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INTRODUCTION 

The subject of this paper originates in the “rings of operators,” “continuous 

geometries,” and “regular rings” of von Neumann. Continuous geometries 
were invented by von Neumann to explain (and abstract) the projection 
lattices of certain rings of operators, and regular rings were invented to 

explain (and coordinatize) certain continuous geometries; thus, the place to 
begin is with rings of operators (or von Neumann algebras, as they are now 
called). 

The classical facts that are pertinent here are that (1) the projection lattice 
of a finite von Neumann algebra is a continuous geometry, (2) nearly every 
continuous geometry (and every operatorially defined one) may be realized 
as the lattice of principal right ideals of a suitable regular ring, and (3) a 
finite von Neumann algebra can be embedded as a subring of the regular 
ring associated with its projection geometry. (For literature citations, see the 
introduction of [ 11.) 

These themes were focused in work of Kaplansky, (a) in his theory of 
A W*-algebras [6-81, which abstracted the algebraic features of von Neumann 
algebras having to do with their projection lattices, and (b) in his proof that 
certain lattices are automatically continuous geometries [9], in the course of 
which the theory of complete *-regular rings was developed as a basic tool. 
The same style of algebra-an idempotent- and annihilator-oriented algebra 
in rings with involution-underlies (a) and a substantial part of(b). The two 
enterprises were unified by Kaplansky in his theory of Baer *-rings; in this 
setting, the A W*-algebras are the Baer *- rings that happen to be C*-algebras, 
and the complete *-regular rings are the Baer *-rings that happen to be 
regular. Baer *-rings (and Baer rings, their noninvolutive generalizations) 
were developed in mimeographed lecture notes in 1955 [lo]. 

Invented to explain operator algebras, AW*-algebras have in fact been 
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36 BERRERIAN 

cultivated mainly for their own sake; the history of their literature suggests 
that operator-theorists found them too algebraic, and algebraists, too 
functional-analytic. Smaller yet is the literature of Baer *-rings, which are 
algebraically appealing enough but may be handicapped by their early 
association with F-algebras. At any rate, the publication of the elegantly 
refurbished second edition of Kaplansky’s notes [ 1 I] completed the evolution 
of the subject into a chapter in pure ring theory. This left behind a few 
orphans in the literature of AW*-algebras; in part, the aim of this paper is to 
find a new home for one of them, the theory of the regular ring [I]. 

More precisely, we show that a finite Raer “-ring A, satisfying suitable 
axioms, may be embedded in a regular Baer * -ring C; the class of rings iz for 
which the construction is successful may be described roughly as the finite 
Baer * -rings without “purely real” part [cf. 11, p. 130, Theorem A]. The 
regular ring C has the same projection lattice as A (hence is the regular ring 
whose existence is guaranteed by the theory of continuous geometries), 
and it inherits the properties hypothesized for rl (with one striking, and 
necessary, exception-boundedness). A consequence (though not necessarily 
an advantage) is that the theory of these finite Baer *-rings is freed from the 
theory of continuous geometries. As an application, we advance (but do not 
completely solve) the problem of n x 12 matrices over 13. The construction of 
C is exactly the same as for the case of finite d W*-algebras [I], but the 
development of its properties has to be rearranged completely and the use of 
“spectral theory” attenuated and delayed as much as possible. The outline of 

the paper is as follows: 

( I ) Preliminaries 

(2) Construction of C 

(3) C is a finite Baer *-ring with generalized comparability, satisfying 
the parallelogram law 

(4) C has no new partial isometries 

(5) Positivity in C 

(6) Cayle); transform 

(7) Regularity of C 

(8) Spectral theory in C 

(9) C has no new bounded elements 

(10) n x n matrices 

(1 I) Problems 

I acknowledge with gratitude the support of the University of Texas at 
Austin, and Indiana University at Bloomington, for making possible the 
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research leave at Indiana University during which this work was done. 
This paper is dedicated to the memory of David Topping. 

1. PRELIMINARIES 

Our principal references are [I] and [I 11. We review here some of the basic 
definitions. In a ring A with involution (briefly, a *-ring), a projection is a 
self-adjoint idempotent (e* = e = e2). Projections e, f  are called equivalent 
(in [I l] this is called “*-equivalence”), written e N f, if there exists w E A 
with w*w = e, ww* = f; w is called a partial isometry, with initial projection 

e and final projection f. For projections e, f, the relation e = ef is denoted 
e <f and is a partial ordering; e 5 f means that e N e’ for some e’ <f. 

An element x E A is normal if x*x = xx *. In a *-ring with unity, an element u 

is an isometry if u*u = 1, and unitary if it is an invertible isometry 

( uu* = u*u = 1); A is calledfinite if every isometry is unitary (equivalently, 
e N 1 implies e = 1). 

A Baer *-ring is a *-ring A such that, for every subset S, the right- 

annihilator of S is the principal right ideal generated by a projection, that is, 
R(S) = gA for a suitable projection g. A Rickart *-ring [13] is a *-ring in 
which this is assumed only for singletons S = {x}. A Rickart *-ring A has a 

unity element (take S = (0)) hence for each x one has R({x}) = (1 - e)A 
for a unique projection e; e is characterized by the properties (1) xe = x, and 
(2) xy = 0 implies ey = 0; it is called the right projection of x, written 
e = RF’(x); similarly, f = LP(x) = RP(x*) is the unique projection with 
A(1 -f) = L((x}) (the left annihilator of x). I f  w is a partial isometry in 
a Rickart *-ring, then w*w = RI’(w), ww* = LP(w). The projections in 
a Rickart *-ring form a lattice, with 

euf =f + We(l -f)l, enf =e-M[e(l -f)] 

[6, Lemma 5.3; 131. The Baer *-rings are the Rickart *-rings with complete 
projection lattices [13, Lemma 6.11. A Rickart *-ring is said to satisfy the 
parallelogram law if 

eUf-f-e-enf (P) 

for every pair of projections e, f. 
We write 2 for the center of a *-ring A, and call its elements central. 

Projections e, f are said to be generalized comparable (GC) if there exists a 
central projection h such that 

he 5 hf, (1 - h)f 5 (1 - h)e; 

A is said to have GC if every pair of projections is GC. 
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I f  A is a Baer *-ring, its central projections form a complete Boolean 
algebra [ 1 I, p. 30, C’orollar);]. \Ve write .Y” for the Stone representation space 
of this Boolean algebra, and we identify a central projection h with the charac- 
teristic function of the corresponding clopen subset of X. We write C(X) for 
the continuous complex-valued functions on .F (but actually make use onl!- 
of continuous functions with real values between 0 and 1). 

For the rest of the paper, .-1 denotes a finite Baer +-ring. 

~‘ROPOSITION 1.1. r#’ .-1 Zs a finite Baev *-rbzq such that LP(.v) N RP(s) 
,for all x E A, then (1) .-I satisfies the parallelogram law (P), (2) -4 has GC‘, 
(3) .-I has a unique $nite dimension function II, und I) is rompletely ada?tiur, 
(4) D(e U f) ~. D(e nf) D(e) : D(f),foy allprojections e, f,  and (5)y.v I 
implies xy ~~ 1. 

Proof. (1) Apply the hypothesis on .A to .T 41 -.fb 

(2) Note first that if e, . f  are projections with eAf :/L 0, then there 
exist nonzero subprojections e, , .f,, such that e,, -.f,, (if exf y’ 0, let 
e, mm-- LP(exf) and f,) RP(exf)). 5 1 p ,‘u 3 ox now that e, f  are arbitrary pro- 
jections and set e’ LP(ef), ,f’ RP(ef), e” = e e’, fn .f  -,f’; then 
e ~ e’ 1 e”, f  ~1 f’ -r j” with e’ - f’ and e”f == ef” -= 0. Since e”f’ - 0, 
it follows from the above remark that e”, f  U are GC’ [ 1 I, Theorem 351, hence 
so are e, f.  

(3) 4 finite dimension function for 9 is a function D defined on the 
projection lattice of a1, with values in C(.‘R’), such that (i) e -.f implies 
D(e) = D(f), (ii) D(e) .,-: 0, (iii) D(lz) =m= h when h is central, and (iv) 
D(e T f) 7 D(e) + D(j) when e, f  are orthogonal. It can be shown that 
every finite Baer “-ring with GC possesses a unique finite dimension function 
D, and that D is completely additive: if (e,),,, is an orthogonal farnil>- of projec- 
tions with e :~= sup eL , then D(e) xLEI D(e,,) (the supremum of the finite 
sums, calculated in the boundedlv complete lattice of real-valued continuous 
functions on the Stone space I.).‘{Alternative paths to D: ‘Ihe parallelogram 
law can be used to prove that the projection lattice of d is a continuous 
geometry [ 11, Theorem 691. See also [ 121.1 

(4) Immediate from the parallelogram law. 

