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Connectedness of Opposite-flag Geometries in Moufang Polygons

PETER ABRAMENKO AND HENDRIK VAN MALDEGHEM

We show that the geometry of the elements opposite a certain flag in a Moufang polygon is always
connected, up to some small cases. This completes the determination of all Moufang polygons for
which this geometry is disconnected.

c© 1999 Academic Press

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

A generalized n-gon, n ≥ 2, is a rank 2 geometry whose incidence graph has diameter n
and girth 2n, and each vertex has valency ≥ 3. If the latter condition is not satisfied, then
we have a weak generalized n-gon. In this paper, we will always consider generalized n-gons
with n ≥ 3 (generalized 2-gons are trivial geometries). They are the irreducible spherical
buildings of rank 2. A generalized polygon is a generalized n-gon, for some n ≥ 2. We will
view generalized polygons as geometries of rank 2 whose elements are points and lines. The
dual is obtained by interchanging these names. A flag is an incident point–line pair and hence a
chamber in the corresponding spherical rank 2 building. Generalized polygons were introduced
by Tits [10] and are the basic rank 2 incidence geometries.

Let 0 be a generalized n-gon, n ≥ 3. Given a fixed flag F in 0, we define 0(F) to be
the set of all flags opposite F in 0 together with all points and lines occurring in these
flags. So 0(F) is a rank 2 sub geometry of 0 which we call opposite-flag geometry. The
question arises: what does an opposite-flag geometry look like? In particular, is it connected?
Applying an appropriate modification of the ‘free construction’ of generalized polygons given
in Tits [14], Abramenko [1, Chapter II, Section 2, Proposition 9] outlines a construction
of infinite generalized n-gons with opposite-flag geometries having an infinite number of
connected components, for arbitrary n ≥ 5. However, if 0 satisfies the Moufang condition,
then Abramenko [1, Chapter II, Section 2, Proposition 7] asserts that with a finite number of
finite exceptions, every opposite-flag geometry of any Moufang polygon is connected. It is this
result which is proved in the present paper.

MAIN RESULT. Let 0 be a Moufang polygon, and let F be any flag of 0. Then the geometry
0(F) is connected, except in the following cases:

(i) 0 is the generalized quadrangle associated to the symplectic group Sp4(2). In this case,
0(F) has two connected components.

(ii) 0 is the generalized hexagon (or its dual) associated to the group G2(2). In this case,
0(F) has four connected components.

(iii) 0 is the generalized hexagon associated to the group G2(3). In this case, 0(F) has three
connected components.

(iv) 0 is the generalized octagon (or its dual) associated to the group2F4(2). In this case,
0(F) has two connected components.

We want to comment briefly on the significance of this theorem in the theory of twin buildings
and on already published proofs of parts of our Main Result.

Fundamental results about two-spherical twin buildings are proved under the ‘standard as-
sumption’ that these twin buildings do not contain any rank 2 residues of type Sp4(2), G2(2),
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G2(3) or 2F4(2), see in particular Condition (co) in Muelherr and Ronan [6] and Condition
(∗) in Abramenko and Muelherr [2]. The reason why these exceptions are made is precisely
our Main Result implying that in all other cases the rank 2 residues enjoy the described con-
nectedness property which has important consequences for the global structure of the twin
buildings. In this context the Main Result was already applied several times (e.g., in the two
papers just mentioned), though only sketches or proofs of parts of its statement have been
published up to now (see the remarks below). The lack of a complete proof in the literature is
one main motivation for the present paper. Another reason for writing it is the new geometric
approach to the Main Result in the case of Moufang hexagons, which is due to the second
author and presented in Section 2. We expect that this geometric proof, apart from bringing
beautiful geometric arguments into the play, is more flexible in view of generalizations than
the first author’s (unpublished) earlier group theoretic proof.

The statement of our Main Result was first mentioned, but without proof, in Tits [17, (16.7)].
However, the Moufang octagons are not considered in this paper, and the counterexample (iii) is
overlooked. The Main Result in its present form was stated as Proposition 7 in Abramenko [1].
However, since this proposition was not applied in [1], a group theoretic proof following
Tits’ ideas was only sketched there. In his lectures at the Collège de France, January 1998,
Tits [19] also gave an alternative group theoretic proof, again based on the observation derived
as Corollary 4 below. We comment on this proof at the end of Subsection 3.1.

