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The analogues of the McEliece and Tietdvdinen bounds (see [10, p. 565] and [16]) are derived
for constant weight and Lee codes.

1. Introduction

Recently McEliece [10, p. 565] and Tietdviinen [16] have derived powerful upper
bounds for block codes whose minimum distance is just outside the Plotkin range.
In Section 3 the analogues of these bounds are obtained for certain positive
semidefinite matrices. The proofs are based on the power sum inequalities (cf. Sec-
tion 2) which generalize the inequalities of Welch et al. [17] and the mean distance
bound of McEliece and Rumsey [11]. Section 4 gives applications to association

schemes. The Hamming, Johnson, nonbinary Johnson and Lee schemes are
discussed.

2. Power sum inequalities

For a positive integer n, let (22, R) be an n-class colouring structure (cf. [5]).
Hence Q is a finite set with cardinality |2|=v=2, R is a collection of n+1 sym-
metric relations R, ..., R, on Q2 forming a partition of the Cartesian power Q% and
R, is the diagonal relation {(x,x):xeQ} of Q. We call (, R) regular if, for
i=0,...,n, the number v;(x)=|{ye€ Q: (x, ) € R;}| is independent of the choice of
x € Q. In this case v;(x) is said to be the valence of R; and is denoted by v;. The in-
ner distribution of a nonempty subset X of Q is defined to be the (n+ 1)-tuple
(@, ---» a,) Of nonnegative rational numbers ;= |X|~'|[X?NR,|. Clearly, ay=1 and
ag+ - +a,=|X|.

Denote by R(£2, Q) the algebra of all real v X v-matrices S, where the entries are
numbered by the elements of 02, the (x, y)-entry of S being written as S(x, y). Con-
sider a matrix Se R(Q, Q) which is R-invariant in the sense that in each R, Sis a
constant which we denote by S(k) : S(x, ¥)=S(k) if (x,y)eR; (k=0,...,n). So, S
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266 H. Tarnanen

is symmetric, its diagonal entries S(x, x) (xe ) are equal to S(0) and
n
S= .Z:OS(i)D,-, (1)

where D; e R(2, ) is the adjacency matrix of R; for which D;(x, y)=11f (x, y) e R;
and D;(x, y) =0 if (x, )& R;. For given nonempty subsets X and Y of Q and for a
positive integer r, define S,(X, Y) to be the mean of the rth power of the function
S over the set XX Y, that is,

S,X, V)=|x|""Y|7' Y ¥ S(x,yy. )

xeX yeY

Further, let S,(X)=S,(X, X) and §,=S5,(2). Thus we have

n

S, (X)=|x|! EO S(i) a;, 3)
where (ay, ..., a,) is the inner distribution of X. Also, if (2, R) is regular, then
5%, Q)=5,=1 'io SGY'v; @
i=
holds for all X and r.

Theorem 1. Suppose S € R(L2, Q) is R-invariant and positive semidefinite. I[f X and
Y are nonempty subsets of 2, y is an element of Q and r is a positive integer, then

S,(X)=0, (5)
S, (X)S,(Y)=S,(X, Y), (6)
S©O)'S(X)=S,(X, {y})* and )
S,(X)=S, if (2, R) is regular. 8)

Proof. Let S be the rth Hadamard power of S, i.e., a v X v-matrix with entries
SO(x, »)=S(x, )" and let ¢y be the characteristic vector of X, that is, a v-
dimensional column vector whose entries are labelled by the elements of £, the x-
entry being ¢ y(x) =1 if xe X and ¢ x(x) =0 if x¢ X. Then (2) can be written in the
form

S,(X, V) =|X|71 Y] 6,5 gy, ©)

where t denotes the transpose operation. Since S is a principal sub-matrix of the
rth Kronecker power of S, S is positive semidefinite (cf. [8, p. 260]). Hence (5)
holds and (6) follows from (9) by using the Schwarz inequality. If in (6) we choose
Y={y}, we obtain (7). Inequality (8) follows from (4) and (5) by applying (6) to
Y=Q. 0O
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3. Upper bounds for D-sets

Throughout this section we assume that (2, R) is a regular n-class colouring struc-
ture and SeR(£, ) is a nonzero R-invariant and positive semidefinite matrix.
Given a subset D of real numbers, call a nonempty subset X of 2 a D-set if
S(x, y) € D whenever x and y are distinct elements of X. Denote by m(S, D) the max-
imal cardinality of such a D-set.

