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a b s t r a c t

Wegeneralize the linear-time shortest-paths algorithm for planar graphswith nonnegative
edge-weights of Henzinger et al. (1994) to work for any proper minor-closed class of
graphs.We argue that their algorithm can not be adapted by standardmethods to all proper
minor-closed classes. By using recent deep results in graph minor theory, we show how to
construct an appropriate recursive division in linear time for any graph excluding a fixed
minor and how to transform the graph and its division afterwards, so that it has maximum
degree three. Based on such a division, the original framework of Henzinger et al. can be
applied. Afterwards, we show that using this algorithm, one can implement Mehlhorn’s
(1988) 2-approximation algorithm for the Steiner tree problem in linear time on these
graph classes.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The single-source shortest-paths problem with nonnegative edge-weights is one of the most-studied problems in
computer science, because of both its theoretical and practical importance. Dijkstra’s classical algorithm [1] has ever since
its discovery been one of the best choices in practice. Also from a theoretical point of view, until very recently, it had the
best running time in the addition-comparison model of computation, namely O(m+ n log n) using Fibonacci heaps [2] (we
use n to denote the number of vertices of a graph andm for its number of edges). Pettie and Ramachandran [3] improved the
theoretical running time in undirected graphs for the case when the ratio r between the largest and smallest edge-weight
is not too large. They achieve a running time of O(mα(m, n) + min{n log n, n log log r}), where α(m, n) is the very slowly
growing inverse-Ackermann function. Goldberg [4] proposed an algorithm that runs on average in linear time. For the case
of integer edge-weights, Thorup [5] presented a linear-time algorithm in the word RAM model of computation, where the
bit-manipulation of words in the processor is allowed. Hagerup [6] extended and simplified Thorup’s ideas to work for
directed graphs in nearly linear time. But the question whether the standard addition-comparison model allows shortest-
paths computation in worst-case linear-time is still open. For a fairly recent survey about shortest-paths algorithms, see
Zwick [7].
For planar graphs, Henzinger et al. [8] presented the first linear-time algorithm to calculate shortest-paths with

nonnegative edge-weights. Their algorithm works on directed graphs. It is based on Frederickson’s [9,10] work who gave
an O(n

√
log n)-time algorithm for this case and whose idea was in turn based on Lipton and Tarjan’s planar separator [11]

to decompose the graph. Henzinger et al. first decompose the graph into a recursive division and then use this division to
relax the edges in a certain order that guarantees linear running time. They claim that their algorithm can be adapted to
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work for any proper minor-closed family of graphs where small separators can be found in linear time. Recently, Reed and
Wood [12] improved the quadratic-time separator of Alon et al. [13] and showed that all proper minor-closed graph classes
can be separated in linear time; so, we should be done.However, both Frederickson’s algorithm and Henzinger et al.’s algorithm
assume that the graph has maximum degree 3; while this property can be achieved easily for planar graphs, we argue that it
can not be achieved by standard methods for arbitrary minor-closed classes (in particular, it can not be applied to apex graphs,
i.e. planar graphs augmented by a ‘‘super-source’’; these graphs have frequent application in the literature).We showhow to
build an appropriate recursive division of a graph from a proper minor-closed family in linear time by a nontrivial extension
of the algorithm in [8]. Our algorithm works for graphs with arbitrary degrees. But even after having the recursive division,
the shortest paths algorithm in [8] depends on the assumption that the graph has bounded degree (and contains only a
single source labeled initially with distance zero, cf. apex graphs). Using our recursive division, we show how to transform
the graph and its division to have maximum degree 3, so that Henzinger et al.’s shortest-paths algorithm can be applied.
Our modifications lead to the first shortest-paths algorithm for all proper minor-closed classes of graphs that runs in linear
time in the addition-comparison model of computation.
We also consider the Steiner tree problem, namely finding the shortest tree that connects a given set of terminals in an

undirected graph. The Steiner tree problem is also one of the most fundamental problems in computer science and of the
first problems shown to beN P -complete by Karp [14]. Bern and Plassmann [15] showed that it is evenAPX-hard and the
best-known nonapproximability result is due to Chlebík and Chlebíková [16] who showed a bound of 96/95 ≈ 1.01053.
Robins and Zelikovsky [17] presented an algorithm with approximation guarantee 1 + ln 3