(5j I f  yx = 1 then RP(m) mu= I, therefore LP(x) N RP(s) = I; 1’4 
finiteness, LP(r) :. I Then (1 --- xy)x = .t ~ x(yx) 7~ x - s ~~ 0, and 
1 ~ xy ~~ 0 results fromLP(.x) ~~ I. 1 

The notation e,, t means that P,, is an increasing sequence of projections; 
if, in addition, e = sup e,, , we write e,, T e, and it follows from complete 
additivity that sup D(e,,) -= D(e), briefly D(e,L) t D(e). A kev application: 

If  erL t 1 , JL - en for all n, and fn t, thcnf, t 1. 
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2. CONSTRUCTION OF C 

We assume in this section that A is any finite Baer *-ring such that 

LP(x) N &P(x) for all x E A. 
The construction of C is identical with that in [I], so we suppress nearly all 

of the details; for convenient reference, we repeat here the key definitions. 
The motivation behind the definitions, and the peculiar terminology, comes 
from the theory of von Neumann algebras; we refer the reader to [I] for the 
rationale. 

DEFINITION 2.1. A strongly dense domain (SDD) in A is a sequence of 
projections (e,) such that e, t 1. 

LEMMA 2.2. I f  (en) and (fn) are SDD, then (e, n fn) is an SDD. 

LEMMA 2.3. Let (e,) be an SDD and let x E A. If  e,xe, = 0 for all n, then 
x = 0. If e,xe, is self-adjoint for all n, then x is self-adjoint. 

For the proofs, see [ 1, Lemmas 1.1, 1.2 and Corollary 1. I]. 

DEFINITION 2.4. An operator with closure (OWC) is a pair of sequences 

6% 3 e,) with x, E A and (e,) an SDD, such that m < n implies x,e, = x,e,,, 
and x,*e, = x,*e, . I f  x, = x and e, = 1 for all n, we write simply (x, 1). 

LEMMA 2.5. Tf (x, , e,) and (yn, fn) are OWC, then so are (x,*, e,) and 
(x, + yn , e, n fJ If, in addition, A is a *-algebra over an involutive field F, 
then (hx, , e,) is an OWCfor every li E F. 

DEFINITION 2.6. If  x E A and e is a projection in A, we write x-l(e) for 
the largest projection g such that (1 - e)xg = 0; that is, 

x-l(e) = 1 - RP[(l - e)x]. 

LEMMA 2.7. If x E A and e is any projection, then e 5 x-l(e). 

For the proof, see [ 1, Lemma 1.31. 

LEMMA 2.8. Suppose (xJ is a sequence in A and (e,) is an SDD such that 
xne, = x,e, whenever m < n. If (fn) is any SDD and if 

then (g,) is an SDD. 

g, = en n x;‘(fJ, 
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Proof. Write h,, ~- ~;‘(f,,); thus g, -- e, n h, and k, is the largest 
projection such that 

(1 - f&x,Jz,, = 0. (*I 

We first show that g, t. I f  m < n then z,,g,,, -.:: zTLenlg,,r = Xn,emgr,, : ,z,,,g,,, 
x,h,,gn, , therefore 

by (*); then g,, :; h,, by the maximality of h,, , and this, together with 
__- _- 

g, -:- e,,, -+ e,, , yieldsg,,, “:e,r\h, -g,, . 
Since D(h,,) 3 O(f?J by Lemma 2.7, the relation 1 -g,, ~~~ (1 - e,,) u (I - Jz,) 

yields, by (4) of Proposition I. I, 

D( 1 - gn) ;; D( 1 - e,) + U( I - h,) + D( I - e,) + D( 1 - fn), 

therefore, ZI( 1 ~ g,!) 1 0, g,, T I. 1 

LEMMA 2.9. [f(xn , e,,) and ( yri , fn) are OWC, and if 

4 = u-n n Y711(%)l n [en f-I (?L*)-l (f”A 

then (xnvn , k,) is an owe. 

Proof. This follows routinely from Lemma 2.8 and Definition 2.6. 1 

DEFINITIOK 2.10. Two OWC (&zn , e,), (yn , fn) are said to be equivalent, 

written (x, , e,) = (yn ,fJ, if th ere exists an SDD (8,) such that xng, = yng, 
and x,*g, == yn*gn for all n. We then say that the equivalence is implemented 
via the SDD (gll). 

The relation = defined above is an equivalence relation in the set of all 
OWC, by a routine verification (transitivity depends on Lemma 2.2). The 
following elementary lemma is useful in the manipulation of representatives 
of equivalence classes: 

LEMMA 2.1 I. (i) rf (x, , e,) is an OWC and (g,) is any SDD, then 

(xn ? e, n gn) is also an OWC and (x~ , e,) G (x, , e, n g,). 

(ii) I f  (.G , e,,) -:- (yn , fn) via alz SDD (g,), then, setting h, == 
e, n fn n g, , it follows that (x~ , h,), (yll , h,) are OWC and (x, , h,) ~7 ( yF1 , h,) 
via (h,). 

DEFINITION 2.12. LVe write [xrl , e,] for the equivalence class of an OWC 
with respect to the equivalence relation 7 defined above. The set of all 
equivalence classes is denoted C, and its elements are called closed operators 
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(CO); b&L 3 e,] is the CO determined by the OWC (x, , e,). We denote the 
elements of C by boldface letters x, y, z,... . I f  x E A we write X = [x, l] for 
the CO determined by (x, I), and we write A = {x: x E A} for the image of A 

in C under the injective (Lemma 2.3) mapping x F+ 2. 
Lemmas 2.5 and 2.9 suggest algebraic operations for the OWC: 

(x, , en) + (yn ,fJ = (x, + yn , en nf,), (x,, en)* = (x,*, 4, 

6% 7 edy, ,fn) = km , My 

and, when A is a *-algebra over an involutive field F, h(xn , e,) = (Xx, , e,). 
Using Lemma 2.11, it is easy to check that these operations induce well- 

defined operations in C: if x = [x,, e,] and y  = [yn,fn], one defines x + y  = 

[x, + yn, e, nfJ, x* = [x,*, e,], xy = [xnyn, k,], and, when relevant, 
Ax = [Ax, , en]. Also, repeated use of Lemma 2.11 yields the algebraic 
properties of C asserted in the following theorem: 

THEOREM 2.13. Let A be a finite Baer *-ring such that LP(x) N RP(x) 
for allxEA. 

Dejine C, and the operations on C, as indicated above. Then (1) C is a *-ring 
with unity i (and if A is a *-algebra over an involutive$eldF, then so is C), and 
(2) the mapping x i--t X(X E A) is a *-isomorphism of A onto a *-subring 2 of C. 

We write 1 for the unity element of C, that is, we identify 1 with i. But in 
general we refrain from identifying x with X; there are conceptual advantages 
to maintaining the distinction between A and A until the properties of C 
have been fully developed. 

Additional properties of C that require no further hypotheses on A are 
developed in the next section. 

3. C Is A FINITE BAER *-RING WITH GENERALIZED COMPARABILITY, 

SATISFYING THE PARALLELOGRAM LAW 

As in the preceding section, A is a finite Baer *-ring such that 

LW N RP(x) for all x E A, and C is the ring constructed there. It is 
remarkable that the properties promised in the section heading are attainable 
without further hypotheses on A; this is a vast improvement over the 
techniques of [I]. 

LEMMA 3.1. If x EC, x = [x, , e,], and if (g,), (hJ are SDD such that 
h,x,g, = 0 for all n, then x = 0. 

Proof. Also g,x,*h, = 0. Set 

k = g, n [en n x~l(Ml * h, n [en A (G*)-~ ( cJ1; 
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(k,) is an SDD (Lemmas 2.8 and 2.2), and it is routine to check that it 
implements (x,, , e,) mmm (0, I). 1 

PROPOSITION 3.2. If x = [x,) , err], y =:- [v,! ,fr,], and ij (g,,) is ax SDD 
such that 

%Y,! = Yn gn ,for all n, 

then x y. In fact, it sufices to assume that h,,x,,gn = h,,-y,2gTl for a pair of 

SDD (gn), (hn). 

Proof. For all n, h,,(q, ~ yn)gr, ~~ 0, thus x - y  0 by the Lemma. 
{The message of the first assertion of the Proposition: in testing for 

( mn 3 e,) z: (yn ,fi,), it is enough to look after the x,, and yn; their adjoints 
take care of themselves. However, the adjoint symmetry in the definition of 
OWC is still needed for setting up the involution in C.) i 

LEMMA 3.3. If (x,~) is a seyuence in iz and (e,) is a SDD such that 

w,,, = x,,,e,,, whenever m < n, und iffn := LP(.v,e,,), then f,, 1‘. 

Pyoof. I f  n > m thenf,(s,,,e,,J ..fir.*,,e,,, = (f,,x,,e,)e,,, (,v,,e,,)e,,, == xr,,e,,, , 
therefore fi, > f7,, . 1 

THEOREM 3.4. C is.finite. 

Proof. Suppose x*x = 1. Sav x -= [x,~ , e,]; by Lemma 2.11, we can 
suppose that x*x = [x,,*x,, , e,,] and that (x^,*x,, , e,) ~~~~ (I, e,,) via (e,,), thus 

1 e,, for all n. (*) 

Setting w, ~ S,e,, , it follows from (*) that w,*w,, 6, . Define 

f,, : zup~* : LP(w,,) _ LP(xve,,). By the Lemma, .f,, f ;  since f,( ,- e,, and 
e,, t I, it follows that f,, T 1. For all n, we have 

fi, = wnwT) * = s,,e,x,, *; (**) 

obviously [f,l , fill 7-7 [e, , e,,] == 1, and xx* = x1x* [x,,e,,xnX, grl] for 
suitable (e), therefore (**) yields I = xx*. m 

PROPOSITION 3.5. If  x EC, x [x,, , e,,], then 

-for all m. 

xe,,, =- .x,,e,,, , c,,x -== e,,,x,,, 

Proof. Fix m. Then xe,,, [x,e,, , g,,] for a suitable SDD (gn). Define 
fi, = 0 for n < m andf, 7: 1 for n ;,z: m; then (fit) implements (xWeni , gTz) 
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( - x,,e, , l), thus xe, = xx. Since x* = [x,*, e,], it follows that 

X*5 m = xm *em. I 

At first glance, Proposition 3.5 looks like a stuffy technicality; surprisingly, 
it turns out to be the key to lifting properties from A to C. 