Theorem 2. Let ¢ be a real number and r a positive integer. If D is the closed interval
[—o0, 0] or if D is the unbounded closed interval (— o, 9] and r is odd, then

N O

S, D)<
m( ) Sr_Qr

for o<, . (10)

Proof. Let X be a D-set with cardinality m=m(S, D) and inner distribution
(@, -.-,a,). Since @;=0 if i+0 and S(i)"> ', then from (8) and (3) we obtain

mS,=mS,(X)= i S(@) a;=S(0) +(m-1)o".
i=0

This proves the assertion. [

Theorem 3. Let o0 be a nonnegative real number and r a positive even integer. Then

25(0)'S, +(S(0)e) ™' (S(0) - 0)°
Sr (Sr - 2@ r)

provided the denominator of the right hand side of (11) is positive.

m(S’ (—m’ Q])S

(11

Proof. Let X be a (—oo, o]-set with cardinality m=m(S, (-, ¢]) and inner
distribution (ay, ...,a,) and let

K,=(-1) i SH'a; (t=1,2,...). (12)
S(Iggo

Since S(0) =0 by semidefiniteness, then

0=mS,<mS,(X)= Y S(i)'a;
i=0

=S5(0)'ap+ i S@) a;+ Zn: S@)a;
S(lijgo Séi?zlo
< S(0)' + (- 1)'K,+ mo".
Hence we have '
K,zmS,— S(0)"—mp" and (13)
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K,<S(0)'+mo" if tis odd. (14)

By the Schwarz inequality,

K2={ T S0y (SO a) ) <K, Ko,
S()<o0

So, according to (13) and (14), mS,—S(0) —me <0 or (mS,—S(0) —me")<
(SO '+ mo " 1)S©) ! + me"* ). From these two inequalities the latter gives a
weaker bound for m implying (11). [

Given two sequences (x,) and (y,) of real numbers, write x,=o0(y,) if
limx,/y,=0 and x,=<y, if x,<y,(1+0(1)).
Since S is nonzero, S, is positive. We denote y =S(0)/S,.

Corollary 4. Suppose n tends to infinity and o =p, are nonnegative real numbers
satisfying 0* = 0(S,) as n— oo, Then

m(S, (-, o)) syS(0)2+7y0) as n— oo, (15)

Proof. If in (7) we choose r=2 and X =, then (4) and (5) yield S(O)ZZSZ. Hence
0 =0(S(0)) and (15) follows from (11). O '

Denote by log x the Naperian logarithm of x.

Theorem 5. Suppose n tends to infinity and o=, are nonnegative real numbers
satisfying 0* =0(S,) and yo>=0(S,) as n— o. Then

m(S, (-, 0])=yS(0)(2.2+1og(1 +ye)) as n— . (16)

Furthermore, if yo— o as n— o, then

m(S, (— o, o)) <4yS(0)log(ye) as n— . )

Proof. Since o =0(5(0)), we can assume that 0 <S(0). Let X be a (— o, g]-set with
cardinality m = m(S, (— o, 9]). Fix an element ¢ of X and number the other elements
Cis--sCm—y Oof X In such an order that the numbers y;(c)=-S(c, c;)
(i=1,...,m—1) form a decreasing sequence. Denote by K(c) the number of positive
yi(c)’s and by K,(c) the sum of the 7th powers of positive y;(c)’s:

K(0)
Ki(o)= _; @@ @=1,2,..). (18)

Then the numbers K, defined in (12) can be expressed as the averages

K,=— Y K, (o). (19)

1
mceex
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Applying (7) to X;={cy, ..., ¢}, yields

S1(X,, {c}<SO)S,(X) < S—‘S‘D (S©) + (s~ 1)a).
Hence we have
T @)= =5 (X {D=0)  (=Lm=1), (20)

where ¢(z)=1/S(O)z(S(O)+(z— 1)o). Define a map & as follows: if z is a non-
negative real number and s an integer with ¢(s)<z<¢@(s+1), then

D)= (p(s+1)—0()(z— o)+ ;1 (@) — ol —1)>.

