented above fixation on ‘‘training trials’’
is disambiguated by depth cues so that it appears to rotate in
one direction, while a cube presented below fixation on other
training trials is disambiguated so that it appears to rotate in the
opposite direction, then ambiguous cubes on interleaved test trials
will rapidly come to have the same apparent rotation direction as
was trained at their respective locations. This training occurs
mostly independently at each location (Harrison & Backus,
2010a), however, the difference in bias at the two locations, mea-
sured on test trials, is a useful measure of the learning because it is
robust to their common initial bias. To control for initial bias that is
different across locations but common across observers—a possible
if unlikely situation—the contingency between location and rota-
tion direction is counterbalanced across observers.

Short term priming effects, that may or may not be functionally
important for vision, are sufficient to explain the learning that oc-
curs within a single session (e.g. Brascamp et al., 2008). However,
these same priming effects make it impossible to quantify the
strength of any long term learning, because only one ambiguous
trial at the start of the second session is independent; all the rest
will be influenced by the previous trials in the second session
(Brascamp et al., 2009, 2008; Harrison & Backus, 2010a,b;
Pastukhov & Braun, 2008; van Dam & Ernst, 2010).

Under these circumstances a useful strategy to quantify the
learning is counter-conditioning: the strength of the initial learn-
ing can be assessed during the second session by measuring how
resistant the system is to learning from training trial stimuli that
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rotate in the direction opposite to the training in the first session.
The extent to which the perceptual outcomes for ambiguous cubes
in the second session adopt the new location-rotation contingency
(or alternatively, are perceived in accordance with the first ses-
sion’s contingency) is then a measure of the bias retained from
the first session. This strategy of conditioning and then counter-
conditioning has shown that learned biases last for many minutes
(Backus, 2011, chap. 6) and even overnight (Haijiang et al., 2006).
Here we ask whether learned biases last many days, as would pre-
sumably be the case if the learning is implemented by mechanisms
that are useful for deciding the appearances of objects that are
encountered repeatedly but not every day. A positive finding of
persistent bias cannot prove a functional role, but failure to find
it might argue against such a role.

2. Materials and methods

Most aspects of the materials and methods are as previously de-
scribed (Harrison & Backus, 2010a). The methods were designed to
ensure that subjects’ responses reflect the visual appearance of the
stimulus, rather than other factors such as a bias in post-perceptual
cognitive decisions or motor choice, cognitive strategy, or fixation
strategy (Backus, 2009; Backus, 2011, chap. 6; Haijiang et al.,
2006). For convenience we describe the most important of these
design choices again, below.

2.1. Subjects

Subjects were adults with normal or corrected-to-normal vision
who were able to do the task correctly on training trials, recruited
from the College of Optometry and from the New York City metro-
politan area with advertisements at craigslist.com. We tested 4
groups of 8 subjects, with varying numbers of days between the
first (conditioning) session and the second (counter-conditioning)
session. Subjects returned for counter-conditioning on either the
2nd, 8th, 15th or 29th day. The group that received counter-condi-
tioning on the 2nd day also received the same counter-condition-
ing on the 8th day, to evaluate the effect of elapsed time as
compared to the effect of counter-conditioning per se as a factor
in dissipating the bias.

2.2. Stimuli

On Session 1, all groups viewed 480 trials consisting of a 50:50
pseudorandom mixture of disambiguated and ambiguous cubes,
Fig. 1. Cropped screen shots showing example stimuli: (a) cube disambiguated by (geom
cube. Both cubes are depicted here at the ‘‘top’’ location, centered 12� above the b
approximately 11.5� of visual angle at the viewing distance of 1 m, when in the fronto
occlusion strip was 4.0 cm. Cubes rotated about a vertical axis at a rate of 45� s�1, and th
similar to the horizontal image speed of the nearest (and farthest) part of the cube.
presented by rear-projection, identical to those used previously
(see Harrison & Backus, 2010a; for details). Disambiguated cubes
contained binocular disparity and revolved around a central strip
so as to provide an occlusion cue (Fig. 1a). Ambiguous cubes were
presented monocularly, and contained no other cues to depth
(Fig. 1b). Each transparent face of the cube contained 25 randomly
placed dots, which stabilized the cube’s appearance as a single ri-
gid rotating body on ambiguous trials. All cubes were viewed
through red–green glasses, and were presented using orthographic
projection. Luminance in the red and green channels was balanced
on training trials and cross-talk was minimized (Mulligan, 1986) to
prevent the Pulfrich effect from determining apparent rotation
direction on monocular test trials.