We also remark that, by using a matrix-technique, Brouwer [3] shows that, if any finite
polygon (Moufang or not), has a opposite-flag geometry which is not connected, then it has
the same parameters as the counterexamples mentioned in the Main Result.

Forn = 3, i.e., for projective planes, the Main Result is immediate (it is true for all projective
planes, Moufang or not). Likewise, for generalized quadrangles, the result is true without
the Moufang condition, see Brouwer [3] (cf. Van Maldeghem [21, (1.7.15)]). By a result of
Tits [12, 15] and Weiss [22], Moufangn-gons,n ≥ 3, only exist forn = 3,4,6,8. Hence,
in order to prove the Main Result, we may restrict our attention to Moufang hexagons and
octagons.

2. MOUFANG HEXAGONS

In this geometric approach, our aim is to prove that all Moufang hexagons have connected
opposite-flag geometries. In view of Brouwer’s result [3], we could restrict ourselves to infinite
Moufang hexagons but we give an independent proof here which also works for ‘almost all’
finite Moufang hexagons (see the remark at the end of this section).

We first recall some geometric definitions and facts concerning Moufang hexagons.
Let0 be a generalized hexagon. Fori ∈ {1,2,3,4,5,6}, let0i (x) be the set of all elements

of 0 at distancei (measured in the incidence graph) from the elementx (which is a point or a
line). Also, elements at distance 6 from each other are calledopposite. If two elementsx, y are
not opposite, then there exists a unique element incident withx and at minimal distance from
y, and we denote that element by projx y (it is directly related to the usual projection mapping
in buildings, see Tits [11, Subsection 3.19]. If two elementsx, y are opposite in0, then the
set0i (x) ∩ 06−i (y), i = 2,3, is non-empty (it has the same cardinality as01(x) and01(y))
and is denoted for short byxy

[i ]. For i = 2, we sometimes writexy
[2] = xy, see e.g., Ronan [8].

The distance between two elementsx andy is denoted byδ(x, y).
Let L be a line of0. Then we say thatL is distance-i-regular,i = 2,3, if for all lines

M, N ∈ 06(L), the condition|L M[i ] ∩ L N[i ]| ≥ 2 implies L M[i ] = L N[i ]. Ronan [8, (3.7),(5.9)]
showed that all lines of any Moufang hexagon are distance-3-regular and that, up to duality,
all lines of any Moufang hexagon are distance-2-regular (but he used another terminology; we



Connectedness of opposite-flag geometries in Moufang polygons 363

follow Van Maldeghem [21, Section 1.9]). The setL M is called atrace.
A pathis a sequence of consecutively incident elements.Confluentlines are lines which are

incident with a common point. The number of points on a line of any generalized polygon is
a constant, which we call thelengthof any line.

Now let 0 be a Moufang hexagon. Without loss of generality (replacing0 by its dual if
necessary), we may assume that0 has distance-2-regular and distance-3-regular lines. We
show a lemma.

LEMMA 1. Let L,M be two opposite lines in0 and let p be any point of0. Suppose that
|03(L) ∩ 03(M) ∩ 04(p)| ≥ 3. Then there is a unique point x of03(L) ∩ 03(M) collinear
with p, and all other points of03(L) ∩ 03(M) belong to04(p).

PROOF. Let x1, x2, x3 ∈ 03(L)∩03(M)∩04(p). Note thatx1, x2, x3 are mutually opposite
points. The path(p, Li , pi ,Mi , xi ), i = 1,2,3, defines the elementsLi , pi andMi . Let L ′ be
the unique element of03(x2)∩02(M1). If L ′ 6= M , then by the distance-3-regularity we have
x1, x2, x3 ∈ 03(L ′)∩03(M), hence replacingL ′ by L, we may assume without loss of gener-
ality thatM1 is confluent withL. If L ′ = M , then by interchanging the names ofL andM , we
also obtain thatM1 meetsL. Let{q1} = 01(L)∩01(M1), and let(x2,M ′2,q2, L) be a path con-
nectingx2 with L. Note that we may assume thatL1 6= L, otherwise the assertion follows. So
it is clear thatq1 6= p1, since otherwise all points ofL1 different fromp1 are oppositex2. Con-
sequently we have the ordinary hexagon(p, L1, p1,M1,q1, L ,q2,M ′2, x2,M2, p2, L2, p),
showing thatL2 is oppositeL. We can also see from this that{M1,M ′2} ⊆ L M ∩ LL2. Hence,
by the distance-2-regularity of lines, every element ofL M is at distance 4 fromL2. Consider
the lineM ′3 := projx3