Since ¢ is concave and increasing for nonnegative values of the argument, so is @.
We prove that

K>(0)= P(K(c))- @1

Let ¢(r)=K,(c)<@(r+ 1) where r is a nonnegative integer. Since K;(c) < ¢(K(c)) by
(20), then r=< K(c) and in the case r = K(c) we have K;(c) = ¢(r). Because ¢(z) (z=0)
is concave, the numbers

e()—e@-1) if l<i<r,
x;=< K,(c)—o(r) ifi=r+1,
0 if i>r+1

form a decreasing sequence. Since x;+ - +x,=¢@(k) if I<sk<rand x;+ --- + X =
K (c) if k=r+1, then from (18) and (20) it follows that y,(c)+ --- +y(c)=<
xj+ - +x (k=1,...,K(c)) and y(0)+ - + Vg =K (€)=Xx1+ -+ +Xk(y-
Hence, by a result of Karamata (see [2, p. 30]),

K(c) K(c) r+1

K= L 5(0's ¥ x= T x} <P (K,(0)).

i=1 i=1

This proves (21).
Next we derive an estimate for @: if z=¢(1)=S5(0), then

()< (1.2+%log ﬁ) S(0)* +22)/05(0) . 2)

Assume ¢(s)<z<e@(s+ 1), where s is a positive integer, and let i=2 be an integer.
From the inequality 2y/(/ — 1)(i—2)<(i— 1)+ (i—2) it follows that

(S(0) + @Y/ (i — )i —2))* < (S(0) + (i — DeX(S(0) + (i —2)0)

and hence we have

(@) — (i — D < (fi-fi—1)2S(0)* + 20SO) (G — 1)* — (i — )Y/i(i = 2)).
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Using the inequality (i —1)y/i(i—2)=i(i—2), we obtain
(0()— (- DY <(/i-Vi-1)’S0)*+2050) (i=2,3,...). (23)

Further, since

s+1 s+l 1
l_ _— e
LWy =X oy
s+1 1 Ky
S%—Z f—S'}S — =ylogs,
i=31—1 X

then (23) implies that
s+1

2@)= L (0()~p(-1)y

s+1

<1.25(0)* +20s8(0) + S(0)* ¥, (f/i-yi-1)
i=3

< (1.2 + 1 log 5)S(0)* + 20s5(0).

So, (22) follows from the inequalities s<z2S(0) 2 and syeS8(0) <z which are easily
obtained from ¢(s)<z and o < S(0).
By (19), (21) and Jensen’s inequality (see [2, pp. 17 and 18]), we have

K= T K== cb(Kl(c»sqb( ) Kl(c)> B(K)).

ceX mcex mcex
Thus, by (13), (14) and (22),

2 3N12
-5 -2(%)"]
AYS Sy

<y5(0) [2.2 +1logS (OS)(’; )’"9 +2 < st) > m} : (24)

Corollary 4 shows that m =< yS(0)(2 + yo)(1 +0(1)). When we substitute this upper
bound of m into the right hand side of (24), we get (16). If we replace m by
¥S(0)(2.2 +log(1 + ye))(1 + o(1)) on the right hand side of (24), we obtain (17). O

4. Applications to association schemes

Let (£, R) be a symmetric association scheme with n classes (see [4, p. 8]). Hence
(2,R) is an n-class colouring structure with relations Rg,...,R, and, for
i,J, k=0,...,n, the number

Pix=1{z€Q: (x,2) e R, (z, y)eR;}|
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is independent of the choice of (x, y) € R,. Then (£, R) is regular and the valence
v; of R; equals p;;p- The real linear space « generated by the adjacency matrices D;
of R; (i=0,...,n) is a commutative (n+ 1)-dimensional subalgebra of R(£2, Q) and
is composed of symmetric matrices (cf. [10, p. 653]). This algebra is called the
Bose-Mesner algebra of the scheme. It has a unique basis of primitive idempotents
Jo= v~ 'J, Jy,...,J, (J is the all-one matrix) which are nonzero matrices of .« satis-
fying J;J;=d;;J; (see [10, pp. 653 and 654]). Their ranks y;=rank J; are called the
multiplicities of the scheme. Given the two bases {D;} and {J;} of &, we have the
basis transformations

- . 1 & .
Dy= T ped; and Jp== % gD (k=0,.e.om) 25)

