
Scientia Iranica A (2012) 19 (6), 1445–1455

Sharif University of Technology

Scientia Iranica
Transactions A: Civil Engineering

www.sciencedirect.com

Wavelet neural network model for reservoir inflow prediction
U. Okkan ∗

Department of Civil Engineering, Balikesir University, Balikesir, Turkey

Received 10 February 2012; revised 4 July 2012; accepted 2 September 2012

KEYWORDS
Wavelet neural network
model;

Discrete wavelet transform;
Levenberg-Marquardt
algorithm;

Reservoir inflow prediction.

Abstract In this study, aWavelet Neural Network (WNN)model is proposed for monthly reservoir inflow
prediction by combining the Discrete Wavelet Transform (DWT) and Levenberg-Marquardt optimization
algorithm-based Feed Forward Neural Networks (FFNN). The study area covers the basin of Kemer Dam
which is located in the Aegean region of Turkey. Monthly meteorological data were decomposed into
wavelet sub-time series by DWT. Ineffective sub-time series have been eliminated by using all possible
regression method and evaluating the Mallows’ Cp coefficients to prevent collinearity. Then, effective
sub-time series components have been used as the new inputs of neural networks. DWT has been also
integrated with multiple linear regressions (WREG) within the study. The results of Wavelet Neural
Network (WNN)model andWREGhave been comparedwith conventional Feed ForwardNeural Networks
(FFNN) and multiple linear regression (REG) models. When the statistical-based criteria are examined, it
has been observed that the DWTmethod has increased the performances of feed forward neural networks
and regression methods. The results determined in the study indicate that theWNN is a successful tool to
model the monthly inflow series of dam and can give good prediction performances than other methods.

© 2012 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction

Analyzing hydrological data can give significant statistical
information for both past and future characteristics of a basin.
Especially, recording and modeling of reservoir inflow data
have highly considerable roles in reservoir operation studies
and water resources planning. In addition to the physical-
based models and conceptual models, a basin can also be
represented by black-box models which associate basin inputs
and desired outputs without detailed considerations on the
physical processes. In this context, conventional statistical
models such as linear-nonlinear regression and stochastic
models were commonly used.

Over the past years, artificial intelligencemethods have been
widely used as black-box models in predicting of hydrological
variables. Especially, Artificial NeuralNetwork (ANN),which is a
nonlinear computing approach inspired by the learning process
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of the brain, has been accepted as one of the effective tools for
modelling a complex hydrologic system [1–6].

Although ANN methods had been used extensively as
useful tools for prediction of hydrological variables, it has
also some problems to deal with non-stationary data [7,8].
Since the hydrological time series includes several frequency
components and have nonlinear relationships, hybrid model
approaches which include different data-preprocessing and
combine techniques have been used to raise the prediction
performance of neural networks.

Chaotic neural networks [9], Set Pair Analysis (SPA) and
principle component analysis-based (PCA) neural networks
[10–12], threshold neural networks [10], and cluster-based
hybrid neural networks [13] were successfully applied to
hydrological variables.

In the last years, wavelet transform, which is an alternative
data-preprocessing technique, showed excellent performance
in hydrological modeling due to its ability to analyze a signal
in both time and frequency. This approach overcomes the
basic drawbacks of conventional Fourier transform. Nourani
et al. (2009, 2011) showed that the wavelet transform provided
effective decompositions of time series so that decomposed
data increased the performance of hydrological prediction
model by capturing useful information on different resolution
levels. Hence a wavelet neural network model which uses
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Figure 1: FFNN structure.

multi-scale signals as input data can present more suitable
prediction performance rather than a single pattern input
[14,15]. There are some successful applications of wavelet
neural network models which are prepared by the combined
use of wavelet transform and neural networks [7,8,14,15].
The wavelet transform is also integrated with multiple linear
regression [16–18] and support vector machine approach [19].