LEMMA 3.6. If x E C, then there exists a projection f  E A such that (1) 

fx = x, and (2) yx = 0 if and only if y f  = 0. 

Proof. Say x = [xn , en]. Define fn = LP(x,e,) and let f = sup fn; thus, 
f is the smallest projection in A such that 

f  x,e, = x,e, for all 71. (*) 

Since& = [fxn , gn] for suitable (g,), ( ) h * s ows thatJx = x (Proposition 3.2). 

Suppose yx = 0. Say y  = [m , h,]. For all m, n, we have, by Proposi- 
tion 3.5, 

0 = h,yxi$,, = h,ynxmem , 

thus (hny,J(xme,) = 0 and therefore (hnyn)fWb = 0; since m is arbitrary, 
h,mf = 0, and since n is arbitrary, y f  = 0 by Proposition 3.2. Conversely, 
y f  = 0 implies yx = y(fx) = 0. 1 

THEOREM 3.7. C has no new projections; that is, if e EC is a projection, 
then e = efor some projection e in A. 

Proof. By the Lemma, there exists a projection e in A such that 
C( 1 - 2) = L({e}), the left annihilator of e; but L({e}) = C( I - e), therefore 
I-E=l-e. 1 

COROLLARY 3.8. C is a Baer *-ring. 

Proof. Since C has no new projections, its projections form a complete 
lattice; but C is a Rickart *- . rmg by Lemma 3.6; therefore C is a Baer 
*-ring. 1 

If  x E A and e = RP(x), then RP(x) exists (Corollary 3.8), and it follows 
from Theorem 3.7 that RP(%) = e. 

COROLLARY 3.9. C has GC and satis$es the parallelogram law (P). 

Proof. Since A has these properties (Proposition 1.1) and C has no new 
projections, C inherits the properties via the embedding x ++ X. 1 

This recaptures many of the properties of A, but we are surprisingly far 
from proving that LP(x) N RP(x) for all x EC; this is proved in Section 8, 
under heavy additional hypotheses on A (see “Added in Proof”). 
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The following proposition needs no extra hypotheses; this is a convenient 
place to record it [cf. 1, Lemma 3. I]: 

PROPOSITION 3.10. Jffx : [xn , e,,] and the ?c, are all invertible in A, then 
x is invertible in C and x l = [xi’, h,,] for a suitable SDD (15~~). 

4. C Hrls No NEW PARTIAL ISOMETRIES 

The promise of the section heading is fulfilled under the hypotheses 

(lo), (2”) described below. 
N’e recall two axioms, concerning the existence of projections and square 

roots, that play a prominent role in [I I]. A Baer *-ring is said to satisfy the 
(El’)-axiom if, for each element X, there exists y+ ~ y  E{x*x)” (the bicom- 
mutant of X*X) such that (x*x)~” ~ P, e a nonzero projection. A Baer *-ring 
is said to satisfy the (SR)-axiom if, for each element s, there exists 

Y * _ y E {x*x)” \yith x.*x _ ~3. 

The above weak form of square roots would suffice for the present section, 
but we need a stronger form later on. Since the stronger form simplifies some 
of the underlying proofs, we assume it in the present section also. First, it 
is necessary to discuss a notion of positivity available in any *-ring: 

DEFINITION 4.1. If  Ris an)- Ir -ring, we call x E B positive, written s .‘: 0, 
if there exist y1 ,..., y,,, E B with .X yl*yl $ ... i- y),, *y?,, . I f  x, y  E B are 
self-adjoint, we write x y(ory‘--X)incasey --Y SO. 

The following properties are immediate from the definitions: (I) s J 0 
implies .vI =-I v; (2) N y  implies z*sz - z*yz for all z; (3) x 2; 0 and 
y  ,> 0 imply x I- y  _ 0. (However, it can happen that x ;: 0 and --s ;;. 0 
for nonzero X; this possibility will be excluded by later axioms.) 

DEFINITION 4.2. A *-ring is said to satisfy the uniyue positive square-voot 
axiom (UPSR) if, whenever s ;: 0, there exists a unique element y  such that 
(1)~ _;. 0, and (2) x y”. We assume, in addition, that (3) y  E (x’)“. 

This is much stronger than the (SR)- :’ axiom, not only because square roots 
are expected to be positive and unique, but because all elements of the form 

‘-% %cl ~1 ". I- XT,, *s,,, possess square roots (not just elements of the form X*X). 
For the rest of the paper, A is assumed to satisfy the following conditions: 

(1”) A is a fifinite Baer *-y&g satisfying the (EP)-a.rionz and the (UPSR)- 
axiom; 

(20) partial isometrics in A are addable (as is the case when ri has no 
abelian summand [I 1, ‘I’heorem 641 or when A is an AW*-algebra [7, 
Lemma 201). 
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We recall the definition of (20): I f  (zuJLEI is a family of partial isometries with 
orthogonal initial projections e, and orthogonal final projectionsf, , then there 
exists a partial isometry w such that w*w = sup e, , ww* = sup fL, and 
we, = w, = fLw for all L. 

It follows that A admits a strong form of “polar decomposition”: I f  x E A 
and Y  is the unique positive square root of x, then there exists a unique 
partial isometry w such that x = WY, w*w = M’(x), ww* = LP(x) [I 1, 
Theorem 651. In particular, M(x) N H’(x) for all x E A, so the results of 
the preceding sections apply. We take up again the ring C: 

THEOREM 4.3. C has no new unitaries. 

Proof. Let u EC be unitary. We can suppose (by Lemma 2.11) that 

u = b% > e,], u*u = [xn*xn , e,], and (xn*x, , e,) = (1, e,) via (en), thus 

xn * w, - en for all n. (*) 

Defining w, = x,e, , we have w,*w, = e, by (*). Setting fn = wnwn* = 
LP(w,), it follows (as in the proof of Theorem 3.4) that fn f  1. Switching to 
the partial isometries w, - wnA1 , and repeating the argument in [I, 
Lemma 3.31, we find u E A with u*u = I, uu* = 1 and 

ue, = w, = x,e, for all n; 

it results from (**) that u = u (Proposition 3.2). 1 

(**I 

COROLLARY 4.4. C has no new partial isometries. In particular, if e, f  are 
projections in C, say e = 5, f  = f  (Theorem 3.7), then e - f  in C if and only if 
e -fin A. 

Proof. Let w be a partial isometry in C, say w*w = e, ww* = f. Since C 

is finite (Theorem 3.4) and has GC (Corollary 3.9), it follows from e N f  that 
l-e N I - f  [cf. 5, Lemme 4.121, say v*v = 1 - e, vv* = 1 - f .  Then 
u = w + v  is unitary and ue = w. Say u = 21 (Theorem 4.3) and e = F; 
then w = ue = ii.?, where ue is a partial isometry in A. 1 

COROLLARY 4.5. Partial isometries in C are addable. 

Proof. Immediate from Corollary 4.4 and the assumed addability of 
partial isometries in A. i 

In Section 8 it will be proved, under additional hypotheses on A, that C 
also satisfies the (EP)-axiom and the (UPSR)-axiom; combined with Corollary 
4.5, this will yield polar decomposition in C. Under the present hypotheses, 
we can prove a fragment of (EP) that will be used in Section 8: 
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hOPOSITION 4.6. If  x E c, x i 0, then there exists a E .-I such that 
xri ~~ f, ,f a nonzeY0 projection. 

Proqf. Sa; x [.Y,! , e,]. Since x ;Z 0, there exists an index m such 
that s,,,c,,, +’ 0 (Lemma 3. I). By the (I%‘)-axiom in A, there exists 
II x b t (e,,,~ ,,,, %,T,,,P,,,~” such that (e,,,.~,,,“s,,,e,,,)b” e, e a nonzero projection. 
Thus, 

he ,,,. t’,,, *ky,i,e,nl) e; 

setting u: w e b we have zc $2~’ I ,,, ,,, , e. Define f  mm~ zOWX. C’iting Proposi- 
tion 3.5, we have 

zu --- .v,,,e,,,h = xe,?,h, 

hencef mm ZL’W* xe,,,bzo*; take a ~~~ e,,,bw+. 1 

5. I’OSITIVITY IN c 

In addition to the hypotheses (IO), (20) of the preceding section, we now 
assume: 

(30) 2 is ineevtihle in A; 

(4”) <f x, y t .,I and ,X*X 1 y *y = 0, then .v ---~ y 0. 

Thcsc two conditions will be superseded hy two new hypotheses in the next 
section (see Remarks I and 2 at the beginning of Section 6). 