2.3. Task

Subjects’ task was to indicate whether the transit direction of a
comparison dot, which completed horizontal paths through the
fixation marker, was the same as the motion of the front (near
part) or back (far part) of the cube. The comparison dot is shown
to the left of the fixation square in Fig. 1a. Subjects indicated
‘‘matches near’’ or ‘‘matches far’’ by pressing ‘‘2’’ or ‘‘8’’ on a nu-
meric keypad. This task exploits a perceptual coupling (Hochberg
& Peterson, 1987): on each trial, leftward or rightward transit
direction was randomly chosen for the comparison dot, with equal
probability, so the response mapping was randomly re-assigned on
each trial. Thus subjects’ responses were not correlated with the
actual dependent variable of interest, namely apparent cube rota-
tion, nor with the top vs. bottom position of the stimulus, nor with
dot motion itself. This feature of the task design ensures that loca-
tion-contingent motor bias cannot explain the data. The dot was
presented at fixation depth on training trials and monocularly on
test trials. The cube and comparison dot remained on the screen
for a minimum of 1.5 s and the subject’s response terminated the
presentation.

2.4. Data analysis

From subjects’ responses we calculated the fraction of ambigu-
ous (test trial) cubes perceived as rotating in the same direction as
the disambiguated (training trial) cubes at the top location in Ses-
sion 1 (Fig. 2A–C and Fig. 3). These fractions were then transformed
into z-scores, i.e. we used a probit (inverse-cumulative-normal)
transformation (Backus, 2009; Dosher, Sperling, & Wurst, 1986).
For each subject, z-scores at the two locations were differenced
etrically correct amplitude) binocular disparity and occlusion, and (b) ambiguous
inocular fixation marker. Cube edges were of 20.0 cm length, hence subtended
parallel plane. Width and breadth of cube edges was 0.3 cm. Width of the central
e comparison dot (shown to the left or right of fixation) had a speed of 15.7 cm s�1,
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to give ‘‘zDiff’’, a measure of the difference in bias at the two (oppo-
sitely trained) locations. Thus, zDiff is twice the average of the ac-
quired biases at the two locations (Fig. 2D and Fig. 4).

2.5. Counter-contingency training

During Session 2 (on Day 2, 8, 15 or 29), all subjects once again
viewed a 50:50 mixture of ambiguous and disambiguated cubes.
Disambiguated cubes now had the opposite location-rotation con-
tingency to that of Session 1. The percent of ambiguous cubes per-
ceived according to the Session 1 contingency was used to calculate
zDiff for Session 2 (see predictions, Fig. 2D). If no long-term learn-
ing occurred on Session 1, then subjects should perceive ambigu-
ous cubes in Session 2 according to the location-rotation
contingency of Session 2 disambiguated stimuli, resulting in a neg-
ative zDiff for Session 2 with equal magnitude to the positive zDiff
in Session 1. However, if Session 1 caused learning that persisted to
Session 2, subjects’ perception of ambiguous stimuli on Session 2
should reflect a residual bias in favor of the location-rotation con-
tingency experienced on Session 1, resulting in a less negative (or
perhaps even positive) zDiff on Session 2.

3. Results

Results are presented in Figs. 3–5. Subjects in all four groups
saw the same stimuli on Session 1 (with rotation direction being
counter-balanced across subjects within groups) and so, as
expected, there was no significant difference between groups in
Fig. 2. Predicted outcomes for ambiguous cubes in the first and second sessions,
plotted as fractions (A–C) or plotted as z-score differences (D). (A–C) The ordinate
plots the fraction of test trials on which the cube appeared to rotate in the same
direction as was trained at the top location in Session 1. Based on previous studies,
near maximal effects are expected in Session 1, as shown by ordinates of 1.0 and 0.0
when cubes are presented at the top (squares) and bottom (circles) locations,
respectively. Panel A shows the prediction if learning is retained from Session 1 and
training in Session 2 has no effect. Panel B shows three possible predictions if
Session 1 has a long-lasting effect, such that training in Session 2 is only partly
effective. Shown is the special case in which Sessions 1 and 2 perfectly cancel each
other. Panel C shows the prediction if Session 1 has no long-lasting effect, in which
case responses in Session 2 will not reflect any previous learning from Session 1. D.
Predictions for the zDiff summary statistic. The ordinate plots perceptual outcomes
as zDiff, which is the difference in z-score (z-transform of percent-seen-as-trained)
for the two oppositely trained locations in Session 1. Near-maximal z-scores would
be ±2, leading to an expected zDiff of 4 in Session 1. A zDiff of 0 indicates similar
bias at both locations and a negative zDiff indicates biases that are opposite to the
training in Session 1. The point with coordinates (2,4) therefore shows long-lasting
learning from Session 1 and no re-learning during Session 2 (same as Panel A). The
point at (2,0) shows unlearning of a long-lasting bias from Session 1 (same as B).
The point at (2,�4) shows no effect of Session 1 on the bias measured in Session 2,
as if Session 1 had not occurred (same as C).