The main purpose of the study presented is to examine
the applicability of a wavelet neural network model for the
prediction of the monthly reservoir inflow values of a study
region which is an important water resource for the Menderes
Basin/Turkey, and to compare its performance with single feed
forward neural networks, multiple linear regression (REG) and
the wavelet-MLR combined model (WREG)

Firstly, meteorological data (monthly areal precipitation and
monthly areal temperature data) have been decomposed into
wavelet sub-time series. Later, effective sub-time series have
been determined by using all possible regression method [20]
and the evaluation of Mallows’ Cp coefficients to prevent
collinearity. These new time series have constituted the inputs
of neural network and multiple linear regression models. Some
favorite performance evaluation measures are employed to
assess developed models.

2. Materials and methods

2.1. Feed forward neural networks

Depending on the techniques to train a Feed Forward
Neural Network (FFNN) model (Figure 1), different back
propagation algorithms were developed. In this study, the
Levenberg–Marquardt back propagation algorithm, which is
a simplified version of Newton method, has been used in
training of the FFNN. This algorithm is a second-order nonlinear
optimization technique that is usually faster and more reliable
than any other back propagation techniques [21,22].

The training process can be viewed as finding a set ofweights
that minimize the error (ep) for all samples in the training set
(T ). The performance function is a sum of squares of the errors
as follows [22]:

E(W ) =
1
2

P
p=1

(dp − yp)2 =
1
2

P
p=1

(ep)2, P = mT , (1)
where T is the total number of training samples, m is the
number of output layer neurons, W represents the vector
containing all the weights in the network, yp is the actual
network output, and dp is the desired output.

When training with the Levenberg–Marquardt algorithm,
the changing of weights∆W can be computed as follows [22]:

∆Wk = −[JTk Jk + µkI]−1JTk ek. (2)

Then, the update of the weights can be adjusted as follows:

Wk+1 = Wk +∆Wk, (3)

where J is the Jacobian matrix, I is the identify matrix, e is the
network error, µ is the Marquardt parameter which is to be
updated using the decay rate β depending on the outcome. In
particular, µ is multiplied by the decay rate β(0 < β < 1)
whenever E(W ) decreases, while µ is divided by β whenever
E(W ) increases in a new step [22].

2.2. Wavelet transform

2.2.1. Continuous wavelet transform
The wavelet transform, developed during the last years, is

an effective decomposition method. This method provides an
analyzing way of a signal in both time and frequency and
appears to be more successful than the conventional Fourier
transforms that do not provide time-frequency analysis for the
variables involving non-stationary signals [23].

The time-scale wavelet transform of a continuous time
signal, x(t), is defined as [8,24,25]:

W(s, τ ) = |s|−1/2


∞

−∞

ψ∗


t − τ

s


x(t) dt

τ ∈ R, s ∈ R, s ≠ 0, (4)

where ∗ corresponds to the complex conjugate and ψ (t) is
wavelet function or mother wavelet; s is the scale or frequency
factor, τ is the time factor, R is the domain of real number.

Eq. (4) describes that wavelet transform is the decomposi-
tion of x(t) under different resolution scale [8,24,25]. The origi-
nal series can be reconstructed using the inversion of transform.

In this study, the Haar mother wavelet (simple wavelet) has
been used because it is conceptually simple, fast and memory
efficient [25].

The Haar mother wavelet is defined as [25]:

ψ(t) =

1 0 ≤ t ≤ 1/2
−1 1/2 ≤ t ≤ 1
0 otherwise.

(5)

2.2.2. Discrete wavelet transform
For practical applications in hydrology, researchers have

access to a discrete time signal rather than to a continuous time
signal [26]. A discretization of Eq. (4) based on trapezoidal rule is
perhaps the simplest discretization of the Continuous Wavelet
Transform (CWT). This transform producesN2 coefficients from
a data set of length N; hence unnecessary information is
locked up within the coefficients, which may or may not be
a desirable property [24,26,27]. To overcome this difficulty,
Discrete Wavelet Transforms (DWT) which present power of
two logarithmic scaling of the translations can be used in
practical applications. Because it reduces the computational
complexity of the CWT and the redundancy of the CWT, there is
an advantage for preferring the DWT over the CWT [27].
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In this study, the Mallat algorithm was used for the DWT
of monthly time-series. According to the Mallat algorithm, the
discrete wavelet transform of discrete time series xt is defined
as [27]:

Wj, k = 2−j/2
N−1
t=0

ψ(2−jt − k)xt , (6)

where t is integer time steps, j and k are integers that control,
respectively, the scale and time; Wj,k is the wavelet coefficient
for the scale factor, s = 2j, and the time factor, τ = 2jk.