‘l’he (UPSR)-axiom simplifies the notion of positivitv in AI (set 

Definition 4.1): .r’ >’ 0 if and only if x L y*-y for some y  (indeed, for some 
1’ . 0). It follows that (40) crtends to finitely many terms: if .vI ,..., s,, E =2 
and .z,*.Y~ + ..’ + x,>,*.\.,~, 0, then s, : ... :: x,,) =: 0. This means that 

the ordering described in Definition 4.1 is “antisymmetric” (X 1.:; 0 and 
---s ’ 0 imply .Y ~~~ 0). Ordering the self-adjoints of C in the same way, we 
have antispmmetrv in C as well [cf. I, Lemma 3.41: 

PROPOSITION 5.1. 1f x1 ,..., x,,, 6 C and x,<x, .I- .‘. ~ x,,,‘*x,,, ..- 0, then 

Xl x,,, = 0. 

Another application of (4”) [cf. 2, Lemma 3. I]: 

Lenrnril 5.2. ! f  ,x, ~1 E d then RP(r*.2: + y*y) -- KP(x) U RP(y). 

\Ve remark that the lemma extends to finitely many terms, and to C. 
That the fragments of “spectral theory” implicit in the (EP)- and (C‘PSR)- 

axioms are enough for the following theorem is a pleasant surprise (cf. the 
proof of [I, Theorem I. I]): 
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THEOREM 5.3. If  x E A and (e,) is a SDD such that e,xe,, > 0 joy all n, 

then x > 0. 

Proof Write e,xe, = tn*tn (e.g., with t, > 0). We know from Lemma 2.3 
that x* = x. Let Y  be the unique positive square root of x*x = x2; in partic- 
ular, Y  E {x2}” (see Def. 4.2) therefore YX = XY. Let e = RP(x) = RP(r); 
since x is self-adjoint, LP(x) = e. Let x = WY be the factorization of x with 
w*w = ww* = e (see the remarks preceding Theorem 4.3). We note that 
w* = w; for, 

Y(w* - W)Y = (wY)*Y - Y(WY) = X*Y - YX = XY - YX = 0, 

therefore e(w* - w)e = 0, thus w* - w = 0. 
Define u = w + (1 - e); u is a symmetry (a self-adjoint unitary) and 

x = UY. It would suffice to show that u = 1; we do this in case (i) below. By 
(30) we can define g = &(l + u); g is a projection, u = 2g - 1. 

Write Y  = 9, s > 0, s E (~1”. Since Y  commutes with w (because x = WY 

with x, w and Y  self-adjoint) it also commutes with u, hence su = us. Then 

x = UT = us2 = sus = 2sgs - 9, 

therefore, tn*tn = e,xe, = 2e,sgse, - e,s”e,, , thus 

2(gse,)*(gse,) = (se,>*&,> + t,*t, . 

Citing the Lemma, we have 

RP(gse,) = RP(se,) U RP(t,) > RP(se,); 

but RP(gse,J < RP(se,) trivially, thus, 

RP(gse,) = RP(se,). (*I 

We consider two cases: 

(i) If RP(x) = 1, then RP(s) = RP(r) = RP(x) = 1, and it follows 
that RP(se,J = e, . Then (4) yields 

e, = Wgse,) -LP(gse,) < g, 

thus, WJ G W); since D(e,) t 1, we conclude that g = 1, thus 
u=2g-l=l,x=uY=Y~0. 

(ii) In the general case, where RP(x) = e, set y = x + (1 - e); since 
y*y = y2 = x2 + (1 - e), we have RP(y) = e u (1 - e) = 1 by the 
Lemma. For all n, 

enYen = e,xe, + e,(l - e)e, , 

481/23/I-4 
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where e,xe,, 2~ 0 and e,( 1 - e)erL = [( 1 - e)e,]*[(l - e)e,] ,) 0, therefore, 
e,,ye,, > 0. Then y  > 0 by case (i), therefore eye 3 0; but eye = exe = x. 

(It is in this proof that positive square roots are vital; the (SR)-axiom 
would not suffice.) 1 

An important consequence of Theorem 5.3 is that the notions of positivity 
in A and C are consistent: 

COROLLARY 5.4. If x 5, x E iz, then x ;Z 0 in C if and only if x -2 0 

in A. 

Proof. I f  x G: 0 in A, say x 7 yl*yl + ... + y,,,*y,,, , then x = 
r,*jj, + ... +j,,,*ji,,> 2 OinC. 

Conversely, suppose x > 0 in C, say x = yr*yi + ... y,,<*y,,, . From the 
definition of the operations in C, it is clear that we can write x = [x,{ , e,,] with 
x,, > 0 for all n. Citing Proposition 3.5, we have 

we, -- =enxcn==exe n nnt 

thus e,xe,,, --: enx,e, > 0 for all n, therefore x 13 0 in A by Theorem 5.3. 1 

6. CAYLEY TRANSFORM 

To the hypotheses (lo)-(4”) of the preceding section, we add two more: 

(50) A contains a central element i such that i2 = -1 and i* z -i (we 
also write i for the corresponding element of C, that is, we identify i with 2); 

(60) A is symmetric, that is, 1 + x*x is invertible in iz, for all x E A4. 

Remarks. (1) The hypothesis (60) makes (30) redundant. 

(2) Hypotheses (50) and (60), combined with (lo), make (40) redundant. 
For, suppose x*x + y*y =z 0. Write x*x = r2, y*y m= s2, with Y and s 
self-adjoint, Y E {r2{“, s E {s2]-“. Since s2 =m -r2, Y E (s2}‘, therefore, YS == SY. 
Then (Y + is)*(y + is) = r2 + s2 = 0 yields Y + is = 0; taking adjoint, 
r ~ is =m~ 0, therefore, 2r := 0, r = 0, s ~~ 0. Thus x = y  = 0. 

(3) In the presence of (5”), and the availability of square roots, (60) is 
clearly equivalent to the invertibility of x + i in ,4 for all self-adjoints x E ‘4. 

(4) Ry (30) and (5”), every x E C has a unique Cartesian decomposition 
x = y  + iz, y  and z self-adjoint. 

(5) It follows from (lo) and (20) that A may be written as a direct sum, 
A = B @ C, where C satisfies (50) and every element in the center of B is 
self-adjoint [ll, p. 130, Theorem A]; thus, in assuming that A satisfies (50), 
we are abandoning the “purely real” part B. 
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In view of Proposition 3.10, condition (60) lifts to C [cf. 1, Corollary 3.11: 

PROPOSITION 6.1. For all x E C, 1 + x*x is invertible in C. 

COROLLARY 6.2. I f  x E C, x* = x, then x + i is invertible in C. 

The following proposition, an elementary consequence of Corollary 6.2, 
can be formulated in any *-ring B with unity, possessing a central element i 
with i2 = -1 and i* = -i, such that x + i is invertible for every self- 
adjoint x in B [cf. 1, Lemma 4.11: 

PROPOSITION 6.3. The formulas 

u = (x - i)(x + i)-l 

x = i(1 + u)( 1 - u)-’ 

deJne mutually inverse bijections between the set of all self-adjoint elements x 
and the set of all unitary elements u such that 1 - u is invertible in C. I f  x and 
ti are so paired, then {x}’ = {u}‘, {x}” = (u}” (the cornmutants are computed 
in C). We call u the Cayley transform of x. 

Remarks. (1) With notations as in Proposition 6.3, write u = @ with 
u E A unitary (Theorem 4.3). Since 1 - u is invertible, LP(1 - u) = 
RP(l - u) = 1, therefore LP(1 - u) = RP(1 - u) = 1 (see the remark 
following Corollary 3.8). It is shown in the next section (under an extra 
hypothesis) that, conversely, if u E A is any unitary with RP(1 - u) = 1, 
then u is the Cayley transform of some self-adjoint x in C. 

(2) If x E A then {x}’ denotes the cornmutant of x in A, and (%}’ the 
cornmutant of 2 in C; there can be no confusion as long as we refrain from 
identifying x with Z. 

To show an application of the unaided Cayley transform, we now take up 
the notion of regularity (although the regularity of C will not be proved until 
the next section, under an extra hypothesis). A ring B is said to be regular if, 
for each x E B, there exists an idempotent e such that Bx = Be. A *-ring B 
is called *-regular if, for each x E B, there exists a projection e such that 
Bx = Be. The following variant of [14, Theorem 4.51 is convenient for our 
purposes: 

LEMMA 6.4. If B is a *-ring with unity, the following conditions on B are 
equivalent: (a) B is *-regular; (b) B is regular and the involution of B is proper 
(X*X = 0 implies x = 0); (c) B is regular and is a Rickart *-ring. In such a ring, 
zfLP(x) = RP(x) = e, then x is invertible in eBe. 

When A is regular, the extension C collapses back to A: 



50 BERKERIAK 

PROPOSITION 6.5. If  A is regular then A = C. 

Proof. In view of the Cartesian decomposition, it suffices to show that if 

XEC, x* x, then x E A. Let u = 21 be the Caylej- transform of x. As 
remarked following Proposition 6.3, LP( 1 ~ U) == HP(I - U) = 1; by the 
Lemma, 1 - u has an inverse B in B, hence x -~ ;( 1 -I+ u)( 1 - u))i z 2, 
where x -= i( I + ~)b. 1 

This has some surprising consequences: 

COROLLARY 6.6. Jf ‘-1 is regular and (s, , e,J is an (OWC), then there 
emts x E A wrth re,, y,,e,, and e,,,v e,,,xn for all n. 