Fig. 3. Individual subject data for the 32 subjects, plotted as fractions (as in Fig. 2A–
C). Each graph shows data for one of the eight subjects in one of the four groups. The
ordinate is the fraction of test trials that appeared to rotate in the same direction as
was trained at the top location on Session 1. Squares and circles plot data for test
stimuli presented at the top and bottom locations—above and below fixation—
respectively. Group 1–2–8 had sessions on Days 1, 2, and 8 of the experiment, and
so on.
recruitment of the location-contingent bias on Session 1 (1-way
ANOVA on zDiff: F(3,28) = 1.85, p = .16). Importantly, on the sec-
ond session of testing in Group 1–29, the bias was weaker than
would be expected if the location-rotation contingency was re-
cruited on Session 2 to the same extent as it was on Session 1 (Ses-
sion 1 zDiff vs. additive inverse of Session 2 zDiff, two-tailed paired
t-test: mean = 3.3, SE = 1.1, t(7) = 3.08, p = .02). The downward
trend of the data in Fig. 5 suggests that susceptibility to relearning
may increase over time, but this trend was not statistically
significant.

Individual differences are a highly salient feature of the data.
The counter-conditioning on Session 2 was highly effective for sev-
eral subjects in each group, yet it was completely ineffective for
other individuals, as shown by the horizontal line segment(s) at
the tops of the plots in Fig. 4. There was no statistically significant
difference across the four groups either in the bias on Session 2
(ANOVA on Session 2 zDiff: F(3,28) = .44, p = .73), or in the magni-
tude of difference between Session 1 and Session 2 bias (ANOVA on
Session 1 zDiff – Session 2 zDiff: F(3,28) = .45, p = .72). Thus, any
systematic effect of the length of delay between Session 1 and Ses-
sion 2 was small compared to the individual differences.

Additionally, the difference in perceptual outcome on the 8th
day between the 1–2–8 group, which had an intervening session



Fig. 4. Perceptual outcomes for the four groups of eight subjects, plotted as z-score differences (same as Fig. 2D).

Fig. 5. Interference from Session 1 on the bias measured in Session 2. The figure re-
plots the data from Fig. 4 as the zDiff from Session 1 minus the additive inverse of
zDiff from Session 2, for each of the four groups. Bars show SE across observers
within each group.
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of counter-conditioning, and the 1–8 group, which did not, was in
the expected direction (it was more negative for the 1–2–8 group)
but this difference was not statistically significant (two-sample t-
test: difference in means = �1.0, t(14) = 0.67, p = .52). The 95% con-
fidence interval for this difference was large, [�4.2,2.3], meaning
that we had little power to detect whether the additional session
on Day 2 for the 1–2–8 group caused reverse learning to be greater
on Day 8 than it would have been without Day 2. However, within
the 1–2–8 group itself, a within-subjects (paired) comparison is
possible. Additional (un)learning did occur from the 2nd day to
the 8th day (Session 2 vs. Session 3, mean = 1.8, SE = 0.8,
t(7) = 2.48, p = .04 two-tailed or .02 one-tailed). Furthermore, the
bias from Session 1 was still not completely reversed (Session 1
vs. the additive inverse of Session 3, mean = 3.0, SE = 1.3,
t(7) = 2.34, p < .05). Thus, additional counter-conditioning in Ses-
sion 3 caused additional change in bias in the expected direction,
but residual bias from Session 1 was still present. This cumulative
effect of reverse-contingency training has been seen previously in
shorter experiments that used similar stimuli (Backus, 2011, chap.
6).