In DWT method, the time series (xi) passes through two
filters and are decomposed into wavelet sub-time series
components, which can be computed by using Eq. (6), without
losing the information about the instant of the element
occurrence. The DWT converts a signal into father and
mother wavelets. Father wavelets represent the high-scale,
low frequency components (approximation (A) components).
Mother wavelets are representations of the low-scale and high
frequency components (detail (D) components). Thus, DWT
allows one to study different investing behaviors in different
time scales independently [17,26].

2.3. Study area and data

To assess the usefulness of wavelet neural network model,
a similar study area and data which were considered by
Okkan and Dalkilic [28] have been used in this study.
This application area covers the drainage basin of Kemer
Dam, which is located in the Aegean region of Turkey
(Figure 2). The basin is fed by four rivers and the streamflow
values are observed by four streamflow gauging stations
(Calikoy/EIE-730, Yemisendere/EIE-731, Degirmenalani/ EIE-
732, and Goktepe/EIE-733) located at the upstream of the
dam (Figure 3). These data were collected from the records
of two institutes of Turkey: XXI. Regional Directorate of State
Hydraulic Works, and Operational Directorate of Kemer Dam
Power Plant which is a part of the Electrical Works Authority.
Thus, the collected reservoir inflow data were prepared for
the period between January 1980 and December 2005. In
addition to inflow data, the monthly data of precipitation
and temperature at Denizli and Mugla meteorological stations
were obtained from the State Meteorological Organization of
Turkey. Next, Thiessen weighted areal precipitation values
and arithmetical mean temperature (areal temperature) values
were prepared for monthly time scale, using records available
at both stations.

In modeling studies, the selection of appropriate input
variables plays an important role. In this study, modeling
strategy that predicts inflowdata from inputs based onmonthly
areal precipitation and areal temperature data. In addition to
the concurrent values of monthly areal precipitation data, areal
precipitation values at various lags have been also considered.
A statistical approach has been employed by Sudheer et al.
(2002) to determine the appropriate order of precipitation
lag. The approach is based on the heuristic that the potential
influencing variables corresponding to different time lags can
be identified through statistical analysis of the data series that
uses cross correlation between the variables [29]. According
to the cross correlation results, the Cross Correlation Function
(CCF) between the reservoir inflow and areal precipitation
values at various lags have showed significant correlation at
concurrent areal precipitation (Pt) and one month of areal
precipitation lag (Pt−1) on the inflow. Thus, three input data
Figure 2: Kemer Dam, the streamflow gauging stations and meteorological
stations within the study area.

(Pt , Pt−1 and Tt ), have been prepared for the same periods of
the monthly inflow records (Pt : monthly areal precipitation;
Pt−1: one-month-ahead areal precipitation; Tt : monthly areal
temperature).

2.4. Modeling strategy developed in the study

In the study, Discrete Wavelet Transform (DWT) has been
linked to feed forward neural network and multiple linear re-
gression models for monthly reservoir inflow prediction. First,
the input data (Pt , Pt−1, Tt) of training and testing periods have
been decomposed into a certain number of sub-time series
components by DWT. The selection of the optimal decomposi-
tion level is one of the keys to determine the performance of
the model in wavelet domain. Decomposition level is generally
based on signal characteristics and experiences to selection. For
example, Chou and Wang (2004) showed that using only one
decomposition level to model the streamflow time series does
not easily represent the process [30]. Kisi and Cimen (2011)
used three decomposition levels in their monthly streamflow
forecasting study [19].