Proof. Let x = [xl, , P,,], write x =:~ 2 b!- Proposition 6.5, and quote 
Proposition 3.5. 1 

COROLLARY 6.7. If  A is mgular, (f,,) is a sequence of orthogonal projections, 
and a, E f,,iilf for all n, then there exists s E A with f,,x = xfn ~7: a, for all n. 

Proof. I f  the sequence (fn) is finite, let x be the sum of the a, . Otherwise, 
letf = supfn and definexYL --= a, -+ ... -1 a,, e, =: fi + ... + fn. + (1 -f); 
then (x n , e,) is an OWC, and Corollar->- 6.6 provides a suitable element x. I 

COROLLARY 6.8. Suppose that (1) ,f  OY each x E A there exists a positke 
integer k such that x*x -: h 1, and (2) A contains an injinite sequence (fn) of 
nonzeYo orthogonal projections. Then A is not regular. 

Proof. Assume to the contrary that J is regular. Setting a, =: & , 
Corollary 6.7 provides an x t A such that frx ~-= ,vf, = nfn for all n. Choose k 
as in (1); then fnx*zcfn . fzfn , thus (c) ??-Jl :.:I /if,? Fix n with nz > k; thus 
n21 - kl = 1 + ... -+ 1 (n” - k terms) is ;< 0 and invertible. Then 
n21 > kl, n2fTii 1-s kfn; combined with (*), this yields (n”1 - kl)fn = 0 and, 
in view of the invertibility of n21 - Kl, the contradiction fn -= 0. 1 

To put it another way, if A is regular and satisfies (2), then it can’t satisfy 
(1). We return to these considerations in the discussion of boundedness in 
Section 9. 

This is a convenient place to record the following: 

PROPOSITION 6.9. For an37 x E C, the element y  --~: (1 -+ x*x)-l .satisJies 
y2 .< 1. 

Proof [cf. 18, Lemma 61. Aside from the invertibility of 1 + x*x 
(Proposition 6.1), the proof is trivial algebra: 

1 = y(I f- x”x)“y = y” + 2y(x*x)y + y(x*x)2y, 

thus 1 - y’ = 2y*(x*x)y + y*(x*x)“y > 0. 1 



REGULAR BAER *-RINGS 51 

7. REGULARITY OF C 

To proceed further, we need some more spectral theory. The appropriate 
axiom is as follows: 

DEFINITION 7.1. We say that A satisfies the (US)-axiom (unitary spectral 
axiom) if, for each unitary u E A with RP(l - u) = 1, there exists a sequence 
of projections e, E {u}” such that e, t 1 and (1 - u)e, is invertible in e,Ae, 

for all 12. 
The following proposition assesses the strength of the (US)-axiom: 

PROPOSITION 7.2. (a) Z%e (US)-axiom is implied by the hypothesis (lo) 
when A is orthoseparable (equivalently, the center of A is orthoseparable). 
(b) Every A W*-algebra satisfies the (US)-axiom. 

Proof. (a) We say that a *-ring is orthoseparable if every orthogonal 
family of nonzero projections is countable. It can be shown that a finite Baer 
*-ring with GC is orthoseparable if and only if its center is orthoseparable. 
(For the case of von Neumann algebras, see [ 17, Lemma 1. I] .) 

Let u E A be unitary with RP(l - u) = 1 (since 1 - u is normal, 

LP(1 - u) = 1 too). Set a = 1 - u. Obviously(a)’ = {u}‘; sinceu is unitary, 
xu = ux i f f  u*x = XU* i f f  x*u = ux*, thus {u}’ is a *-subring; therefore 
(a}” = {u}” is a commutative *-subring of A. 

Let (fJ be a maximal orthogonal family of nonzero projections such that, 
for each L, there exists b, E {a}” with ab, = b,a = fL (hence afL is invertible in 
fLAfL , with inverse bLfL). We assert that sup fL = 1. Let g = 1 - sup fL , 
and note that g E {a}” [I 1, Theorem 201. Assume to the contrary that g # 0. 
Since RP(a) = 1, it follows that ag # 0. By the (EP)-axiom, there exists 
c E {ga*ag}” = {ga*a)” C (a}” with (ga*a)c*c = f, , f  a nonzero projection. 
Thus, 

f  = (ga*c*c)a = a(ga*c*c). (*) 

Clearly f < g, therefore ffL = 0 for all L; setting b = ga*c*c E {a}“, (*) shows 
that maximality is contradicted. 

By orthoseparability, the family (fJ is countable; write it as a (possibly 
finite) sequence (fn). Define e, = fi + ... + fn (if there are only finitely 

mavf, , then e, = 1 for sufficiently large n). Then e, T 1 and e,a = ae, = 
CT afk is invertible in e,Ae, . 

{The argument shows that the (US)- axiom holds in any orthoseparable 
Baer *-ring satisfying an axiom somewhat weaker than the (EP)-axiom.} 

(b) For AW*-algebras (indeed, for Rickart C*-algebras), the (US) 
property is routine spectral theory. 1 
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We assume fey the rest of the paper that, in addition to the hypotheses ( IQ)-(60) 
of the preceding section, (70) A satisJies the (US)-axiom. 

We can now characterize the unitaries that occur as Cayley transforms: 

PROPOSITION 7.3. Jf u t C is unitary, then 1 - u is invertible in C if 
and only if RP(I - u) = I (equivalently, writing u = u with u E A unitary, 
RP(1 - u) = I). Thus, the Cayley transform pairs the selfadjoints x of C 
with the unitaries u E -4 such that RP( 1 - u) = I. 

Proof. The “only if” part is trivial. Conversely, suppose RP( 1 - u) = 1. 
Writing u = ii with u E A unitary, we have RP(1 - u) = 1. By the 
(US)-axiom, there exists an SDD (e,) such that e, E {u>” and (1 - u)e, has an 
inverse yn in e,4e, , thus 

(I ~ u)yn = yJ1 - u) = e, . (*) 

I f  m < n, it follows from the uniqueness of inverses that ynern = e,y, -=ym , 
therefore (yn , e,) is an OWC; setting y  = [yn , e,], (*) yields (1 - u)y = 

y(1 - u) = 1, thus 1 - u is invertible in C. 1 

At this point one could develop the spectral theory in C; we defer this 
until the next section, preferring instead to drive on to regularity. 

The following formulation of the (US)-axiom will be more convenient: 

LEMMA 7.4. If u E A is unitary, and e = RP(l - u), then there exists a 
sequence of projections e,, E {u]” such that e, t e and (1 - u)e, is invertible in 
e,Ae, . 

Proof. Note that e E (1 - ~1” = (~1”; 1 - e is the largest projection such 
that (1 - u)(l - e) = 0, that is, u( 1 - e) = 1 - e (hence also u*( 1 - e) 2 
I - e). So to speak, “u = 1 on 1 - e”; we correct this by defining 

v  -- .: ue - (1 - e); 

clearly 2, is unitary, v  E {us”, and it is routine to show that RP(I - v) = 1. 

Note that ve = ue, thus (1 - u)e = (1 - v)e. 
By the (US)-axiom, choose a sequence of projections g, E {v}” C {u}” with 

gn T 1 and (1 - v)g, invertible in g,Ag, . Then eg, E (u}“, eg, t e, and 
(1 - u)eg,. = (1 - v)eg, is invertible in eg,Aeg, , thus the sequence e, = eg, 
meets all requirements. 1 

This is the key to constructing the “relative inverses” needed for regularity: 

PROPOSITION 7.5. If x EC, x* = x, and if e = RP(x), then there exists 
a unique y  such that y  E eCe and xy = yx = e (thus x is invertible in eCe); 
moreover, y* = y. 
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Proof. Let u = ti be the Cayley transform of x; thus, x = i( 1 -u)-‘( 1 + u). 
Clearly RP(x) = RP(1 + U); writing e = i?, e a projection in A, we thus have 
e = RP(l + U) (see the remark following Corollary 3.8). Set z1 = --u; 
thus z, is unitary and e = RP(l - v). By the Lemma, there exists a sequence 
of projections e, E Co}” = {u}” such that e, t e and (1 - w)e, has an inverse 
z, in e,Ae, . Thus 

(1 + U)G = en for all n. (*) 

As argued in the proof of Proposition 7.3, z,e, = z, when m < n. Setting 
fn = e, + (1 - e), it is routine to verify that (z, , fn) is an OWC, with 
znfm = x, when m < n; define z = [zn , fn]. From (*) we see that 

(1 + +hfn = enfn = en = ef,; 

it follows that (1 + u)z = .? and, since the z, commute with u, also 
~(1 + u) = Z. Define y = --i(l - u)z; then 

xy = [i(l + u)(l - u)-I][--i(l - u)z] = (1 + u)z = e 

and similarly yx = E. Note that z E eCe; indeed, z,e = (z,e,)e = z,e,, = X, 
for all n, hence ZE = z and similarly zz = x. It then follows from the defining 
formula for y that y E eCe. Thus x is invertible in eCe, with inverse y, and 
the self-adjointness of y follows from the uniqueness of inverses. i 

THEOREM 7.6. C is *-regular. 