The additional learning that occurred between Sessions 2 and 3
in the 1–2–8 group is important for another reason. Without this
group, a possible interpretation of zDiff values close to zero in
Session 2 would be that learning decayed after Session 1, with no
subsequent learning occurring in Session 2. That would still indi-
cate a long term effect of Session 1, but not a long term retention
of the bias from Session 1. However, since additional learning did
occur in Session 3 that interpretation is untenable.
4. Discussion

Training a 3D rotation-direction bias at a specific retinal loca-
tion prevented later counter-conditioning from being equally
effective, even after four weeks. Counter-conditioning at any time
during the four-week period had a short term effect within that
same session that partially overcame the originally trained bias,
but could not fully overcome it. In one group, counter-conditioning
was repeated six days later in a third session, and the reversed bias
became stronger, which showed that the second session also had a
long-lasting effect. Yet even then, the bias during this third session
was not fully reversed: it was not as strong as the originally trained
bias observed during the first session.
4.1. Interpretation of the learning

The results admit explanation at two levels of analysis. First,
what neural mechanism(s) were trained by the conditioning proce-
dures? Brain area V5/MT is a good candidate for the primary site of
these mechanisms (Harrison & Backus, 2010a) because many neu-
rons in that area are jointly tuned for retinal location, motion direc-
tion, and binocular disparity; in macaque monkeys,
microstimulating these neurons systematically biases behavioral
3D rotation judgments (Krug et al., 2013).

Second, does this instance of learning tell us anything important
about how the visual system learns to see? In other words, does
the learning reflect the operation of a functionally useful mecha-
nism, one that would normally act to improve perception (Hebb,
1949), and thus the organism’s fitness or ‘‘achievement’’ (Bruns-
wik, 1956)? While one instance of long term learning cannot de-
cide this question, the long-lasting nature of the learning is at
least consistent with learning how to disambiguate an otherwise
ambiguous visual stimulus so as to be prepared the next time it oc-
curs, in the service of fast and accurate perception (Harrison &
Backus, 2010b).

A separate question is whether the current study provides sup-
port for the utility of cue recruitment (Haijiang et al., 2006) as a the-
oretical construct. Previous work showed that that the learned bias
we have studied here depends on the stimulus’s location within
the retinocentric visual field, not its location in head-centric or
exocentric coordinates (Harrison & Backus, 2010a). Formally, reti-
nal location was a cue that our experiments successfully caused
to be recruited, but it seems a peculiar sort of cue in the larger con-
text of cue theory (von Helmholtz, 1910). Like retinal location,
canonical cues such as binocular disparity and retinal image size
vary depending on the situation of the observer’s sensory appara-
tus relative to the objects being perceived, and the observer can
change their values by moving. Most cues, however, exhibit cue
constancy: changes in the situation of the observer are corrected
for during perception, so they do not cause dramatic changes in
appearance. When the retinal location cue has been recruited,
however, moving the eyes so as to put the cube at the other trained
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retinal location causes the apparent rotation direction of the cube
to reverse.

Other visual cues besides retinal location can be recruited by
the visual system, for example: whether the object is moving up
or down (Haijiang et al., 2006); binocular vertical disparity within
the stimulus (Di Luca, Ernst, & Backus, 2010); the shape of the ob-
ject (Harrison & Backus, 2012); illumination color (Kerrigan &
Adams, 2013); and surface texture (Jain & Backus, 2013). Com-
pared to retinal location, these other cues match more closely what
perceptual scientists have in mind when they think of a cue, but it
is not yet known whether the recruitment of these cues can be
made to last, nor whether their recruitment generalizes to un-
trained retinal locations.
4.2. Comparison with other long-lasting perceptual effects

The McCollough effect is another learned contingent bias that
can affect appearance for weeks (Jones & Holding, 1975). In one
variant of this effect, the observer is exposed during the ‘‘adapta-
tion phase’’ to vertical orange and black stripes that alternate in
time with horizontal blue and black stripes. A test pattern consist-
ing of vertical white and black stripes then look blue, while a pat-
tern of horizontal white and black stripes looks orange
(McCollough, 1965). Like cue recruitment, the McCollough effect
can be interpreted as an instance of classical conditioning (Allan
& Siegel, 1993).

However, the McCollough effect has important differences with
the rotation-direction bias. The McCollough effect is a negative
contingent aftereffect, not a positive one, and functionally, it is
probably best understood as an internal recalibration that achieves
normalization across responses in a population of sensory neurons,
in order to eliminate bias, rather than the learning of a bias that re-
flects environmental statistics (as we suggest to be the case for the
rotation bias).

