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The analogues of the McEliece and Tiet~iv~iinen bounds (see [10, p. 565] and [16]) are derived 
for constant weight and Lee codes. 

1. Introduction 

Recently McEliece [10, p. 565] and Tiet~iv/iinen [16] have derived powerful upper 
bounds for block codes whose minimum distance is just outside the Plotkin range. 
In Section 3 the analogues of  these bounds are obtained for certain positive 
semidefinite matrices. The proofs are based on the power sum inequalities (cf. Sec- 
tion 2) which generalize the inequalities of  Welch et al. [17] and the mean distance 
bound of  McEliece and Rumsey [11]. Section 4 gives applications to association 
schemes. The Hamming,  Johnson,  nonbinary Johnson and Lee schemes are 
discussed. 

2. Power sum inequalities 

For a positive integer n, let (f2, R) be an n-class colouring structure (cf. [5]). 
Hence f2 is a finite set with cardinality I/21 =0_>2, R is a collection of  n +  1 sym- 
metric relations R0, . . . ,  Rn on £2 forming a part i t ion of  the Cartesian power ~-~2 and 
R 0 is the diagonal relation { (x , x ) : xe I2}  of  I2. We call ([2, R) regular if, for 
i = 0 ,  . . . ,  n, the number oi(x)= I{Ye f2: (x, y ) eR i }  ] is independent of  the choice of 
x ~  £2. In this case oi(x) is said to be the valence of  R i and is denoted by oi. The in- 
ner distribution of a nonempty subset X of  £2 is defined to be the (n + 1)-tuple 
(a0, . . . ,  an) of  nonnegative rational numbers ai = IX[ - l IX 2 N Ri[. Clearly, a 0 = 1 and 

a 0 + - - - + a . =  Ixl. 
Denote by JR(f2, f2) the algebra of  all real o x o-matrices S, where the entries are 

numbered by the elements of  1"2 2, the (x, ),)-entry of  S being written as S(x, y). Con- 
sider a matr ix  S~  JR(f2, I2) which is R-invariant in the sense that in each Rk S is a 
constant  which we denote by S(k ) :S (x , y )=S(k )  if (x, y )~Rk (k=O, ... ,n). So, S 
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is symmetric, its diagonal entries S(x, x) (xe •) are equal to S(O) and 

n 

S= ~ S(i)Di, (I) 
i=0 

where Die ~(f2, f2) is the adjacency matrix of R i for which Di(x, y) = 1 if (x, y) ER i 
and Di(x, y )  = 0 if (X, y) ¢ R i. For given nonempty subsets X and Y of £2 and for a 
positive integer r, define Sr(X, Y) to be the mean of the rth power of the function 
S over the set X ×  Y, that is, 

Sr(X, Y)=lxl-'lY1-1 S(x,y) r. (2) 
xeX  ye Y 

Further, let St(X)=St(X,  X)  and Sr=Sr(D). Thus we have 

n 

Sr(X)=[Xl - '  ~ S(i)rai, (3) 
i=0 

where (ao,.. . ,  an) is the inner distribution of X. Also, if (f2, R) is regular, then 

S r ( X  ' g-2)=Sr= ! ~ S(i)roi (4) 
0 i=0 

holds for all X and r. 

Theorem 1. Suppose S e R(f2, g2) is R-invariant and positive semidefinite, l f  X and 
Y are nonempty subsets o f  f2, y is an element o f  f2 and r is a positive integer, then 

S r ( X  ) >- O, (5) 

S r ( X ) S r ( Y )  > S r ( g  ' y)2, (6) 

S(O)rSr (X)>  Sr (g ,  {y})2 and (7) 

Sr(X) >- Sr if  (f2, R) is regular. (8) 