Proof. Let x EC, e = RP(x) = RP(x*x); we show that Cx = Ce. 
The inclusion Cx C Ce results from x = xe. Applying Proposition 7.5 to the 
self-adjoint element x*x, there exists an element y such that e = y(x*x), 
thus Ce C Cx. 1 

DEFINITION 7.7. We call C the regular ring of A. 
The regular ring is characterized as follows: 

PROPOSITION 7.8. Suppose D is a *-ring with unity, such that (1) D is 
regular, (2) A is a *-sub&g of D, (3) D contains no new unitaries, (4) the 
relations x, y E D, x*x + y*y = 0 imply x = y = 0, and (5) the element i of A 
is also central in D. Then D is *-isomorphic with C (via an extension of the 
embedding a ti n of A in C). 

Proof. By (1) and (4), D is *-regular, hence a Rickart *-ring (Lemma 6.4). 
By (3), D and A have the same unity element. If e is any projection in D, then 
the symmetry u = 2e - 1 is in A by (3), therefore e = &(I + u) E A; 
thus D contains no new projections. Since D is a Rickart *-ring with complete 
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projection lattice, D is a Baer *-ring. For any x E D, LP(I + x*x) = 
RP(1 + x*x) = 1 by (4) ( see Lemma 5.2), therefore 1 + x*x is invertible 
in D by regularity (Lemma 6.4). In particular, the Cayley transform is 
operative in D (remarks preceding Proposition 6.3). 

Let x t D. We assert that there exists an SDD (e,) such that xe, E A and 
s*e, E A for all n. By the Cartesian decomposition (and Lemma 2.2) we can 
suppose x* = x. Let u be the Cayley transform of x; thus u t A by (3). 
Since 1 - u is invertible in D, RP(1 - u) := 1 (in D or in A-it’s the same). 
Adopt the notations in the proof of Proposition 7.3, in particular, 
(1 - ~c)y~ = e,; writing (1 - u)-’ for the inverse of 1 - u in n, we have 

yn = (1 - u)-le, , therefore xe, == i( 1 + u)( 1 - u)-%, = i( 1 t u)yn E A for 
all n. 

Each x E D determines an element 4(x) of C as follows. We can choose, by 
the preceding, an SDD (e,) such that xe, E A and x*e, E ,4 for all n. Applying 
Lemma 2.8 to the sequence (xe,) in A, we have that gn = e, n (xe,)-l(e,) is 
an SDD; since (I - e,)xe,g, = 0, we have 

for all n. (*) 

Similarly, defining h, z e, n (x*e,)-l(e,), (h,) is an SDD and 

x*h, = x*e,h, = (e,x*e,)h, for all n. (**) 

Setting x, = e,xe, and k, = g, n h, , it is clear from (*) and (**) that 
(x~, k,) is an OWC. We propose to define C(x) = [x, , k,] hence must 
show that this is well-defined. Suppose also (e,‘) is an SDD with xe,’ E 4 and 
x*e,’ E A for all n; applying the foregoing construction, we arrive at an OWC 
(xn’, k,‘), where xi = e,‘xe,‘. It is elementary that (e, n en’)xn(e, n en’) == 
(e, n en’)x(e, n e,‘) == (e, n e,‘)r,‘(e, n e,‘), thus (xn , 12,) 1: (x~‘, k,,‘) by 
Proposition 3.2. 

It is routine to check that 4: D --f C is a *-monomorphism. Finally, 4 is 
onto. For, suppose x EC, x* = x. I f  u = u is the Cayley transform of x, 
then RP(1 - u) = 1; hence 1 - u is invertible in D, the formula 
x = i(1 + u)(l - u)-1 defines a self-adjoint element of D whose Cayley 
transform is also u, and a straightforward argument shows that 4(x) = x. 1 

These results of course hold for any finite AW*-algebra, but this is known 
from [l]. Part (a) of Proposition 7.2 yields a new result, which is worth noting 
explicitly (recall that (30) and (40) are redundant by Remarks 1 and 2 at the 
beginning of Section 6): 

PROPOSITION 7.9. Suppose that A is a finite Baer *-ring satisfying the 
(EP)- and (UPSR)-axioms, partia2 isometries in A are addable (as is the case 
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zvhen A has no abelian summand), A has a central element i such that i2 = -1 
and i* = -i, and 1 + x*x is invertible in A for every x E A; suppose, in 

addition, that A is orthoseparable (equivalently, the center of A is orthoseparable). 
Then all of the foregoing results (as well as all results in the next section) 

apply to A. In particular, A has a regular ring in the sense of DeJnition 7.7. 

Perhaps the most interesting special case: A any Baer *-factor of Type II, , 
satisfying the (EP)- and (UPSR)- axioms, in which every element of the form 
1 + x*x is invertible, and possessing a central element z such that x* # z 
[cf. 11, p. 130, Theorem A]. 

8. SPECTRAL THEORY IN C 

As in the preceding section, we assume that A satisfies the hypotheses 
( IO)-(70). In this section we exploit (70) to show that all properties hypothesized 
for A lift to C. 

An important dividend of the (US)- axiom (79 is that self-adjoint elements 
x can be represented in a form suitable for “spectral theory”: 

PROPOSITION 8.1. Ifx EC, x* = x, and zf u = u is the Cayley transform 

of x, then one can write x = [x* , e,] with x, , e, E {u}“, x,* = x,, , x,e, = x, . 

Proof. Adopt the notations in the proof of Proposition 7.3 (we know that 
RP( 1 - u) = 1 by the trivial half of the proposition), By elementary algebra, 

yn E ((1 - u)e, , ((1 - u)e,)*}” C {u}“. 

In e,Ae, , ue, is unitary and yn is the inverse of e, - ue, = (1 - u)e,; 
defining x, = i(e, + ue,)y, , we have xn* = x, by elementary algebra (x, is 
the “inverse Cayley transform” of ue, in e,Ae,). From 

x, = i(l + u)y, , (*I 

it is clear that x, E {u}“; also, m < n impliesy,e, = yn , therefore, x,e, = x, . 
Since xn* = x, , it follows that (x, , e,) is an OWC, and (*) yields 

[x, , e,] = i( 1 + u)y = i(1 + u)( 1 - u)-l = x . 1 

The next proposition is a substitute for the assertion that “functions” of a 
self-adjoint element x lie in {xl”; the proof is the same as in [l , Corollary 4.21: 

PROPOSITION 8.2. If  x EC, x* = x, ifu = @is the Cayley transform of x, 

and zf y  = [y* , fn] with yfl E (u}” for all n, then y  E {xl”. 



56 BERBERIAN 

PROPOSITION 8.3. If  x EC, then x > 0 if and only ;f  x = y*y for some 
y  E C. In fact, C satis$es the (UPSR)-axiom. 

Proof. Suppose x > 0 (that is, x .=z= yi*y, + ... + y,,,*ynl for suitable 
yr ,..., ym EC). Write x = [x~~ , e,] as in the statement of Proposition 8.1. 
Citing Proposition 3.5, we have X, =-z e,x,e, := Z,xe, > 0 in C, therefore 
x, 3 0 in A by Corollary 5.4. 

Let r, be the unique positive square root of x~; in particular, r, E {xn>” C {u>” 
(see Def. 4.2). Thus, the X, , e, , Y,~ all lie in the commutative *-subring (u}“. 
It follows from the uniqueness of positive square roots that 

r,,e,, = r, when m <n; (1) 

for, r,e, = e,,,r,e, 3 0 and (r,ner,Jz = rn2eWl = <xrlenr = x,, . From (1) we see 
that (r, , e,) is an OWC; defining r = [rvL , e,], it results from rn2 = X~ that 

Since r, E {a}“, we have 

x = r”. 

r E (x]” 

(2) 

(3) 

by Proposition 8.2. Next, we note that 

for, if s, is the unique positive square root of r, , the above argument shows 
that s,e,,, =- s,,, when m < n, thus s = [sn , e,] is a self-adjoint element with 

r m= 2. 
In view of (2), (3), (4), it remains only to show that if t 3 0 and x = t2, 

then t = r. The proof is the same as in [l, Corollary 6.21. 1 

DEFINITION 8.4. If  x EC, x 2 0, we write xlln for the unique positive 
square root of x given by Proposition 8.3. We know, in addition, that 
x1/2 E {x}“. 

PROPOSITION 8.5. C satisfies the (EP)-axiom. In fact, given any z E C, 
2 # 0, there exists y  E A such that jj E {z*z}“, y  > 0, and z*zJz = f, f  a 
nonzero projection. 

Proof. Set x = (2%) 1 l 2, let u = u be the Cayley transform of x, and 
write x = [x, , e,] as in Proposition 8.1. Adopt the notation of the proof of 
Proposition 4.6; thus xc = f, where 

/I E (emxm2em)n C {u}“, 
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w = x,e,b E {u}“, f = ww*, and a = e,bw* E (u}“. Since a E {u}” we have 
a E {x}” by Proposition 8.2; then f  = f  *f yields J = a*x% = z*xa*a. 
Setting y  = (a*a)ljz E {a*a}” C {u}“, we have 

J E {x}” = {x2}” = {z*z}“, 

and z*zys = z*za*a =f. 1 

As we note in the following proof, Proposition 8.5 completes the proof 
that C inherits all of the properties (lo)-(70) hypothesized for A: 

PROPOSITION 8.6. A = C zf and only ;f A is regular. In particular, C is 
its own regular ring, thus the operation A i--t C is idempotent. 