This distinction becomes clearer when one considers how the
biases are made visible. The McCollough effect is most visible
when the sensory data are well specified, and thus in need of cal-
ibration rather than disambiguation: the test stimulus in the
McCollough effect physically specifies a color (white) which is cor-
rected to appear orange or blue. In contrast, the rotation bias we
studied here was most visible when sensory data contained no
other cues to specify rotation direction. A newly recruited cue be-
comes most useful when the sense data do not contain other dis-
ambiguating cues. Thus, the McCollough effect and the learned
rotation bias are both long term contingent aftereffects, and both
presumably reflect the operation of mechanisms that normally
make perception more accurate—but for recalibration, or for dis-
ambiguation, respectively.

Tseng, Gobell, and Sperling (2004) also reported a long-lasting
learned perceptual bias. Attention to one of two colors, reinforced
using a search task, increased that color’s participation weight in a
seemingly unrelated dichotomous motion perception task. This
color-contingent motion bias was still present one month later.
The authors concluded that attention to the color gave a long-term
boost to its salience in an early visual representation, and that fea-
ture-tracking motion mechanisms, which operate on salience
maps, were affected in turn. This learning demonstrates the capac-
ity of the adult visual system for long-lasting change, but it is prob-
ably not related to the location-contingent bias for 3D rotation that
we have described here. One might speculate that leftward motion
shown in crossed disparity (say) on training trials causes leftward
motion to become more salient, and that this salience causes left-
ward motion to appear closer on test trials. At this point, however,
an appeal to learned salience is not obviously necessary or helpful
for explaining the learned rotation bias.
4.3. Individual differences in initial bias and susceptibility to
conditioning

Most of the learning in these experiments presumably oc-
curred during ambiguous test trials, as was the case in studies
of shorter duration (Harrison & Backus, 2010a,b; van Dam &
Ernst, 2010). This fact makes it impossible to measure the initial
bias at the two locations for each subject before the start of train-
ing, because the act of measuring the bias causes it to increase
(note that the counter-conditioning design of the current experi-
ment is robust to this effect). Thus, while we can be sure that the
training has a long-lasting effect, we cannot determine how much
of the observed inter-subject variability is due to inter-subject dif-
ferences in the strength of initial bias. Initial bias, if present, could
have been of two kinds: an overall bias affecting both locations,
that should not have affected our results, and a differential bias
between the two locations that agreed with Session 1 training
for some subjects and not for others, that could have affected
the results of individual subjects. Nevertheless, the fact that inter-
subject differences were so much larger in Session 2 than in
Session 1 suggests to us that individual differences in initial bias
were probably not a significant factor. More likely, some individ-
uals change their biases more readily than others. Visual atten-
tion affects the strength of the acquired bias (Backus & Fuller,
2010), so inter-subject differences in attention may also have
played a role.

Inter-subject differences in susceptibility to counter-condition-
ing could be measured by using several reversals of contingency,
not just the one reversal we used here. A short term experiment
with four subjects, in which contingency was reversed five times
in a single session, did show inter-subject differences in suscepti-
bility to counter-conditioning (Figure 6.6 in Backus, 2011, chap.
6). That study (with N = 1 subject) also showed a marked decrease
in susceptibility over the course of 8 sessions. Individual differ-
ences in the cumulative effect of sustained counter-conditioning
are also evident in single-session data (Figure 6.5 in Backus,
2011, chap. 6).

The optimal learning strategy is not in fact obvious for a percep-
tual system that is trained with cues that first have one meaning
and then have the opposite meaning (see Backus, 2011, chap. 6
for discussion). Should the system track the meaning of the cue
across the change, in order to track changes in the environment?
Or should it assume that the environment is stable, in which case
what is learned first can be assumed to be true in the future? The
persistence of Session 1 bias into Session 2 shows that observers
did not forget what they learned in Session 1; operationally their
perceptual systems acted as though what was learned first was
worth remembering.
5. Conclusion

Learning must persist to be useful. The location-specific bias for
3D rotation, established in less than 1 h, persists for at least
4 weeks. This fact suggests that the bias could reflect the operation
of perceptual learning mechanisms that normally act to improve
perception by making visual appearances more accurate, or more
efficiently constructed, or both, across weeks or longer.
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