Proof.  Let S (r) be the rth Hadamard power of S, i.e., a o x o-matrix with entries 
s(r)(x, y)=S(x,  y)r and let ¢x  be the characteristic vector of X, that is, a o- 
dimensional column vector whose entries are labelled by the elements of I2, the x- 
entry being ¢px(X)= 1 if x e X  and ¢Px(X)=0 if x~.X. Then (2) can be written in the 
form 

sAx, Y)=IxI-'IYI (9) 

where t denotes the transpose operation. Since S (r) is a principal sub-matrix of the 
rth Kronecker power of S, S (r) is positive semidefinite (cf. [8, p. 260]). Hence (5) 
holds and (6) follows from (9) by using the Schwarz inequality. If  in (6) we choose 
Y= {y}, we obtain (7). Inequality (8) follows from (4) and (5) by applying (6) to 
Y=f2. [] 
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3. Upper bounds for D-sets 

Throughout  this section we assume that  (£2, R) is a regular n-class colouring struc- 
ture and S e IR(I2, f2) is a nonzero R-invariant and positive semidefinite matrix. 
Given a subset D of  real numbers,  call a nonempty subset X of  f2 a D-set if 
S(x, y) ~ D whenever x and y are distinct elements of X.  Denote by m(S, D) the max- 
imal cardinality of  such a D-set. 

Theorem 2. Let a be a real number and r a positive integer. I f  D is the closed interval 
[ - a ,  a] or i f  D is the unbounded closed interval ( -  0% a] and r is odd, then 

m ( S , D ) <  S ( O ) r - a r  for  ar <(Sr . (10) 
S r -- a r 

Proof. Let X be a D-set with cardinality m = m ( S ,  D) and inner distribution 
(a0, . . . ,an) .  Since ai=O if i ~ 0  and S(i)r>a r, then f rom (8) and (3) we obtain 

n 

mSr<_ m S r ( X )  = ~ S(i)rai <_ S ( 0 ) r  + (m - 1 ) a  r. 
i=0 

This proves the assertion. [] 

Theorem 3. Let a be a nonnegative real number and r a positive even integer. Then 

m(S, al)< 
2S(O)rSr + ( s ( 0 ) a )  r -  1 ( s ( 0 )  - a )  2 

Sr(S r - 2 a  r) 
(11) 

provided the denominator o f  the right hand side o f  (11) is positive. 

Proof. 
distribution (ao, . . . ,  an) and let 

n 

K t = ( -  1) t ~ S(i)tai (t= 1, 2,. . .) .  
i=O 

s(i)<o 

Since S(O)>_O by semidefiniteness, then 

n 

0 <- m S  t <_ m S  t ( X )  = ~ S(i)tai  
i=o 

n n 

=S(O)tao+ ~ S( i ) ta i+ ~ S(i)tai 
i=0 i=l  

s(i)<0 s(i)>_o 

Let X be a ( -oo ,  a]-set with cardinality m = m ( S ,  ( -0% a])  and inner 

(12) 

<_ S(O) t + ( - 1)tKt + mQ t. 

Hence we have 
Kr >- m S r -  S(O) r -  ma  r and (13) 
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g t ~ s ( o )  t + mp t if t is odd. (14) 

By the Schwarz inequality, 

K2 I ~ ( ( -S ( i ) ) r - la i ) l / 2 ( ( -S ( i ) ) r+ la i ) l / 212  = <_Kr_lKr+ 1 . 
s(i)<0 

So, according to (13) and (14), mSr-S(O)r -mQr<_o or ( m S r - S ( O ) r - m Q r )  2< _ 

(S(0)  r - I  +mQr-1)(S(O)r+l+ mQr+l). From these two inequalities the latter gives a 
weaker bound for  m implying (11). [] 

Given two sequences (xn) and (Yn) of  real numbers,  
l imxn/yn = 0  and x~<_y~ if x~<y~(1 +0(1)).  