After various trials for this study, the best results have been
obtained by three decomposition levels. Thus, meteorological
input data have been decomposed using the Haar wavelet
function and twelve sub-time series components (time series
of 2-month mode (D1), 4-month mode (D2), 8-month mode
(D3) and approximation mode (A3)) have been obtained for the
training and testing period. The three levels decomposition of
the Pt , Pt−1 and Tt signals that yield four sub-signals by theHaar
wavelet are shown in Figure 3, Figure 4 and Figure 5.

After the decomposition process, effective sub-time series
components should be determined since some correlated
sub-time series components may reduce the generalization
capabilities of the models. In this study, this was carried out
using Mallows’ Cp based on all possible regression method as
this is an effective way to determine the subset of variables
in cases where there are a large number of potential predictor
variables [20].

Mallows’ Cp is a measure of the error in the best subset
model, relative to the error incorporating all variables. Ade-
quate models are those for which Cp is roughly equal to the
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Figure 3: Original time series, 2-month mode of time series (D1), 4-month mode of time series (D2), 8-month mode of time series (D3) and approximation mode of
time series (A3) of monthly areal precipitation for training period.
number of variables in the model. The Cp values can be com-
puted as [20]:

Cp = (N − k)
MSEi
MSEF

− (N − 2i − 1), (7)

where N is the number of data, MSEi is the mean of residual
squares in the model with ivariable, MSEF is the mean of
residual squares in the full model with k variable.

These new time series have constituted the inputs of
models. In some studies, new series which are obtained by
summing the effective sub-time serieswere used as input to the
models [18,19]. Unlike these studies, components of sub-time
series determined with all the possible regressionmethod have
been used as individual separate model inputs in this study.
The modeling strategy developed in this study is summarized
in Figure 6.

2.5. Data normalization and evaluation of model performances

The input and output data are normalized to prevent the
model from being dominated by the variableswith large values,
as is commonly used in artificial intelligence models. In this
study, the normalization processes of all data have been carried
out using Eq. (8).

zi =
xi − xmin

xmax − xmin
. (8)

Some favorite measures are suggested for hydrological time
series prediction accuracy evaluation according to literature
related to the training and testing ofmodels. In this study, three
popular performance measures have been considered.

All prepared models with optimum structures of them have
provided the best training result in terms of theminimumMean
Squared Error (MSE) or the minimum Root Mean Squared Error
(RMSE), and the maximum determination coefficient (R2) have
been also employed for the testing period (Eqs. (9) and (10)).

MSE =
1
N

N
t=1

(Qg,t − Qm,t)
2, RMSE =

√
MSE, (9)

R2
=


N

t=1
(Qg,t − Qg)(Qm,t − Qm)

N
t=1
(Qg,t − Qg)2


N

t=1
(Qm,t − Qm)2


2

, (10)

whereN is the number of training or testing samples,Qm,t is the
model output, Qg,t is the observed runoff data in the tth time
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Figure 4: Original time series, 2-month mode of time series (D1), 4-month mode of time series (D2), 8-month mode of time series (D3) and approximation mode of
time series (A3) of one-month-ahead areal precipitation for training period.
period, Qg and Qm are themean over the observed andmodeled
series, respectively.

In addition to these favorite statistical measures, homo-
geneities of the model predictions have been also examined
with Mann–Whitney U (M–W) test to present more evidence
on application and success of the models. This non-parametric
statistical test is used to analyze two comparing groups to iden-
tify whether they have the same distribution or not [31]. M–W
is based on bringing together and arranging of two groups
(e.g., predicted and observed values). When the lining up of
these group members is done, for each member, a line number
is assigned. Themembership status of thesemembers (towhich
group they belong) is ignored. Then, all these line numbers are
summed up. The sum of the members of the first group is R1
and sum of the members of the second group is R2. Then, the U
values can be calculated as:

Ui = N1N2 +
Ni(Ni + 1)

2
− Ri, (i = 1, 2). (11)

After the calculation for i = 1 and i = 2,U1 andU2 are obtained,
and the bigger is chosen (U∗).

z =
U∗

−
N1N2
2

N1N2(N1+N2+1)
12

, (12)
where N1 and N2 are the numbers of data for the groups
compared.