2 + ε ≈ 1.55 + ε which is the
best approximation algorithm for this problem known so far. There is a well-known 2-approximation algorithm for this
problem [18,19] that is based on finding theminimumspanning tree of the complete distance network of the set of terminals.
Mehlhorn [20] improved the running time of this algorithm to O(m+ n log n).
The Steiner tree problem in planar graphs is also N P -hard [21] but very recently a polynomial time approximation

scheme (PTAS) has been found by Borradaile et al. [22,23] for this case. The running time of the PTAS is O(n log n) with a
constant factor that is exponential in the inverse of the desired accuracy. As an application of our shortest-paths algorithm,
we showhow to implementMehlhorn’s [20] 2-approximation algorithm in linear timeonproperminor-closed graph classes.
No better time bound than Mehlhorn’s own implementation of O(m + n log n) has previously been known even for planar
graphs. An important observation that we made is that Mehlhorn’s distance network is a minor of the given graph and
thus, its minimum spanning tree can be calculated in linear time with the algorithm of Mares [24] (or that of Cheriton and
Tarjan [25] in the planar case).

Our contribution and outline

The area of graph minor theory has been constantly evolving ever since the graph minor theorem of Robertson and
Seymour [26] was announced in 1988. Many important algorithms and meta-algorithms have been presented for large
problem families on minor-closed graph classes and numerous theoretical concepts have been developed to handle them.
We present the first linear-time algorithms for two fundamental graph-theoretic problems in these classes.
Our contribution can be summarized as follows:

• identifying that there is a gap in generalizing Henzinger et al.’s recursive division and shortest paths algorithms to all
proper minor-closed graph classes;
• arguing that the gap can not be closed by standard methods;
• filling in the gap using deep results in graph minor theory;
• (re)proving in detail the correctness of the modified algorithm;
• showing how tomodify a graph and its recursive division to obtain a bounded-degree graph and a recursive divisionwith
the same properties, resulting in the first linear-time shortest-paths algorithm for proper minor-closed graph classes;
• obtaining a useful application, namely, the first linear time Steiner tree approximation, which was previously not even
known for planar graphs.

In Section 2, we review some needed concepts and previouswork; in Section 3, we present ourmain result about shortest
paths and in Section 4, the application to Steiner tree approximation.

2. Preliminaries

In this section, we review some concepts and some previous results that are needed in this work. These include graph
minors, vertex partitioning, graph decomposition, and Henzinger et al.’s [8] single-source shortest-paths algorithm.

2.1. Graph minors

Aminor of a graph G is a graph that is obtained from a subgraph of G by contracting a number of edges. A class of graphs
isminor-closed if it is closed under building minors. It is called a proper class if it is neither empty nor the class of all graphs.
Examples of proper minor-closed graph families are planar graphs, bounded-genus graphs, and apex graphs. The seminal
theorem of Robertson and Seymour [26] states that any proper minor-closed class of graphs can be characterized by a finite
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set of excluded minors. Note that for a proper minor-closed class of graphs, we can always consider the number of vertices
` of the smallest excluded minor and conclude that the complete graph K` is a particular excluded minor of the class. Thus,
the class of K`-minor-free graphs includes the considered minor-closed class of graphs. In the rest of this work, we work
with K`-minor-free graphs, where ` is a fixed constant.
It follows from a theorem of Mader [27] that K`-minor-free graphs have constant average degree, for some constant

depending on `. This, in turn, implies that these classes of graphs are sparse, i.e. we havem = O(n).

2.2. Vertex partitioning

In [9], Frederickson presented a simple algorithm called FindClusters, based on depth-first search, that given a
parameter z and an undirected graphwith maximum degree 3, partitions its vertices into connected components each having
at least z and at most 3z vertices. Note that since the algorithm gives us connected components, we can contract each one of
them and get aminor of the input graphwith atmost n/z vertices. Frederickson used this algorithm to derive fast algorithms
for the minimum spanning tree and shortest-paths [10] problems. If a weighted graph does not have maximum degree 3,
one can apply the following transformation: replace a vertex v of degree d(v)with a zero-weight path of length d(v), such
that each edge incident to v is now incident to exactly one vertex of the path, i.e. we can split v using zero-weight edges. A
similar transformation can be applied to directed graphs, too, using an additional zero-weight edge to complete a directed
cycle. If the given graph is embedded in a surface, one can order the edges around the path/cycle in the sameway they were
ordered around the corresponding vertex in the given embedding. Thisway, the transformed graphwill also be embedded in
the same surface. However, for an arbitrary minor-closed class of graphs (e.g. apex graphs), it might not always be possible
to remain in the class after transforming the graph this way, see Section 3. But Frederickson’s FindClusters depends on
the graph having bounded degree. Any constant bound would suffice for our purposes but in general such a bound does not
exist for arbitrary minor-closed graph families.
Reed and Wood [12] introduced an alternative partitioning concept that can be applied to a graph G = (V , E) with