The coefficients p,(i) and g,(i) are called the p-numbers and g-numbers of the
scheme. These parameters have the following properties (cf. [10, pp. 654 and 655]):

.‘_L:Opk(i )g;(r)= Eo qx ()i (r) =00y, (26)
po)=go()=1,  p;O)=v;, ¢gO)=y, (27)
.;0 v; 9 () g, (F) = VU O, - (28)

Given an R-invariant matrix Se R((2, ), define the parameters 4y,...,4, as a
solution of the linear equations

kgolqu(i)=3(i) (=0,...,n). (29)

Since the coefficient matrix of (29) is nonsingular by (26), the numbers Ay, ..., 4,
are uniquely defined. Further, from (29) and (26) we obtain

1 & .
A= > ;0 S@)p;k) (k=0,...,n). (30)
Also, from (4) and (27)-(30) it follows that

n
Si=4, and S,= Y A2u. (31)
k=0

Theorem 6. An R-invariant matrix S € R(R2, Q) is positive semidefinite if and only
if the parameters A, ..., A, in (29) are nonnegative.

Proof. According to (1), (25) and (30),

n

S=v ¥ AJ;. (32)
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Hence SJ,=vl,J, and the numbers vl, are eigenvalues of S. Thus A,...,4, are
nonnegative if S is positive semidefinite. Conversely, suppose 4,=0 for k=0, ..., n.
Since Jy=J?=J}J;, then P'J, P=(J;,P)'(J; P)=0 for each v-dimensional column
vector P and S is positive semidefinite by (32). [

Example 1. Let F be an alphabet, i.e., a finite set of cardinality g=2. The Hamming
distance dy(x, y) between two vectors x and y of F”" is the number of the coor-
dinate places in which x and y differ. Let Ry, ..., R, be the distance relations of F”"
induced by dy: Ry ={(x,y)e F"X F":dy(x, y)=k}. These relations make F" a
symmetric association scheme called the Hamming scheme H(n, q). For this scheme
we have

v;=p;= <:.1>(q— 1)) and gq,()=n(g-1)-qi

(see [4, Section 4.1]). Hence the matrix SeR(F”", F") with entries S(x, y)=
(g—Dn/q—dy(x, y) satisfies S(()=(q—1)n/q—i=q,(i)/q. So, the only nonzero
parameter A;is ;= 1/q and § is positive semidefinite by Theorem 6. According to
(31), $;=0, S,=(g—1n/q* and y=gq.

Let X be a nonempty subset of F” with inner distribution (ag,...,a,). From
(3)-(5) and (8) we obtain the power sum inequalities

¥ (g-Dn-aiYa

|X,,| Xz (f’)(q—l)"((q—l)n—qi)’zo r=1,2,...)
g i-o \!

=

(cf. [17] and [12]). For r=1, (7) reduces to the mean distance bound

_ q dH (X > {y })
(@-n
where dy (X, Y) is the mean of dyy over the set X x Y (cf. [11] and [12]).
Denote by m,(n, d) the maximal number of g-ary vectors of length » and Ham-
ming distance at least d apart. Then m(S, (-, g))=m,(n, (9—1)n/q—p) and
Theorem 2 with r=1 and o= (g — 1)n/q—d gives the bound

(X, X)<dy (X, {y})(z ) (yeF™),

__gqd
gd—(g—n
which is essentially due to Plotkin [13]. From (15)-(17) we obtain the following
asymptotic results: as n tends to infinity, then

my(n, d)< for d>(qg—1n/q

0)=<< (g-nQ.2+log(1+gp)) if 0=o=o0(n'"?),

+(@—Dnlogo if o=0(n'"?) and Q0 — ™,

(@-Dn (g—Hn(2+qo) if 0=o=o0(n""?),
m"(”’ q —)
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In the binary case g =2 the first of these bounds has been proved by McEliece (see
[10, p. 565]) and the other two by Tietdvdinen [16]. The generalizations to non-
binary alphabets are due to Perttula [12].

Example 2. Let F be an alphabet of cardinality g and fix some element of 7 which
will be denoted by 0 (zero). The Hamming weight wy(x) of a vector x in F" is the
number of nonzero components of x. The set W, = W,(n, g) of all vectors of F”"
with Hamming weight w is called the Hamming surface of radius w. We denote by
m,(n, d, w) the maximal number of g-ary vectors of length n, Hamming weight w
and Hamming distance at least d apart.