Since S is nonzero,  $2 is positive. We denote 7 = S(0)/$2. 

write xn = o(yn) if 

Corollary 4. Suppose  n tends to infinity and Q = Qn are nonnegative real numbers 

satisfying Q2 = 0($2 ) as n -~ oo. Then 

m(S,  ( -  0% ~o1) _< 7S(0)(2 + ~,~o) as n ~ oo. (15) 

Proof.  If in (7) we choose r = 2 and X = Q, then (4) and (5) yield S ( 0 )  2 ~> S 2 . Hence 
Q=o(S(0))  and (15) follows from (11). [] 

Denote by log x the Naperian logarithm of x. 

Theorem 5.  Suppose  n tends to infinity and Q = Qn are nonnegative real numbers 

satisfying Q2= o($2) and 7Q3= o($2) as n ~ oo. Then 

m(S,  ( -  0% Q]) < 7S(0)(2.2 + log(1 + ~,Q)) as n ~ 0o. (16) 

Furthermore, i f  7Q ~ ~ as n ~ 00, then 

m(S,  ( - o0 ,  Q])-<½~,S(0)log(70) as n--* co. (17) 

Proof .  Since Q = o(S(0)), we can assume that Q < S(0). Let X be a ( -oo ,  0]-set with 
cardinality m = re(S, ( -  00, Q]). Fix an element c of  X and number  the other elements 
Cl, . . . ,Cm-I of  X in such an order that  the numbers  y i ( c ) = - S ( c ,  ci) 

(i = 1, . . . ,  m -  1) fo rm a decreasing sequence. Denote by K(c) the number  of  positive 
yi(c)'s and by Kt(c) the sum of  the tth powers of  positive yi(c)'s: 

K(c) 
Kt(c)= ~ Yi(C)' (t= 1, 2, ... ). (18) 

i=l 

Then the numbers  Kt defined in (12) can be expressed as the averages 

1 
K t = - -  ~. Kt(c ). (19) 

m c~x 
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Applying (7) to X s =  {Cl, . . . ,Cs},  yields 

s(o) 
s (Xs, { c } ) 2  < _ 

S 
(S(O) + (s - 1)0). 

Hence we have 

s 

~., y i (e )= - S S l ( X s ,  {c})_< tp(s) ( s=  1 , . . . , m -  1), (20) 
i = 1  

where ~(z)=I/S(O)z(S(O)+ ( z - 1 ) 0 ) .  Define a map • as follows: if z is a non- 
negative real number and s an integer with ~o(s)<_z<~o(s+ 1), then 

s 

• (Z) = (¢(s + 1) - ¢(s)) (z  - q~(s)) + ~ (q~(i) - ¢( i  - 1)) 2. 
i = 1  

Since tp is concave and increasing for nonnegative values of  the argument,  so is ~ .  
We prove that  

g2(c)-<  (K1 (c)). (21) 

Let tp(r) _< K 1 (c)  < (p(r + 1) where r is a nonnegative integer. Since K 1 (C) --< ~(K(c)) by 

(20), then r <_ K(c)  and in the case r = K(c)  we have K 1 (c)= tp(r). Because tp(z) ( z - 0 )  

is concave, the numbers 

~ - ~ ( i ) - ~ ( i - 1 )  i f l<_i<_r ,  

x i= ~ K l ( c ) - ~ ( r  ) if  i = r +  1, 
if i > r +  1 

form a decreasing sequence. Since Xl + --" + Xk = ~(k) if 1 _< k-< r and Xl + "'" + Xk = 
KI(C ) if k _ > r + l ,  then from (18) and (20) it follows that  y l ( c )+  ... +Yk(C)<_ 

Xl + "'" +Xk ( k =  1, . . . ,K(c))  and Yl(C) + "'" +YK(c)(C) =Kl(c )  =Xl + "'" +XK(c). 
Hence, by a result o f  Karamata  (see [2, p. 30]), 