arbitrary degrees excluding a fixedminor. Consider some partitioningP = {P1, . . . , Pt} of the vertex set V . LetH = (VH , EH)
be the graph obtained by collapsing every part Pi ofG into a single vertex vi ∈ VH (1 ≤ i ≤ t) and removing loops and parallel
edges. This way, there is an edge between two vertices vi and vj of H if and only if there is an edge between a vertex of Pi
and a vertex of Pj in G (1 ≤ i < j ≤ t). We say P is a connected H-partition of G if vivj ∈ EH if and only if there is an edge
of G between every connected component of Pi and every connected component of Pj. Reed andWood proved the following
lemma1:

Lemma 2.1 ([12]). There is a linear-time algorithm that given a constant z and a graph G excluding a fixed K`-minor, outputs
a connected H-partition P = {P1, . . . , Pt} of G such that t ≤ n/z, and |Pi| < c0 · z for all 1 ≤ i ≤ t, where c0 is a constant
depending only on `.

Note that by contracting each connected component of each Pi in G to a single vertex, one gets a graph that contains an
isomorphic copy of H as a subgraph and so, H is a minor of G and in particular, is also K`-minor-free. Hence, when dealing
with graphs with no bounded degree, Lemma 2.1 can be used instead of FindClusters to partition the graph and reduce
its size while keeping it free of some fixed minor.

Corollary 2.2. Let G be a graph with n vertices excluding a fixed K`-minor, and let c0 = 2`
2
+` be a fixed constant. There exists a

linear-time algorithm H-Partition(G, z, `) with the following properties:

• it partitions the vertices of G into at most n/z sets;
• each set has at most c0z vertices;
• it collapses each set into a single vertex, creating a new graph G′;
• G′ is a minor of G with at most n/z vertices.

2.3. Graph decomposition

A balanced vertex-separation of a graph G = (V , E) is given by two sets A and B, such that A ∪ B = V , there is no edge
between A \ B and B \ A, and each one of A and B contains at most an α-fraction of the vertices (for some 1/2 ≤ α < 1).
The size of the separation is |A ∩ B|. For a function f , a subgraph-closed class of graphs is said to be f -separable if every
n-vertex graph in the class has an O(f (n))-size separator. Reed and Wood [12] showed that all K`-minor-free graphs are
f -separable in linear time for f (n) = O(n2/3). For planar graphs, one can use the seminal planar separator theorem of Lipton
and Tarjan [11] that delivers an O(

√
n)-separator in linear time.

An (r, s)-division of an n-vertex graph is a partition of the edges of the graph into O(n/r) regions, each containing rO(1)
vertices and each having at most s boundary vertices (i.e. vertices that occur in more than one region). For a nondecreasing

1 In their lemma, we substitute c0 := 2`
2
+` and z := 2k/c0 .
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positive integer function f and a positive integer sequence r = (r0, r1, . . . , rk), an (r, f )-recursive division of an n-vertex
graph is defined as follows: it contains one region RG consisting of all of G. If G has more than one edge and r is not empty,
then the recursive division also contains an (rk, f (rk))-division of G and an (r ′, f )-recursive division of each of its regions,
where r ′ = (r0, r1, . . . , rk−1). A recursive division can be represented compactly by a recursive division tree, a rooted tree
whose root represents the whole graph and whose leaves represent the edges of the graph. Every internal node represents
a region, namely, the region induced by all the leaves in its subtree. The children of a node of the tree are its immediate
subregions in the recursive division.
Using Frederickson’s partitioning [9] and division [10] methods, Henzinger et al. [8] present a linear-time algorithm to

find certain recursive divisions in planar graphs: they determine a vector r and an (r, cf )-recursive division of the graph for
some constant c , such that the inequality

ri
f (ri)
≥ 8if (ri−1) log ri+1

(
i+1∑
j=1

log rj

)
(1)

is satisfied for all ri’s exceeding a constant. The obtained recursive division tree has O(n) nodes and its depth is roughly
O(log? n). The idea of the algorithm is as follows: first, iteratively reduce the size of the graph by partitioning the vertices of
the graph (using Frederickson’s FindClusters) and building minors; then, working backwards, find (r, s)-divisions of the
smaller graphs (for appropriate values of r and s), imposing divisions on the larger graphs and at the same time building the
recursive division tree. Since the time-consuming calculation of (r, s)-divisions is done on the smaller graphs, they succeed
to prove that the overall time complexity is linear.