Proof. I f  3 = C then A is regular by Theorem 7.6; conversely, if A is 
regular then 2 = C was shown in Proposition 6.5 [assuming only (lo)-(691. 

Note that C has all the properties hypothesized for A: it is a finite 
(Theorem 3.4) Baer *-ring (Corollary 3.8) satisfying the (EP)-axiom 
(Proposition 8.5) and the (UPSR)- axiom (Proposition 8.3), thus it satisfies 
(IO); it also satisfies (20)-(60) by Corollary 4.5, Proposition 5.1, and Propo- 
sition 6.1; finally, C inherits (70) from A since it has no new unitaries 
(Theorem 4.3) or projections (Theorem 3.7). 

It follows that C has a regular ring D; but C = D by the first part of the 
proof, thus C is its own regular ring. 1 

It follows that the properties that accrue to A in virtue of (IO)-(70) also 
accrue to C; for example, C admits a strong form of polar decomposition: 

PROPOSITION 8.7. If x EC one can write x = %r with r = (x*x)li2 and 
w a partial isometry in A such that W*W = RP(x), WW* = LP(x). In particular, 
LP(x) - RP(x) for all x E C. 

Proof. The remarks preceding Theorem 4.3 are now applicable to C. 1 

COROLLARY 8.8. Ifx,yECandyx = l,thenxy = 1. 

Proof. Since C is a finite Baer *-ring such that LP(x) N RP(x) for all 
x EC (Proposition 8.7), the corollary is covered by Proposition 1.1. i 

PROPOSITION 8.9. If x EC, then x > 0 if and only if one can write 
x = [xn , e,] with x, > 0 for all n. 

Proof. The “only if” part is trivial. Conversely, suppose x = [xn , e,l 
with x, 3 0 (or merely e,x,e,, > 0) for all n. Citing Proposition 3.5, 

-- 
F~XF, = e,x,e, > 0 for all n; therefore, x > 0 by Theorem 5.3 (which is 
applicable to C, since C also satisfies (lo)-(40)). m 
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The following results on positivitv [cf. 41 pertain to the discussion of 
boundedness in the next section. 

LEMMA 8.10. [f x .,-I 0, RP(x) = e, and if y  is the inverse of x in eCe, 
then y  >> 0. 

Proof, Write x = r2 with r self-adjoint. Then KP(r) = KP(x) -= e. 
Let s be the (self-adjoint) inverse of r in eCe (Proposition 7.5). Since 
XS2 = r2s2 = e, it follows from uniqueness of inverses that y  =- sg z 
s*s :=- 0. 1 

LEMMA 8.1 I. Tf z E C, z ;T I, then z is invertibze in C and 0 ::l z-l ..:< 1. 

Proof. Since z - 1 > 0, we have z - 1 = x*x for suitable x (Propo- 
sition 8.3). Then z = 1 + x*x is invertible in C (Proposition 6.1) and, 
writing y  -: z-l, we have y2 :< 1 by Proposition 6.9. Thus, 

(1 - Y)(l -t Y) >, 0. (*I 

Since y  3 0 (Lemma &IO), 1 + y  is invertible and + 0; write 1 +- y  = r2 
with r > 0, r E (1 -L- y}” ~- {y]“. Since r is also invertible, (*) yields 

0 :< (r-l)*(l - y)(] -1. y)r--l -= (1 - y)r-lr"r--l = I - y, 

PROPOSITION 8.12. If  x, y  E C, 0 cc x :‘A y, and if x is invertible, then y  
is invertible and 0 :.< y-l < x-l. 

Proof. Write x .~= ra, r self-adjoint; then 

1 = r-lxr-l :< r-lyr--1, 

By Lemma 8.11, r-lyr--1 is invertible (hence so is y) and ry-lr -..: 1, therefore 

y-l = r-l(ry-lr)r-1 sg r-llr-1 == x-1. 

Finally, y-l 3 0 by Lemma 8.10. 1 

Implicit in the proof of Lemma 8.11: If  y  > 0 and y2 -2 1, then y  < 1. 
Conversely, 0 z< y  -< 1 implies ~l/~yyl/~ :< yl/zlyl/z, thus y2 :< y  h 1. 
Citing Proposition 6.9, we have: 

PROPOSITION 8.13. If  y  E C, y  ‘a 0, then y  G: I ; f  and only ;f  y2 :< 1. 
In particular, 0 -:- (1 +- x*x)-’ :z: I for all x t C. 
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9. C HAS No NEW BOUNDED ELEMENTS 

We assume, as in Sections 7 and 8, that A satisfies the hypotheses (lo)-(70), 

and will shortly add another. 
Motivated by the operatorial example, one can define a notion of 

boundedness in abstract *-rings: 

DEFINITION 9.1. An element x of a *-ring with unity is said to be bounded 
if there exists a positive integer R such that x*x < kl (in the sense of the 
ordering in Def. 4.1). 

The following two propositions, implicit in Sections 6-8, pertain to this 
concept : 

PROPOSITION 9.2. Suppose that (1) every element of A is bounded, and (2) 

A contains an in..nite sequence of nonzero orthogonal projections; then A is not 
regular, and 2 is contained in C properly. 

Proof. The nonregularity of A is proved in Corollary 6.8 [assuming only 

(lo)-(60)]; then 2 # C results from the regularity of C (Theorem 7.6). 1 

PROPOSITION 9.3. For any x EC, (1 + x*x)-l is bounded. If  x* = x, 

then (x + z’-’ is bounded. 

Proof. Setting y  = (1 + x*x)-l, the first assertion follows from 

y*y = y2 < 1 (Proposition 6.9). 
I f  x* = x and z = (x + i)-l, then z*z = (x - i)-‘(x + i)-1 = 

(1 + x2)-l < 1 by Proposition 8.13, thus z is bounded. 1 

To validate the claim in the section heading, we now assume: 

(80) A satisfies the (PS) -axiom (positive sums axiom): If  (fn) is an 
orthogonal sequence of projections in A with sup fn = 1, and if, for each n, 

we are given a, E fnAfn with 0 < a,, < 1, then there exists a E A such that 
afn = a, for all n. 

Remarks. Assume the notations of (80). 

(1) The conditions “as E fnAfn and 0 < a, < 1” are equivalent to 

“0 < a, < fn". 

(2) The elements a, , fm all commute: %fn = fnan = a,, and m # n 
implies a,fm = 0, %a, = 0. In our applications of the (PS)-axiom, it is 
sufficient to assume that a, , fn E(U)“, where u E A is unitary and 

RP(1 - u) = 1. 

(3) In an AW*-algebra (or a Rickart C*-algebra), the construction of a 
is easy spectral theory; in fact, writing the cornmutant of the set of all fn 
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as a C*-sum [6, Lemma 2.51, one need only assume that the a, s fnAf, are 
bounded in norm. 

(4) The element a is unique since sup f,2 = 1. Moreover, 0 :.: a < 1; 
for, setting e, = fi f “. t fn ) we have e, t 1 and e,ae,, = a, + ... + a, 3 0 
for all n, therefore u 3 0 by Theorem 5.3; also, 

41 - ale, z (fi - a,) + ... + (f,& - 4 2 0 

for all n, thus a .:I 1. 

(5) The condition sup fn == 1 can be dropped, by adjoining 1 - sup f?, 
to the sequence (but then a need not be unique). 

(6) The point of the (PS)-axiom is that a E A; one can always construct 
an a E C in the obvious way (cf. the proof of Corollary 6.7). 

THEOREM 9.4. Let x E C. In order that 0 < x < 1, it is necessary and 
suficient that x -= a for Some a E A with 0 < a .< 1. 

Proof. Suppose 0 < x << 1. Let u = u be the Cayley transform of x, and 
write x =- [Xn, e,] as in Proposition 8.1. Then 0 -g ~,xZ~ < e,; since EnxZn = 
e,x,e, = xn , we have 0 :< x,, <i e, by Corollary 5.4, hence 

Note that 

(1) 

(2) 

for, if nz < n then, since x:/” E (x~}” C {u}“, we have 

Set e0 = x0 = 0 and define fn = e, - e,+, , a, = X, - x,~, . From (1) and 
(2) we have 0 < a, >;< 1, and it is easy to see that a, E fnAfn . The (PS)-axiom 

yields a E A with 

hence 

ufn = a, = xn - xnel, (3) 

ae, = i afj = f  (xj - q-J = x, , 
1 1 

thus a = x. Moreover, 0 < a < 1 by Remark (4) above. 
Conversely, if a E A and 0 < a f  1, then 0 < z < 1 by the trivial half 

of Corollary 5.4. i 
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COROLLARY 9.5. If  x E C, then x is bounded in C ;f and only if x = a with 
a bounded in A. More precisely, x*x < kl (k a positive integer) ;f  and only if 
x = s with a*a < kl. 