K(c) K(c) r + 1 

K2(c )  = y i ( c )  2 <- <_ 
i = l  i = l  i = l  

This proves (21). 
Next we derive an estimate for ~ :  if z>_tp(1)=S(0), then 

Assume ~p(s)< z < ~p(s + 1), where s is a positive integer, and let i >_ 2 be an integer. 
From the inequality 2 1 / ( i - 1 ) ( i - 2 ) < ( i  ~ 1)+ ( i - 2 )  it follows that  

(S(0) + 01/(i - 1 ) ( i -  2) )2 _< (S(0) + ( i -  1)0)(S(0) + (i - 2)0) 

and hence we have 

(q~( i ) -q~( i -  1)) 2 < ( l /~ - -~ - f )2S(0 )2  + 20S(0)(( i -  1)2-  (i - 1 ) ~ ) .  
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Using the inequality ( i -  1 ) ] / ~ -  2) >_ i(i- 2), we obtain 

(fp(i) - tp(i- 1 ))2 _ (1/7 - ~ ) 2  S(0)2 + 20S(0) 

Further, since 

s+ l  s+ l  1 

(vT- X: (vT+ VT- ) 2 i=3 i=3 

(i=2, 3, . . . ) .  (23) 

s +  1 1 Is dx 
<¼ ~ -<¼ -¼ logs, 

i=3 i - - 1  J 1 X 

then (23) implies that 

s + l  
• (z) < _ ~ (tp(i)-tp(i-1)) 2 

i=1 

s+ l  
< 1.2S(0) 2 + 20sS(0) + S(0) 2 ~ (i/c/_ 1/~-~)2 

i=3 

< (1.2 + ¼ log s)S(0) 2 + 20sS(0). 

So, (22) follows from the inequalities s<_zZS(o) -2 and ~ < z  which are easily 
obtained from ~p(s)_< z and O < S(0). 

By (19), (21) and Jensen's inequality (see [2, pp. 17 and 18]), we have 

K2=--ml ~ceX K2(c)<- --ml ~ceX qb(Kl (c))< ~b ( 1 -  c ~xKl(c)) =~b(Kl)" 

Thus, by (13), (14) and (22), 

2 r a i l  02 (Y03'~ 1/2~ 
S2 \ 8 2 / ]  ) 

_< ~,S(O) [2.2 + ½ log S(O)+mo 2 ( ~._..Q_'~ 1/2"~ 
+ . (24) 

s(o) kS(O)/ ) 

Corollary 4 shows that m _  yS(0)(2 + yO)(1 + o(1)). When we substitute this upper 
bound of m into the right hand side of (24), we get (16). If we replace m by 
yS(0)(2.2 + log(1 + yO))(1 + o(1)) on the right hand side of (24), we obtain (17). [] 

4. Applications to association schemes 

Let (12, R) be a symmetric association scheme with n classes (see [4, p. 8]). Hence 
(K2, R) is an n-class colouring structure with relations Ro,...,R n and, for 
i, j, k = 0, ..., n, the number 

Piyk=]{z~K2: (x,z)~Ri, (z,Y)~Rj}[ 
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is independent of the choice of (x, y) ~ Rk. Then (Q, R) is regular and the valence 
oi of Ri equals Pii0- The real linear space d generated by the adjacency matrices D i 

of Ri (i-- 0, ..., n) is a commutative (n + 1)-dimensional subalgebra of IR(IA, fA) and 
is composed of symmetric matrices (cf. [10, p. 653]). This algebra is called the 
Bose-Mesner  algebra of the scheme. It has a unique basis of primitive idempotents 
J0  = o -  1 j ,  J l ,  - - - ,  Jn ( J  i s  the all-one matrix) which are nonzero matrices of d satis- 
fying JiJj = t~ijJ i (see [10, pp. 653 and 654]). Their ranks lZi= rank Ji are called the 
multiplicities of the scheme. Given the two bases {Di } and { Ji } of d,  we have the 
basis transformations 

Dk= ~ pk( i )J  i and Jk= 1 ~ qk(i)Di 
i=0  0 i = 0  

( k = o ,  . . . ,  n). (25) 