The z value is compared with 0.05 significance level (zcr =

1.96). For these values z < 1.96, it means that there is no
significant difference between the measured data and model
predictions. The asymptotic significance of z test statistics has
been also used in this study.

3. Results

In the study, a MATLAB code which involves Mallat’s DWT
algorithm has been used. Levenberg–Marquardt algorithm-
based FFNNmodel has been also prepared by aMATLAB code. To
evaluate the generalization capability of allmodels, the data has
been divided into two subsets; a training dataset to construct
the models, and a testing dataset to estimate the performances
of models.

Researchers have used different data division between test-
ing and training datasets and it generally varies with problem
types. There is no certain rule for data division between training
and testing. In this study, adopted data division between train-
ing and testing is determined as 50% (i.e. 50% of the available
data has been used for training). This data division has given the
best results for the different performance measures (e.g., MSE,
RMSE, R2, the z values of M–W test).



1450 U. Okkan / Scientia Iranica, Transactions A: Civil Engineering 19 (2012) 1445–1455
Figure 5: Original time series, 2-month mode of time series (D1), 4-month mode of time series (D2), 8-month mode of time series (D3) and approximation mode of
time series (A3) of monthly areal temperature for training period.
Figure 6: Structure of wavelet neural network model.
Thus, 26 years (January 1980–December 2005) input–output
data have been divided into training and testing periods by
proportions of 1/2 (January 1980–December 1992) and 1/2
(January 1993–December 2005), respectively. According to
modeling strategy, input data of training and testing periods
have been decomposed into a certain number of sub-time series
components by DWT firstly. Afterward, the effective variables
have been selected by the evaluation ofMallows Cp coefficients.
To assess the strength and direction of the relations between
twelve sub-time series components which were derived
from the meteorological data, different linear regression
analysis combinations in training period have been obtained
using the ‘‘best subsets regression’’ tool in Minitab software.
Although all possible regression combinations are obtained
by this tool, only the best combinations are presented in
Table 1.

Performances of the model with the optimum combination
of the input variables (seen as bold characters in Table 1) are
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Table 1: Summary of all possible regression analyses.

Input
numbers

R2

(%)
Adj.
R2 (%)

MSE
(m6/s2)

Cp D1_Pt D2_Pt D3_Pt A3_Pt D1_Pt−1 D2_Pt−1 D3_Pt−1 A3_Pt−1 D1_Tt D2_Tt D3_Tt A3_Tt