(L). By the foregoing,M ′3 is at distance 4 fromL2, Sincep is clearly
opposite projL(x3) (indeed, there is a path(p, L1, p1,M1,q1, L , projL(x3))), the unique line
N meeting bothL2 andM ′3 is not incident withp. But if it were not incident withx3 either,
thenδ(x3, p) = 6, a contradiction. HenceL2 ∈ 03(x2) ∩ 03(x3), and hence by the distance-
3-regularity,L2 ∈ 03(x), for all x ∈ 03(L) ∩ 03(M). So we may now takeL2 = M , without
loss of generality and the assertion follows easily. 2

We can now show the following.

PROPOSITION2. Let0 be a Moufang hexagon with distance-2-regular lines of length≥ 7,
and let F be some flag of0. Then the opposite-flag geometry0(F) is connected.

PROOF. We putF = {p, L}, with p a point of0 andL a line. LetM andN be two distinct
lines oppositeL.

We note that|01(x)| ≥ 7, for all pointsx of 0 by Van Maldeghem [21, (1.9.5)].
First we assume thatMp := projpM 6= projpN =: Np, and thatM andN are opposite. LetS

be some indexing set with the same cardinality as01(M) (and hencè := |S| is the length of any
line of 0). Then we can put01(M) = {xi (M)|i ∈ S}. Let (xi (M), Li (M, N), pi ({M, N}),
Li (N,M), xi (N), N) be a path connectingxi (M) and N, with i ∈ S. If, for some i ∈
S, δ(pi ({M, N}), p) = 2, then clearlyMp = projp pi ({M, N}) = Np, contradicting our
hypothesis. Hence, by the previous lemma, there are at least` − 2 ≥ 5 elementsi of S such
that pi ({M, N}) is oppositep. At least`− 4≥ 3 amongst these are such that bothxi (M) and
xi (N) are oppositep. We gather suchi in S′ ⊆ S. By the distance-2-regularity of lines, we
have either that for at most one elementj ∈ S, the lineL j (N,M) is not oppositeL, or that
for all elementsj ∈ S, the lineL j (N,M) is not oppositeL. Similarly for theL j (M, N)’s.
Without loss of generality, we may assume that no lineL j (N,M) is oppositeL, for all j ∈ S
(because in the other case, there exist at least|S′| − 2 ≥ ` − 6 ≥ 1 elementsi ∈ S′ such
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that the path(M, xi (M), Li (M, N), pi ({M, N}), Li (N,M), xi (N), N) is contained in0(F)).
Now fix i ∈ S′. Let N′, N′ 6= N, be any line throughxi (N), opposite bothL andM (N′ exists
since01(xi (N))| ≥ 7). We letN′ play the same role asN and we use similar notation (note
that we do not require projpN′ 6= Mp).

Suppose thatL j (N′,M) is not oppositeL, for all j ∈ S. Then we consider any lineM ′
throughxi (M) opposite bothL andN, M ′ 6= M . Note thatM ′ exists and is automatically op-
positeN ′. Due to the distance-2-regularity ofN andN′, we haveNM ′ ∩ NL = N′M

′ ∩ N′L =
{Li (N,M)} (because the confluent linesM and M ′ define different tracesNM 6= NM ′ and
N ′M 6= N′M

′
). For a similar reason at most one of the tracesM ′N or M ′N

′
coincides withM ′L .

Noticing thatpi ({M, N}) ∈ 03(M)∩03(N)∩03(M ′)∩03(N′) implies that at most two ele-
ments of03(M ′)∩03(N) (respectively03(M ′)∩03(N′)) are not oppositep, we now see thatM ′
and eitherN or N′ belong to the same connected component of0(F). Hence, since bothxi (M)
andxi (N) are oppositep, the linesM andN are in the same connected component of0(F).

So we may assume thatL j (N′,M) is oppositeL, for all j ∈ S\ {i }, and for all linesN′ ∈
06(L)∩06(M)∩01(xi (N)) with N′ 6= N. For at most one suchN′ we haveM N′ = M L . So
there exists at least one choice forN′ such that|M N′ ∩M L | ≤ 1. As in the previous paragraph,
it follows that N′ (and henceN) andM are in the same connected component of0(F).