The coefficients pk(i) and qk(i) are called the p-numbers and q-numbers of the 
scheme. These parameters have the following properties (cf. [10, pp. 654 and 655]): 

n n 

pk(i)qi(r)= ~. qk(i)Pi(r)= O~kr, (26) 
i = 0  i = 0  

Po(i) = qo(i) = 1, Pi(O) = oi, qi(O) =lZi, (27) 
n 

Oiqk(i)qr(i) = OlZg~kr. (28) 
i = 0  

Given an R-invariant matrix S~ ~(tA, fA), define the parameters 3.0,---, 3., as a 
solution of the linear equations 

n 

3'kqk(i) = S(i) (i = 0 , . . . ,  n). (29) 
k = 0  

Since the coefficient matrix of (29) is nonsingular by (26), the numbers 3.0, ..., 3., 
are uniquely defined. Further, from (29) and (26) we obtain 

3'k = 1  ~ S(i)Pi(k) (k=0, . . . ,n ) .  (30) 
O i=O 

Also, from (4) and (27)-(30) it follows that 

n 

Sl=3'o and $2 ~ 2 = 3'klZ k . (31) 
k = 0  

Theorem 6. A n  R-invariant matrix S ~ 1l~(IA, {2) is positive semidefinite i f  and only 
i f  the parameters 3.o, ..., 3. n in (29) are nonnegative. 

Proof. According to (1), (25) and (30), 

t l  

S= o ~, 3'iJi . (32) 
i=O 
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Hence SJk = 02kJk and the numbers  o2 k are eigenvalues of  S. Thus 20, . . . ,  An are 
nonnegative if S is positive semidefinite. Conversely, suppose 2k>__ 0 for k =0 ,  . . . ,  n. 
Since Jk = 2 t J;c = J~ Jk , then pt  jg p = ( jk p )t ( jk p ) >_ 0 for each o-dimensional column 
vector P and S is positive semidefinite by (32). [] 

Example 1. Let F be an alphabet, i.e., a finite set of  cardinality q_> 2. The Hamming 
distance dH(X, y) between two vectors x and y of  F n is the number  of  the coor- 
dinate places in which x and y differ.  Let R0, . . . ,  R,, be the distance relations of  F n 
induced by dH : Rk = {(x, y) ~ F n × F n : dH(X, y) = k}. These relations make F n a 
symmetric association scheme called the Hamming scheme H(n, q). For this scheme 
we have 

Oi:~ i :~ i . ' ) (  q -  1) i and q l ( i ) = n ( q - 1 ) - q i  

(see [4, Section 4.1]). Hence the matrix Se~.(Fn, F n) with entries S(x ,y )= 
( q -  1 )n /q -  dH(X, Y) satisfies S(i) = ( q -  1 ) n / q -  i = ql(i)/q. So, the only nonzero 
parameter  2 i is 21 : 1/q and S is positive semidefinite by Theorem 6. According to 
(31), S I = 0 ,  S 2 = ( q - 1 ) n / q  2 and 7=q.  

Let X be a nonempty subset of  F n with inner distribution (a0, . . . ,  a,,). From 
(3)-(5) and (8) we obtain the power sum inequalities 

n 

~. ( ( q -  1)n-qi)rai  
i=0  

-- qn i=0 ( q -  1)i((q - 1 )n-q i ) r>_o  ( r =  1, 2, ... ) 

(cf. [17] and [12]). For r =  1, (7) reduces to the mean distance bound 

dH(X'X)<--dH(X" { Y } ) (  2-qdH(X'(q - 1)n{Y})) (y  E F n ' ), 

where dH(X, Y) is the mean of  dH over the set X x  Y (cf. [11] and [12]). 
Denote by mq(n, d) the maximal  number of  q-ary vectors of  length n and Ham-  

ming distance at least d apar t .  Then m(S, (-oo, O])=mq(n, ( q - l ) n / q - o )  and 
Theorem 2 with r= 1 and Q = ( q -  1 ) n / q - d  gives the bound 

qd 
mq(n, d) <_ q d -  ( q -  1)n for d> ( q -  l )n/q 

which is essentially due to Plotkin  [13]. From (15)-(17) we obtain the following 
asymptotic results: as n tends to infinity, then 

mq(n,  (q-ql)n _ Q ) <  
~-(q - 1)n(2 + q~) 