1 28.5 28 412.3 528.1 •

1 22.7 22.2 445.6 583.1 •

1 17.5 17 475.7 632.8 •

2 46 45.3 311.4 363.5 • •

2 44.9 44.2 318.0 374.3 • •

2 44.6 43.8 319.9 377.4 • •

3 62.4 61.7 217.1 209.6 • • •

3 60.9 60.2 225.5 223.5 • • •

3 59.2 58.4 235.5 240.1 • • •

4 75.6 74.9 141.2 86.3 • • • •

4 74.1 73.4 149.6 100.2 • • • •

4 71.2 70.5 166.3 127.8 • • • •

5 77.5 76.7 130.2 70.1 • • • • •

5 76.9 76.1 133.7 75.8 • • • • •

5 76.9 76.1 133.8 76 • • • • •

6 80.5 79.8 112.7 43.1 • • • • • •

6 78.8 77.9 122.8 59.9 • • • • • •

6 78.3 77.4 125.8 64.8 • • • • • •

7 81.8 81 105.3 32.9 • • • • • • •

7 81.3 80.4 108.2 37.7 • • • • • • •

7 81.1 80.2 109.4 39.8 • • • • • • •

8 82.6 81.7 100.8 27.5 • • • • • • • •

8 82.5 81.6 101.3 28.3 • • • • • • • •

8 82.4 81.4 102.1 29.6 • • • • • • • •

9 83.6 82.6 95.3 20.4 • • • • • • • • •

9 83.3 82.3 96.8 22.9 • • • • • • • • •

9 83.2 82.1 97.6 24.2 • • • • • • • • •

10 84.3 83.2 91.2 15.7 • • • • • • • • • •

10 84.1 83 92.0 17 • • • • • • • • • •

10 83.9 82.7 93.6 19.6 • • • • • • • • • •

11 84.8 83.7 88.0 12.4 • • • • • • • • • • •

11 84.3 83.1 91.2 17.6 • • • • • • • • • • •

11 84.3 83.1 91.2 17.6 • • • • • • • • • • •

12 85 83.7 87.2 13 • • • • • • • • • • • •

(Pt : monthly areal precipitation; Pt−1: one-month-ahead areal precipitation; Tt : monthly areal temperature).
nearly the same as that of the full linear model with twelve
variables (for k = 12); that is, the explained variance of the
monthly reservoir inflow values, which have the minimum Cp
values, are nearly equal to that explained by the full linear
model. According to these results, 2-monthmode of time series
of monthly temperature (D1_Tt) has been eliminated.

Before presenting these determined effective sub-time
series as input data to FFNN, all data have been normalized
using Eq. (8) to prevent themodel from being dominated by the
variables with the extreme values.

In the Wavelet Neural Network model (WNN) and single
FFNN applications, the optimal number of neuron in the hidden
layer has been determined using a trial and error approach by
varying the number of neurons from 2 to 20. Two neurons in
the hidden layer of FFNN and six neurons in the hidden layer of
WNN have given the best results.

In this study, three widely used transfer functions, namely
tangent sigmoid, linear, and log-sigmoid are evaluated in FFNN
and WNN structure trials. The best results have been achieved
by log-sigmoid function for each layer. The training epochs
of FFNN and WNN have been set to 25 and 15, respectively.
The initial values of µ and β are selected as 10−3 and 0.1,
respectively. The results of FFNN and WNN models have been
compared with multiple linear regressions (REG) and DWT-
based multiple linear regression (WREG) models.

The best fitted regression coefficients of REG and WREG
models have provided the best results in terms of theminimum
mean squared error for training period (January 1980–Decem-
ber 1992). These regression equations of REG andWREGmodels
Table 2: The performances ofmodel applications in the training and testing
periods.

Models R2 MSE (m6/s2) RMSE (m3/s)
Training Testing Training Testing Training Testing

REG 0.745 0.637 147.954 177.579 12.164 13.326
WREG 0.838 0.704 87.999 105.273 9.899 10.260
FFNN 0.841 0.68 92.761 94.98 9.631 9.746
WNN 0.948 0.791 30.207 60.327 5.496 7.767

are presented as:

Qt = −17.18 + 0.25Pt + 0.13Pt−1 + 0.70Tt , (13)

Qt = −53.18 + 0.25 D1_P t +0.19 D2_P t +0.17 D3_P t
+ 0.32 A3_P t + · · · + 0.04 D1_P t−1 +0.13 D2_P t−1
+ 0.27 D3_P t−1 +0.30 A3_P t−1 + · · ·

+ 0.96 D2_T t +0.69 D3_T t +1.96 A3_T t , (14)

Table 2 presents the results of the modeling studies, in terms
of the performance measures. It can be seen from Table 2 that
WNN have good performances during both training and test-
ing, and they outperform FFNN,WREG and REGmodels in terms
of the performance measures. In the training period, the WNN
model with the Haar wavelet obtained the best MSE, RMSE and
R2 statistics of 30.207 m6/s2, 5.496 m3/s, and 0.948, respec-
tively. Investigating the results during testing period, it can be
seen that the WNN model outperforms FFNN, WREG and REG
models.