If M and N are not opposite, then we claim that there is always a lineN ′ opposite both
M andL in the same connected component of0(F) asN. Moreover,N′ can be chosen such
that projpN′ 6= Mp. Indeed, consider any pointx ∈ 01(N) ∩ 06(p), x 6= projN M . Any
line N1 ∈ 01(x) ∩ 06(L) ∩ 06(Mp), N1 6= N, satisfiesδ(M, N1) = δ(M, N) + 2 and
projpN1 6= Mp. There are at least|01(x)| − 3 choices forN1. If δ(M, N) = 4, then we can
takeN1 = N′, if δ(M, N) = 2, then repeating the argument withM andN1 proves the claim.

Finally, if Mp = Np, then we may pick any lineP ∈ 06(L) with projpP 6= Mp (this is
always possible). By the previous part, bothM andN belong to the same connected component
of 0(F) asP. 2

REMARK. The Main Result for generalized hexagons now follows from the previous propo-
sition, from Brouwer [3] (only needed when lines have length at most 6), and from the fact that
no infinite Moufang hexagon has lines with finite lengthl ≤ 6. Indeed, this follows from Tits’
unpublished classification of Moufang hexagons in Tits [13] (see also Tits and Weiss [20]).
However, we do not need the full strength of this classification here but only the following
ingredients.

First of all, the root groups of a Moufang hexagon0 constitute a root datum of typeG2.
This is shown in Tits [18]. Secondly, the root groups corresponding to the long roots of a
root datum of typeG2 can be coordinatized by the additive group of a (commutative) fieldK,
and those corresponding to the short roots by the additive group of a Jordan division algebra
J overK (cf. Faulkner [5], Theorem 3.55). Recall thatJ is in particular aK-vector space
endowed with a cubic formN : J → K such thatN(a) 6= 0, for all a ∈ J \ {0}. In order to
show that no infinite Moufang hexagon0 has lines of finite length, it suffices to verify that
J has to be finite dimensional ifK is finite. However, this follows directly from the theorem
of Chevalley-Warning which implies that every cubic form on a vector space of dimension at
least 4 over a finite field necessarily has a non-trivial zero.

3. MOUFANG OCTAGONS

3.1. A general lemma.The following discussion is based on ideas developed in Tits [17],
Section 16 (see also Abramenko [1, Chapter II, Section 2]). We have to introduce some notation.
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Let 1 be a spherical Moufang building of rankr (see Ronan [9], Chapter 6 for the basic
properties of Moufang buildings). Fix an apartment6 of 1 and a chamberc ∈ 6. Denote by
8 the set of all roots (half apartments) of6, and set8+ := {α ∈ 8|c ∈ α}. For anyα ∈ 8,
Uα will be the root group associated toα. Let c1, . . . , cr be the chambers of6 which are
adjacent but not equal toc. For anyi , 1≤ i ≤ r , we denote byαi the unique element of8+
not containingci . We set

U := 〈Uα|α ∈ 8+〉 and U ′ := 〈Uαi |1≤ i ≤ r 〉,
which are subgroups of Aut(1). Finally, we define (slightly modifying the notation of the
remark just preceding Section 2)

1o(c) := {x ∈ 1|x andc are opposite in1}.
A connected component of1o(c) is by definition a maximal subsetM of1o(c) such that any
two chambers ofM can be connected by a gallery inM .

LEMMA 3. The index[U : U ′] is equal to the number of connected components of1o(c).
In particular,1o(c) is (gallery-)connected if and only if U= U ′.

PROOF. Let co, co
1, . . . , c

o
r be the chambers of6 which are oppositec, c1, . . . , cr , respec-

tively, and letM = M(c, co) be the connected component of1o(c) containingco. SinceU
acts simple-transitively on1o(c) (cf. Ronan [9], Theorem 6.15) and hence transitively on the
set of its connected components, it suffices to show that StabU (M) = U ′.

First we show that StabU (M) ≤ U ′. Assume thatu ∈ U stabilizesM . Then there is a gallery
γ = (co = x0, x1, . . . , x` = u(co)) in 1o(c) connectingco andu(co). We prove u∈ U ′ by
induction on the length̀ of γ . If ` = 0, thenu(co) = co and henceu = 1, again by Ronan [9,
Theorem 6.15]. For̀ > 0, there is ani such that the panelsx1 ∩ co andco

i ∩ co coincide.
Sinceco

i ∈ αi andx1, co /∈ αi , there exists aui ∈ Uαi satisfyingui (x1) = co. Applying the
induction hypothesis to the gallery(co = ui (x1), ui (x2), . . . ,ui (x`) = ui u(co)), we obtain
ui u ∈ U ′ and henceu ∈ U ′.