J ( q -  1)n(2.2+logO +qo)) 
( ,½(q -  1)n log O 

if 0_<Q = o(nl/Z), 
if 0 < Q = o ( n l / 3 ) ,  
if Q = o ( n  1/3) and Q ~  oo. 
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In the binary case q = 2 the first of these bounds has been proved by McEliece (see 
[10, p. 565]) and the other two by Tietfiv/iinen [16]. The generalizations to non- 
binary alphabets are due to Perttula [12]. 

Example 2. Let F be an alphabet of cardinality q and fix some element of F which 
will be denoted by 0 (zero). The Hamming weight wH (x) of a vector x in F n is the 
number of nonzero components of x. The set W w = Ww(n, q) of all vectors of F n 
with Hamming weight w is called the Hamming surface o f  radius w. We denote by 
mq(n, d, w) the maximal number of q-ary vectors of length n, Hamming weight w 
and Hamming distance at least d apart .  

Suppose q = 2. Then the nonempty distance relations of W w induced by d H are 
R k = {(X, y) ~ Ww(n, 2) 2 : dH(X, y) = 2k} (k = 0, ..., m), where m = min(w, n - w), and 
in the case 0 < w < n they make Ww(n, 2) a symmetric association scheme called the 
Johnson scheme J(w, n). Some parameters of this scheme are 

- ni 
O i = ( w ) (  n i w )  and q l ( i ) = ( n - 1 ) ( 1  w ( n - w ) )  

(see [4, Section 4.2]). So, for the matrix S with entries 

S(x, y) = n - nEdn(x, y)/(2w(n -- w)) (x, y e Ww), 

we have S ( i )=n-nE i / (w(n -w) ) ,  A l = n / ( n - 1 ) ,  ~.i=0 for i~1 ,  S I=0 ,  $2=n2/ 
( n -  1) and 7 = ( n -  1)/n. Hence (3 ) - (5 )  and (8) imply that 

~ (1-  ni )r ]g[ ~ ( w ) ( n - w ) (  ni )r 
i=0 w(n - w) ai > ~ 1 (nw)/=0 i w ( n -  w) 

>__0 ( r=  1, 2 , . . . )  

for each nonempty subset X of Ww(n, 2) with inner distribution (a0,..., am). These 
inequalities have been proved by Sidelnikov [14]. The upper bounds of Section 3 for 
re(S, (-oo, p])=m2(n, 2 w ( n - w ) ( n - p ) / n  2, w) will be given in the next example. 

Example 3. Let F be an alphabet with cardinality q > 3. Then the Hamming distance 
does not make Ww(n,q) an association scheme. For x=(xl , . . . , xn)  and 
Y=(Yl , . . . ,Yn)  in Ww(n, q), denote e(x, Y)=l { i : xi=Yi:# O } l and n(x, y)= l { i : xi:/=O 
and yi:#O}l and define the relations Rij of the surface as follows: 
Rij = {(x, y) ~ Ww(n, q)2. e(x, y) = w -  i, n(x, y) = w - j } .  This classification makes 
Ww(n, q) ( 0 < w < n )  a symmetric association scheme called the q-ary Johnson 
scheme Jq(W, n). Note that R0o is the diagonal relation of Ww(n, q) and 
dr t (x ,y )=i+j  if (x ,y)~Rij .  It is known that the numbers qoo(i,j)=l, qlo(i , j)= 
( n -  1)(1-  n j / (w (n -  w))) and q l l ( i , j ) = - ~ ( ( q - 2 ) w - ( q - 1 ) i + j )  are q-numbers of 
Jq(W, n) (see [15]). 