The scatter plot and hydrograph of all the models developed
in this study during the testing period are shown in Figures 7
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Figure 7: The scatter plots (a) and hydrographs (b) of REG and WREG models for the testing period.
and 8. When the testing period scatter graphs of the models are
examined, it is observed that the standard deviations around
the y = x line are far less in the WNN models. In other words,
when y = ax + b fitted lines in graph are examined, it is
observed that, inWNNmodel, ‘‘a’’ gets closer to the value 1, and
‘‘b’’ gets closer to the value 0, compared to the FFNN model. In
addition to these, WNNmodel has proved itself to be precise in
predicting especially the peak and low reservoir inflow values.
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Figure 8: The scatter plots (a) and hydrographs (b) of FFNN and WNNmodels for the testing period.
Moreover, WREGmodel estimates monthly reservoir inflow
values more accurate than REG model but the major weakness
of these two models is related to the prediction of some
small negative values for the monthly reservoir inflow which
are physically meaningless. The poor operation of the least
square method in calibration of the coefficients of regression
models may lead to this drawback. However this drawback is
resolved in the neural network approach which is artificially
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Table 3: M–W statistics of all models for training and testing periods.

M–W test statistics REG WREG FFNN WNN
Training Testing Training Testing Training Testing Training Testing

Mann–Whitney U 10906 8380 11895 9852 11857 11294 12046 11514
z 1.584 4.754 0.343 2.907 0.390 1.097 0.153 0.821
Asymptotic. 0.000 0.004 0.273 0.412
Sig. (two-tailed) 0.113 0.732 0.696 0.878
trained by the observed values in a non-linear framework [32].
The general advantages of the neural networks over linear
regression analysis were presented by Nourani and Fard [32].

When M–W test statistics were examined, it was shown
that both FFNN and WNN predictions have homogeneities
for training and testing set. When z statistics and asymptotic
significance values are taken as a basis, it can be seen that the
WNN results are better than the results of the other models
(Table 3).

4. Summary and conclusion

The study presented the application of WNN and WREG
models compared with FFNN and REG models used undecom-
posed data, for prediction of monthly reservoir inflow of Kemer
Dam, and the following evaluations can be made.

• In this study, three decomposition levels have been con-
sidered for each meteorological variable (Pt , Pt−1, Tt), and
twelve sub-time series components have been obtained for
the training and testing periods. In the study presented,
the Haar mother wavelet (simple wavelet) has been used
with three decomposition levels. For the future studies,
Daubechies’s wavelets and some irregular wavelets such as
Bior1.1, Rboi1.1, Coif1, Sym3, and Meyer wavelets may be
used in modeling applications.

• The results of all possible regression analyses showed
that highly correlated sub-time series components may
reduce the generalization capability of a model. Therefore,
the ineffective sub-time series components have been
eliminated by all possible regressionmethod. Thus, effective
sub-time series components that represented the inputs of
the neural networks and multiple regression models are
treated so as to reduce collinearity as much as possible. The
effective decomposed series can also be selected by other
statistical approaches (e.g., stepwise regression). However,
Mallows’ Cpbased on all possible regression analysis is quite
an effective way to determine the subset of decomposed
series in cases where there are a large number of potential
predictor variables.

• The results determined in the study indicate that the DWT-
based methods are successful tools to predict the monthly
inflow series of Kemer Dam and can give better predic-
tion performances than conventional models. Furthermore,
modeling using wavelet transform is an effective way when
it is impossible to use physical-based and conceptual mod-
els.

• When the performances of the training and testing periods
are compared, it is observed that theWNNmodel has better
results in terms of R2, MSE, RMSE and M–W performances.
Thus, it is proved with this study that wavelet neural
network approach is one of the successful hybrid modeling
approacheswhich are capable of reservoir inflow prediction.
• Although FFNN and WNN models have abilities to model
complex and nonlinear relations, the structures of themmay
be hard to determine and they can be determined using
trial-and-error approaches. Therefore, WREGmodels, which
may be much easier to interpret, are used as an alternative
way to classical neural network approaches for the monthly
reservoir inflow prediction studies.

• The DWT may be used for the construction of the other ma-
chine learning models (e.g., support vector machines, least
squares support vectormachines, relevance vectormachines
and multivariate adaptive regression spline approaches) for
the future studies.

• The combined use of wavelet transform and a neural
network model is able to simulate nonlinear relations in
this arid region which has typical Mediterranean climate
characteristics. For the future studies, the proposed model
structure may be used to predict reservoir inflow values of
other dam basinswhich have different climatologic regimes.
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