Now we show thatU ′ ≤ StabU (M). Clearly, it suffices to verify thatUα j ⊆ StabU (M), for
all j ∈ {1, . . . ,r }. Let u ∈ Uα j be arbitrary. Sinceu(co) contains the panelco ∩ co

j , co and
u(co) are adjacent chambers. Henceu(co) ∈ M andu(M) = M . 2

Now let 0 be a Moufang polygon and letF be a flag in0. Then0 can be considered as
a spherical Moufang building of rankr = 2, F as a chamber of0 and0o(F) as the set of
chambers of0(F). Choosing an apartment6 of0which containsF , settingc = F and defining
U,U ′ as above, we obtain the following specialization of Lemma 3.

COROLLARY 4. The number of connected components (in the usual graph theoretic sense)
of 0(F) is equal to[U : U ′].

REMARK 1. By Corollary 4, our problem is reduced to prove thatU ′ = U in the generic
case. This can also be carried out in the case of Moufang hexagons as was sketched in [1].
However, we preferred to give the new geometric proof in the present paper. On the other hand,
we did not find an analogous geometric argument for Moufang octagons so we shall have to
apply the group theoretic approach to that case in the following.

REMARK 2. A way to establish the equalityU ′ = U without carrying out explicit calcula-
tions with commutation relations (as below) was given by Tits [19] in his course at Collège de



366 P. Abramenko and H. Van Maldeghem

France, January 1998. His idea is the following. By considering the action of a (suitable) torus
T , one turns the group

U ′′ := 〈Uα|α ∈ 8+ andα contains every chamber adjacent toc〉
into a groupwith operators. This allows one to show that, in the generic case, every subgroup
(with operators) ofU ′′ is a product of subgroups of theUα, with α ∈ 8+ containing every
chamber adjacent toc. It is then easy to deduceU ′′ ≤ U ′ and henceU ′ = U . The statement
concerningU ′′ is achieved by showing that theUα, α as above, have no isomorphic sub-
quotients with respect to the operators. This method needs an explicit calculation inT , and it
also relies on the classification of Moufang polygons. On the one hand, it is somewhat more
involved than the method below, because it needs some additional lemmas. On the other hand,
the calculations to perform afterwards are shorter.

3.2. Moufang octagons.Our discussion will be based on Tits’ classification of Moufang
octagons developed in [16], and we shall also use the notations introduced there.

Given a Moufang octagon0, there exist a fieldK of characteristic 2 and an endomorphism
σ of K satisfyingσ 2(a) = a2, for all a ∈ K, such that0 is (isomorphic to) the building
associated to the group2F4(K, σ ) =: G. We can identify the root groupsUα (α ∈ 8) with the
subgroupsUi (1≤ i ≤ 16) ofG introduced in Tits [16], Section 1, andU with 〈Ui |1≤ i ≤ 8〉,
as well asU ′ with 〈U1 ∪U8〉. Recall that there are parametrizationsx2 j+1 : K→ U2 j+1 and
x(2 j ) : K2→ U2 j satisfyingx2 j+1(a)x2 j+1(b) = x2 j+1(a+ b) and

x(2 j )(a, b)x(2 j )(ã, b̃) = x(2 j )(a+ ã, b+ b̃+ σ(a)ã), for all a, b, ã, b̃ ∈ K.
Furthermore,x2 j (a) = x(2 j )(a, 0), x′2 j (b) = x(2 j )(0,b) andU ′2 j = {x′2 j (b)|b ∈ K}. As
Tits [16], we shall often abbreviatexi (a) by ai and x′2i (b) by b2i ′ . If there is no danger of
ambiguity, we shall also use the notationi := 1i = xi (1) and 2i ′ := 12i ′ = x′2i (1).

Note thatU (GF(2), id) can always be considered as a subgroup ofU . It is therefore useful
to determineU ′(GF(2), id) first.