Consider the matrix S~ IR(Ww, Ww) with entries S(x, y ) = n - d H ( x ,  y ) /a  where 



274 H. Tarnanen 

it----- 
qw(n - w) + (q - 2) wn 

( q -  1)n 2 

It is easily seen that  the only nonzero 2-parameters are 2ll=W/((q--1)nct) 
and 210=qw(n - w) / ( (q -  1 ) n ( n -  1)a). Consequently, S(O) =n ,  Sl =0,  $2 = 
2~oqlo(O, O) + 221q11(0, O) = n2/(fl(n - 1)) and y = f l ( n -  1)/n where 

(q(n - w) + (q - 2)n) 2 
fl = q2(n - w) 2 + ( q -  2)n(n - 1) 

Theorem 2 with r = 1 and Q = n -  d/t~ gives the Johnson bound [7] for the function 

m(S, (-oo, p] )=mq(n ,  a(n-Q),  w)" mq(n, d, w)<_d/(d-an) if  d>an.  Theorem 3 
with r = 2 implies that  

f l ( n  - 1)(2n 3 + f l o ( n  - 1)(n --~0) 2) 
mq(n, a ( n - ~ ) ,  w)<_ n 3 - 2 f l Q Z n ( n -  1) 

if O<_Q<n/l/2fl(n-1). Also, from (15)-(17) we obtain the following asymptotic 
results: as n tends to infinity, then 

(fin(2 +/~0), 
mq(n, a(n - Q), w) < ~ 3n (2.2 + log(1 +/~Q)) 

~_½fln log ~o 

if O_<Q = o(nl/2), 

if O<_Q = o(nl/3), 
if Q = 0 ( / ' / 1 /3 )  and Q ~ ~ .  

By using Example 2, it is easily seen that  the above five bounds for mq(n, d, w) 
also hold if q = 2. In this case a = 2w(n - w)/n 2 and fl = 1. 

Example 4. Consider the ternary Johnson  scheme J3(w, n) over the alphabet 

{0, 1, - 1 } .  For x=(xl , . . . , xn)  and Y=(Yl , . . . ,Yn)C Ww(n, 3), let S(x ,y)=xlYl+ 
""+XnYn be the usual inner product o f  x and y. Then S has a constant value 
w - 2 i + j = ( w / n ) q l  1 (i , j)  in Rij. Thus S(0)= w, $1 =0 ,  $2 = w2/n and y=n/w .  Sec- 
t ion 3 gives the bounds 

m(S, [-Q,  QI)--- n ( w 2 - p 2 )  if O<_Q<w/1/~, 
w 2 _ nQ 2 

m(S, ( -oo ,  Q])<_l-w/Q if  ~ < 0 ,  

m(S, (-oo, Q])< n(2w3+Qn(w-Q)2) if  O<Q<W/l/-~ 
w(w 2 - 2nQ 2) 

and the following asymptotic bounds: as n tends to infinity, then 

-n(2 + nQ/w) if  0___Q = o(wn-1/2), 
m(S, ( -  oo, Q])< ~ n(2.2+log(1 +no~w)) if  O<_Q=o(wn-2/3), 

~ ½n log(no~w) if  Q = o(wn -2/3) and nQ/w --* oo. 