Suppose g=2. Then the nonempty distance relations of W, induced by dy are
R, ={(x, y)e W, (n, 2)?: dy(x, y)=2k} (k=0,...,m), where m =min(w, n — w), and
in the case 0 < w< n they make W, (n, 2) a symmetric association scheme called the
Johnson scheme J(w, n). Some parameters of this scheme are

W\ S n—w . ni
o=(7)("77) e ar=@-n(1-0 )

(see [4, Section 4.2]). So, for the matrix S with entries
S, y)=n—nldy(x, )/Qwn—w))  (x,yeW,),

we have S(i)=n—n%i/(w(n—w)), A,=n/(n—1), 1;=0 for i#1, $;=0, S,=n?/
(n—1) and y=(n—1)/n. Hence (3)—(5) and (8) imply that

B samm) = o B 00w
i=0 win-w)/) ' (2)i=o\i i < w(n—w)
=0 (r=12,...)

for each nonempty subset X of W, (n, 2) with inner distribution (ay, ...,a,,). These
inequalities have been proved by Sidelnikov [14]. The upper bounds of Section 3 for
m(S, (— oo, p])=my(n, 2wn— w)(n—o0)/ n?, w) will be given in the next example.

Example 3. Let F be an alphabet with cardinality ¢ = 3. Then the Hamming distance
does not make W, (n,q) an association scheme. For x=(xy,...,x,) and
=01, -.-,Y,) in W, (n, q), denote e(x, y)=|{i: x;=y;#0}| and n(x, y)=|{i: x;#0
and y;#0}| and define the relations R; of the surface as follows:
R;j={(x, y) e W,,(n, q)*:e(x, y)=w—i, n(x,y)=w—j}. This classification makes
W, (n,q) (0<w<n) a symmetric association scheme called the g-ary Johnson
scheme J,(w,n). Note that Ry is the diagonal relation of W,(n,q) and
dy(x, y)=i+j if (x, y)eR;. It is known that the numbers ggo(i, /) =1, g10(, j) =
(n— 1)1 —nj/(w(n—w))) and q,(, j)=2((g—2)w—(g—1)i+j) are g-numbers of
J,(w, n) (see [15]).

Consider the matrix Se R(W,,, W,,) with entries S(x, y)=n —dy(x, y)/a where
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gw(n—w)+(q—-2)wn
a= 2
(@—Dn

It is easily seen that the only nonzero A-parameters are A;;=w/((q—1)na)
and A g=gwn-w)/((g—1)n(n—1)a). Consequently, S0)=n,S,;=0,S,=
A2,410(0, 0)+ A2, 1,0, 0)=n*/(B(n~ 1)) and y=B(n—1)/n where

g @n—mW+(@-ny’
(n-wi+(@-2)n(n-1)’

Theorem 2 with r=1 and o =n-d/ea gives the Johnson bound [7] for the function
m(S, (-, o) =my(n, a(n— ), w) : my(n, d, wy<d/(d-an) if d>an. Theorem 3
with =2 implies that

Bn—1)2n’ + Bo(n— 1)(n - 0)*)
n3 =2B0*n(n-1)

if 0so<n/y2B(n—1). Also, from (15)-(17) we obtain the following asymptotic
results: as n tends to infinity, then

mq(na a(n - 9)9 W) =

Bn2+ o), if 0<o=o0(n'?),
my(n, a(n—p), wys< < fn(2.2+log(l +Po)) if 0=<o=o0(n'"?),
iBnlogo if o=0(n'"?) and 0 - o.

By using Example 2, it is easily seen that the above five bounds for mg(n, d, w)
also hold if g=2. In this case a=2w(n— w)/n? and f=1.