LEMMA 5. For K = GF(2) andσ = id the subgroup U′ of U coincides with

Ũ := {(a1)1(a2)2(b2)2′ . . . (a8)8(b8)8′ |ai , b2 j ∈ GF(2);a2+ a4+ a6 = 0}.
PROOF. First we observe that̃U is in fact a subgroup ofU (and hence containsU ′). This

follows mainly from an inspection of formulae (1)–(15) given in Tits [16, Subsection 1.7]
for commutators[ui , u j ] with ui ∈ Ui , u j ∈ U j and 1 ≤ i < j ≤ 8. One notes that
[ui , u j ] can always be expressed as a product with factors fromUi+1,Ui+2, . . . ,U j−1, where
the number of factors fromU` \ U ′̀ with ` ∈ {2,4,6} is even. From this and the fact that
(U` \U ′̀) · (U` \U ′̀) ⊆ U ′̀ , for all ` ∈ {2,4,6} in our case (K= GF(2)), one easily deduces
thatŨ is closed under multiplication and hence a subgroup ofU . This subgroup is obviously
generated by (and we use the notation introduced above) 1, 3,5,7,8,2′, 4′, 6′, 8′, 24 and 46.
Using again formulae (1)–(15) in Tits [16, (1.7.1)], we shall show that all of these elements
are contained inU ′, thus completing the proof of the lemma. Indeed, we obtain successively:

[8′, [1,8′]] = [8′, 2′34566′7] = [8′, 2′3] = [8′, 2′][2′, [8′, 3]][8′, 3] =
= (6′54′)[2′, 6′]6′ = 54′ ∈ U ′,

[8′, [1,8]] = [8′, 2344′56′7] = [8′, 23] = [8′, 2][2,[8′, 3]][8′, 3] =
= (76′4′)[2,6′]6′ = 74′ ∈ U ′,
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[1,74′] = [1,7] = 35∈ U ′,

[8′, 35] = [8′, 3] = 6′ ∈ U ′,

[1,6′] = 4′ ∈ U ′,

(54′)4′ = 5 ∈ U ′,

(74′)4′ = 7 ∈ U ′,

(35)5= 3 ∈ U ′,

3[1,8]76′54′ = 3(2344′56′7)76′54′ = 24∈ U ′,

[1,24] = [2, [1,4]][1,4] = [2,2′]2′ = 2′ ∈ U ′,

32′[1,8′]76′5= 32′(2′34566′7)76′5= 46∈ U ′.

The lemma is proved. 2

LEMMA 6. If |K| > 2, then U′ = U.

PROOF. We have to showUi ⊆ U ′, for all i , 2 ≤ i ≤ 7. Combining Lemma 5 with
formulae (1)–(15) in Tits [16, (1.7.1)], we first obtain

[U1, 42] = [U1, 4] =U ′2 ⊆ U ′,
[U1, 6′] = U ′4 ⊆ U ′,
[3,U ′8] = U ′6 ⊆ U ′,
[64,U8] = [6,U8] = U7 ⊆ U ′.

From the identities[2′,a8] = a3(σ (a)a)4′(σ (a)a2)6′ and[2′,a8′ ] = a4′a5σ(a)6′ , for alla ∈ K,
we then deduceU3 ⊆ U ′ andU5 ⊆ U ′, respectively. Formula (7) of Tits [16, (1.7.1)] shows that

[t1, u8] ∈ U3(tu)2(σ (t)σ (u)u)4U ′4U5U ′6U7, ∀t, u ∈ K. (∗)

Replacingt by aσ(a)b−1 and u by bσ(a)−1 in (∗), we deduce thata2b4 ∈ U ′, for all
a, b ∈ K× (= K \ {0}). Since(a2b4)(ã2b4) ∈ (a+ ã)2U ′2U3U ′4, this implies(a+ ã)2 ∈ U ′,
for all a, ã ∈ K×. Since|K| > 2, we obtainx2 ∈ U ′, for all x ∈ K and consequently
U2 ⊆ U ′. Similarly, U4 ⊆ U ′. Finally, formula (6) of Tits [16, (1.7.1)] implies[a1, 8′] ∈
U ′2U3U4U5U ′6U7a6, for all a ∈ K. Hence we haveU6 ⊆ U ′ as well. 2

Combining Lemma 5 and Lemma 6 with Corollary 4, we obtain:

COROLLARY 7. The opposite-flag geometry0(F) is connected for any Moufang octagon
with lines of length> 5. In the (up to duality, unique) excluded case,0(F) has exactly two
connected components.
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