In some cases these results improve the bounds of  Deza and Frankl  [6]. 
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E x a m p l e  5. Let Zq be the additive group of  integers 0, 1,. . . ,  q -  1 modulo q where 
q_> 2 and let s = [q/2] where [x] is the greatest integer not exceeding x. The Lee 
distance dL(X, y) (see [9]) between two vectors x =  (xl, ... ,x , )  and y =  (Yl,--. ,Y,) of  

n Zq is defined by dL(X,y)=og(xl--yl)+'"+Og(x~--y~) where og(i)=min(i,q-i) 
n ( i = 0 , . . . , q - 1 ) .  The Lee composition c(x) of  a vector x=(xl,... ,x~) in Zq is a 

( s+  1)-tuple (Co, ...,cs) where Ck= I{i:og(xi)=k}l. Let F b e  the set of  all Lee com- 
positions c(x) where x varies over Zq. Then the relations Rc={(x,y)eZq×Z q" 
c (x -y )  =c} ( c e F )  make Z~ a symmetric association scheme called the Lee scheme 
L(n, q) (see [1] and [4, p. 18]). Note that dL(X,y)= lZl +2Z2+---+SZs if  (x ,y)eR z 
where z = (Zo, ..., Zs). 

Let t20, £2 l, ...,g2 s be a partit ion of Zq whose sets are of the form g2i= {i, q - i }  
and let Qk(i)= ~h~akehi(k, i = O, ...,S) where e = e x p ( 2 n l / - 1 / q )  is a primitive qth 
root of  unity. Astola [1] has shown that the numbers qo (z )= l  and 
qr(Z)=~S=oziQr(i) (z=(zo,...,Zs) El'; r=l , . . . , s )  are q-numbers of  L(n,q). 
Wyner  and Graham [18] (see also [3, pp. 313 and 314]) have proved that the 
numbers  

~'r-- 1 q-1 2 o)(i) 8ri ( r =  1, . . . , q -  1) 
q ~=o 

are nonnegative. Since ~.r=,~q_r ( r=  1, ..., q -  1), then 

q-1 q-1 l q-I 1 ArQr(i)  = ~ Aq-r eri:l 2 (Jg(j) 1-- ~ Er(i-j) 
r=l r=l q j=l r=O ) 

= D -  ~o(i) 

where 

f (q2_ 1)/(4q) if  q is odd, 
D = (.q/4 if q is even. 

Hence 

s s s s 

~trqr(Z): 2 Zi ~ A r Q r ( i ) = D n -  2 izi 
r=l i=O r=l i=O 

for z = (z0, . . . ,  Zs) ~ F. So, the matrix S with entries S(x, y) = Dn - dL(X, y) (x, y e Z~) 
is positive semidefinite, S(O)=Dn and $1 =0 .  From (31) and (27) it follows that 

s s q-I 
$2 = ~ )t~qr(n, 0 , . . . , 0 ) = n  ~ 2~lf2rl=n ~ 2~ 

r = l  r = l  r = l  

n q - l q - i  q- i  q- i  
=-~ ~ ~ o9(i)o9(j) ~ g r(i-j)= n 2 ¢°(i) 2 -  Dzn 

i=O j=O r= l q i=O 

( (q2_ 1)(q2+ 3)n/(48q2) i f  q is odd, 
= ~(q2+ 8)n/48 if  q is even. 

n Denote by Mq(n, d) the maximal  number  of  vectors in Zq with Lee distance at 
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least d apart. Hence re(S, ( -0% ~])=Mq(n, Dn-Q)  and (10) gives the Plotkin 
bound (see [ 18]): Mq(n, d) <_ d / ( d -  Dn) if d > Dn. When we use the notation 

(3(q 2 -  1) / (q2+3)  if q is odd, 
bt =DErl/S2 = (3q2/(q2 + 8 )  if q i s  e v e n  

and replace Q by DQ in (11), we obtain 

Mq(n, D(n - p)) </'/(2n2 + I.tO(n - ~o) 2) 
n - -  2/ /~o 2 

if 0 _ < p < ~ .  In this case the asymptotic bounds (15)-(17) are: as n tends to 
infinity, then 

(-/~n (2 +gQ) if 0<_p = o(nl/2), 
Mq(n, D(n - p)) < -~ gn(2.2 + log(1 + bt~o)) if 0_< 0 = o(n 1/3), 

(,_½/in log p if p = o(n 1/3) and p ~ oo. 
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