Proof. Suppose x*x < kl. Set y  = k-lizx (note that k1121 exists in A by 
the (UPSR)-axiom). Then y*y < 1, hence by Theorem 9.4 there exists 
bEA, 0 <b < 1, such that 

y*y = 6. (1) 

Write b = c2 with c E A, c > 0. Then (1) yields 

x*x = kb = (k1/2c)2. (2) 

Write x = mr with r = (x*x)~/~ and w E A a partial isometry (Propo- 
sition 8.7). By the uniqueness of positive square roots (Proposition 8.3), it 
follows from (2) that r = k14, thus x = Wr = wk112c; setting a = k1/2wc, 
we have x = a and a*a = x*x < kl, therefore a*a < kl by Corollary 5.4. 

Conversely, if a E A and a*a < kl , then a*~ < kl by the trivial half of 
Corollary 5.4. 1 

COROLLARY 9.6. If  x1 ,..., x, E C and 

x1*x1 + ... + x,*x, = 1, 

then xi = ci for suitable ai E A with ai*ai < 1. 

Proof. Since 1 - xi*xi = Cjfi x~*x~ > 0, we have 0 < xi*Xi < 1; 
quote Corollary 9.5. 1 

COROLLARY 9.7. If  every a E A is bounded, then 2 coincides with the set 
of all bounded elements of C. 

Proof. Immediate from Corollary 9.5. 1 

The corollary applies, in particular, to the AW* case [cf. I, Lemma 5.11. 

10. n x n MATRICES 

We assume, as in the preceding section, that A satisfies the hypotheses 

U”)i80)- 
Fix a positive integer n. We consider the *-rings A, and C, of n x n 

matrices over A and C, with the usual operations. It is convenient to identify 
A with A; then A, is a *-subring of C, . The problem of n x n matrices: 
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Is A,, a Baer *-ring ? In Theorem 10.4 we show that A,, is at least a Rickart 
*-ring, but in general the problem remains open. (For AH’*-algebras, the 
problem is solved affirmatively in [3].) W e write S = (xij), T- -= (yij),... for 
elements of C,L . 

The first proposition requires only (I”)-(40): 

PRoPOSITION IO.1 . If zyl ,..., z\-,, E c, and LY1”A; -+ ... + <\*,,r*iY,,l 2 0, 
then xl ~:. ... _ S,,, = 0. In particular, the involution of C,, is proper. 

Proof. Say X, m-y (xij), k =: I,..., m. The (j, j) coordinate of the given 
equation reads 

hence xi” = 0 (Proposition 5.1). 1 

The next proposition requires only (lo)-(70): 

PROPOSITION 10.2. C, is *-regular, hence is a Rickart *-y&g. 

Proof. Since C is regular (Theorem 7.6), C, is regular by a general 
theorem of von Neumann [14, Theorem 2.131. Moreover, the involution of 
C, is proper (Proposition 10.1). Quote Lemma 6.4. 1 

In the following proposition, we make use of the full force of the hypotheses 
(10)-(W): 

PROPOSITION 10.3. If  Xl ,..., -Y,,, E C, and X1*X1 + ... -mr- X,,,*X;, = I 
(the identity matrix), then X, ,..., XT,, E A, . In particular, C,, has no new 
projections (unitaries, isometrics, partial isometrics). 

Proof. Say X, = (xij). The (j, j) coordinate of the given equation reads 

hence xFj E A (Corollary 9.6). 
I f  W is a partial isometry in C, , say W* W = E, E a projection, then W E A, 

results from the equation W*W + (I - E)*(I - E) =- I. Thus, C, has no 
new partial isometries; in particular, it has no new projections, isometries or 
unitaries. (We do not know whether C, is finite, hence we refrain from iden- 
tifying isometries with unitaries.) 1 
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THEOREM 10.4. A, is a Rickart *-ring. 

Proof. This is immediate from Proposition 10.2 and the fact that all 
projections of C, are in A, (Proposition 10.3). [ 

It appears to be hard to come by any additional properties of A, . For 
example: does A, (equivalently, C,) satisfy the parallelogram law (P)? The 
following remarks are pertinent, but inconclusive. Suppose E, F are projec- 
tions in C, . Setting X = E(I - F), we know that 

EuF-F = RP(X), E- EnF=LP(X) 

(see Section 1). By regularity, there exists Y EC, with YX = RP(X), 
XY = LP(X), thus E u F - F and E - E n F are “algebraically equivalent”, 
that is, equivalent in the sense of Baer rings [ 11, Section 21. The problem is to 
find a partial isometry that implements the equivalence. 

11. PROBLEMS 

(1) Can the regularity of C be reached with fewer axioms ? 

(2) Can orthoseparability be dropped in Proposition 7.9 ? 

(3) Conditions (lo)-(4 ) 0 are relatively mild, and condition (60) is to be 
expected if one is to arrive at a *-regular ring [cf. 18, Lemma 61. Condition 
(70) comes free of charge in an orthoseparable ring, hence is acceptable. 
Condition (80) is restrictive, but one must clearly have something like it 
to get the results on boundedness-and Theorem 10.4. Condition (50) seems 
the most severe; in assuming it, we are leaving aside the “purely real” case 
[cf. 11, p. 130, Theorem A], in which z* = z for all central elements x. What 
can be said for the purely real case ? (To treat it, a substitute will have to be 
found for Cayley transform methods.) 

(4) One could study systematically the “bounded subring” of A or of C 
[cf. 2, Lemma 3.111; Vidav did so for a *- regular ring satisfying the condition 
in Proposition 5.1, and showed the bounded subring to be remarkably like a 
C*-algebra [18]. The hypotheses (10)-(80) are quite restrictive; it is conceivable 
that a Baer * -ring satisfying them could be given a more concrete representa- 
tion. 

(5) The study of C in [l] was extended by SaitB [16] to arbitrary 
A W*-algebras (the essential case is the semifinite one). Presumably, something 
similar can be done for Baer *-rings. We remark that this would in no way 
advance the n x n matrix ring problem (it being trivial that A, is a Baer 
*-ring when A is a properly infinite Baer *-ring with GC [cf. 3, Introduction]). 

48+3/I-5 
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The following problems refer to Theorem 10.4. 

(6) Does A, satisfy the parallelogram law (P) ? If A,, has anything like 
square roots, it is easy to see that M(X) - RP(X) for all X E A, , and 
therefore 4, satisfies (P) [cf. 3, Section 21. [For example, it suffices to assume 
that for each X e A, , there exists Y E A, such that A-*X -= IT*Y’ and 
I/P(Y) == I-w(Y).] 

(7) Does A, have GC ? The answer is easily seen to be yes if A,, satisfies 
(P) [cf. 3, Lemma 3.31. 

(8) Is A, (equivalently, C,) finite ? The answer is easily seen to be yes 
if (a) every sequence of orthogonal projections in A4L2n has a supremum, and 
(b) A, satisfies the “square root” condition mentioned in Problem (6) (cf. 
[3, Lemma 4.11; the word “exactly ” in the proof of the cited lemma is not 
quite correct). More generally, one can show that if B is a finite Rickart 
*-ring with GC, and if n is a positive integer such that (i) B, is a Rickart 
*-ring, (ii) every sequence of orthogonal projections in B,, has a supremum, 
and (iii) B,, satisfies (P), then B,, is finite [cf. 11, Theorem 561. 

(9) Is A,, (equivalently, C,) a Baer *-ring? The afhrmative answer in 
the case of A IV*-algebras is known [3]. 

(10) J. E. Roos [15] has observed that any Baer *-ring A may be 

enlarged to a regular ring d (2 is the maximal ring of right fractions con- 
structed by Utumi). One could extend the construction of C to any Baer *-ring 
A satisfying M(x) N RP(x) for all x E 4 [cf. 161 (but if A has no finite 
projections, then the construction collapses: C = A). What is the precise 
relation between the two constructions ? Can properties of A be lifted to a as 
they are to C ? The relation may be complicated; the regular ring A is available 

for an arbitrary Baer *-ring A, but a regular Baer *-ring can only be finite 
[9, Theorem I]. 

(11) One can generalize from sequences to well-ordered families, 
as follows. Let A be a finite Baer *-ring satisfying the (EP)- and (SR)-axioms, 
such that partial isometries in A are addable. Fix a limit ordinal A (heretofore, 
A -= w). Instead of sequences, consider families in A indexed by ordinals II, 
1 -:I n < A, and define SDD, OWC, CO, and the ring C, formally the same 
as for sequences. With “sequence” replaced by “family”, all of Sections 2 and 
3 extend routinely. So does Theorem 4.3 (one applies addability to the partial 
isometries w,(e, - supm ,,e,,), and a straightforward transfinite induction 
establishes (**)), as well as its corollaries. Assuming, in addition, that (50) 
and (60) hold, the proofs of Proposition 6.5 and Corollary 6.6 are unchanged. 
We suppress the routine alterations needed to adapt the rest of the paper to 
well-ordered families. (Note, however, that if A is “too large”, then the ring C 
may collapse back to A.) Problem: How does the generalization to well- 
ordered families bear on Problem 10 ? 
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Added in proof (June 20, 1972). It can be shown that C satisfies LP - RP under 
the hypotheses of Section 3; details appear in a forthcoming book [“Baer *-rings,” 
Springer-Verlag, New York, in press]. The answer is affirmative for Problem (8) 
[op. cit., § 58, Exer. 31. The answers are affirmative for Problems (6), (7) and (9) in 
the Type II factorial case [op. cit., § 62, Exer. 91. 
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