Example 4. Consider the ternary Johnson scheme J;(w, n) over the alphabet
{0, 1, —1}. For x=(x,...,x,) and y=(y,...,y,) € W,,(n, 3), let S(x, y)=x,y,+
.- +Xx,y, be the usual inner product of x and y. Then S has a constant value
w=2i+j=(w/n)q,, (i,j) in R;. Thus S(0)=w, §;=0, S,= w?/n and y=n/w. Sec-
tion 3 gives the bounds

nw?-o% .
m(S, [0, e)= ———5 if 0=o<w/y/n,
(S, [~0, 0D W_np? 10=e

m(S, (—oo, 0])<1—-w/p if 0<0,

nw’ + on(w—0)%)
w(w2 - 2n92)

m(S, (-, ¢])= if 0<p<w/|2n

and the following asymptotic bounds: as »n tends to infinity, then

n(2+no/w) if 0<p=o0(wn~1?),
m(S, (-, o) s < n(2.2+log(1+ng/w)) if 0<p=o(wn=??),
+n log(no/w) if o=o(wn~??) and np/w— o.

In some cases these results improve the bounds of Deza and Frankl [6].
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Example 5. Let Z, be the additive group of integers 0, 1,...,4—1 modulo g where
g=2 and let s=[q/2] where [x] is the greatest integer not exceeding x. The Lee
distance dy (x, y) (see [9]) between two vectors x=(xy,...,X,) and y=(yy, ..., ¥,) of
ZZ is defined by di(x, y)=w(x;—y;)+ - +w(x,—y,) where w(i)=min(i, g—1i)
(i=0,...,q—1). The Lee composition c(x) of a vector x=(x,...,X,) in Z;’ is a
(s+ 1)-tuple (cy, --., ;) where ¢, =|{i: w(x;)=k}|. Let I" be the set of all Lee com-
positions c¢(x) where x varies over ZZ. Then the relations R.= {(x, y)eZZxZZ:
c(x—y)=c} (cel') make Z, a symmetric association scheme called the Lee scheme
L(n, q) (see [1] and [4, p. 18]). Note that d; (x, y) =12, + 22, + -+ + sz, if (x, Y ER,
where z2=(2g, ...,Z;)-

Let £, Q,,..., £ be a partition of Z, whose sets are of the form Q,={i,g—i}
and let Qx())=Y,. kahi(k, i=0,...,5) where £=exp(2n1/——_T /q) is a primitive gth
root of wunity. Astola [1] has shown that the numbers ¢gy(z)=1 and
q4.2)=Y_02Q/0) z=(2p,...,2)€l; r=1,...,s) are g-numbers of L(n,q).
Wyner and Graham [18] (see also [3, pp. 313 and 314]) have proved that the
numbers

19! :
AL=—-—Y w@e" (r=1,...,q-1)
q i=0

are nonnegative. Since 4,=4,_, (r=1,...,g—1), then
c 14 - .
L 40,30)= E Ag- - E w(j) {1— ¥ 8’("’)} =D—w(i)
r=1 q = r=0
where
(¢°—1/(4q) if g is odd,
D= e
q/4 if g is even.
Hence
s N s N
L 4g@=Yz L 4,Q0)=Dn- ¥ iz,
r= 1= r= 1=

for z=(z, ..-,2;) € I'. S0, the matrix S with entries S(x, y)=Dn—d; (x, y) (x, ye Z"]')
is positive semidefinite, S(0)=Dn and S,=0. From (31) and (27) it follows that

s s qg-1
S, =Y A%q,(n,0,...,00=n Y A2|Q,|=n ¥ 22
r=1 r=1 r=1

n 9o ri—j) 2
=75 X Z w(@)w(j) Z eV =~ Z w(i)? - D*n
_ ((@*=1)(g*+3)n/(48¢%) if g is odd,
~ {(g*+8)n/48 if g is even.

Denote by M (n, d) the maximal number of vectors in ZZ with Lee distance at
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least d apart. Hence m(S, (—, ¢])=M_,(n, Dn—p) and (10) gives the Plotkin
bound (see [18]): M,(n, d)<d/(d— Dn) if d>Dn. When we use the notation

3(g*— 1)/(g*+3) if ¢ is odd,

—_— 2 =
u=D"n/S, {3(]2/((124‘8) if g is even

and replace ¢ by Dg in (11), we obtain

M, (n, D(n— o)) < M@+ He(n —)’)
qy - n —2[192

if 0=o<}yn/(2u). In this case the asymptotic bounds (15)-(17) are: as n tends to
infinity, then

un(2+ pe) if 0=p=0(n'?),
M,(n, D(n—-0))<< un(2.2+log(1 + uo)) if 0<o=o(n'"?),
tunlog o if o=0(n'"?) and o~ .
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