2.4. Single-source shortest-paths on planar graphs

Henzinger et al. prove the following theorem:

Theorem 2.3 ([8]). Let a graph G be givenwithmaximum in-/outdegree 2 and assume that G is equippedwith an (r, cf )-recursive
division tree, for some constant c, so that inequality (1) is satisfied for all ri’s exceeding a constant. Then, the single-source shortest-
paths problem with nonnegative edge-weights can be solved on G in linear time.

To prove this theorem, they use a complicated charging scheme that also depends on the graph having a single source
and bounded degree. Together with the result from the previous subsection, it follows that single-source shortest-paths with
nonnegative edge-weights can be calculated in linear-time on planar graphs.

3. Single-source shortest paths on minor-closed graph classes

In this section, we prove our main theorem about shortest paths:

Theorem 3.1. In every proper minor-closed class of graphs, single-source shortest-paths with nonnegative edge-weights can be
calculated in linear time.

First, we argue that the degree requirement of Henzinger et al.’s algorithm can not be fulfilled by standard methods for
arbitrary minor-closed classes of graphs. By ‘‘standard methods’’ we mean splitting a vertex using zero-weight edges until
the desired degree bound is reached. In Section 2.2 we discussed a particular way of splitting vertices that can be applied to
embedded graphs. In this section, we show that there exist K`-minor-free graphs, so that no matter how we split the vertices,
the resulting graph will include a minor whose size can not be bounded by a function in `. The key lies in the observation
that splitting an apex might introduce arbitrarily large minors. This is a well-known fact in graph minor theory [28]. For
the sake of completeness, we include a short proof below. Apices are a fundamental part of minor-closed graph classes
as is demonstrated by the powerful graph-decomposition theorem of Robertson and Seymour [28]. This theorem shows,
in a sense, that at most a bounded number of apices are allowed in these classes; and intuitively, splitting an apex with
unbounded degree might result in an unbounded number of apices and is thus not allowed in general.

Proposition 3.2. For every k ∈ N, there exists a K6-minor-free graph Gk, so that, if the vertices of Gk are split in any way to
achieve a maximum degree of 3, the resulting graph G′k includes a Kk-minor.

Proof (Sketch). We define Gk to be a sufficiently large planar grid-graph augmented by an apex as follows: consider a
sequence S of numbers between 1 and k, so that each possible pair of these k numbers is at least once adjacent in S. Let
t < k2 be the length of this sequence. Choose a setW of t vertices in the grid that are sufficiently far away from each other
and add an apex v0 connected to these t vertices. This completes the definition of Gk, which is clearly K6-minor-free. Now,
no matter how we split the vertices of Gk, the apex v0 will become a path of t vertices, each one connected to exactly one
vertex ofW . This path imposes an order on the vertices inW . We label the vertices inW according to this order using the
sequence S. LetWi be the set of vertices inW labeled by i (1 ≤ i ≤ k). For each i, construct a tree Ti that connects the vertices
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Fig. 1. A simplified example for the proof of Proposition 3.2: the apex of the graph in (a) is split, resulting in the graph (b); the vertices are labeled and
connected according to the disjoint trees in (c); contracting the thick edges in (b) results in a K5-minor (d).

ofWi in the planar grid. Note that if the grid is sufficiently large and the vertices inW are sufficiently far away from each
other, it is easily possible to choose the trees Ti to be all disjoint. Let U be the set of edges connecting the vertices inW with
the path resulted from splitting v0. Now, if we contract the trees Ti and the edges in U and delete redundant edges, what
remains is a Kk-minor (see Fig. 1). �

3.1. Our generalized recursive division algorithm

Our modified algorithm is given in Algorithm 3.1. Our modifications are only in three places but as we already discussed,
they are essential to make the algorithm work for all proper minor-closed graph classes. In this subsection, we discuss the
algorithm and our modifications thereof in detail and in the next subsection, we present its proof of correctness.
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Let the input graph beG = (V , E). In the first phase of the algorithm, the input graph is reduced in size by buildingminors.
Specifically, starting with G0 = G, a sequence of graphs G0,G1, . . . ,GI+1 is built, so that for i > j, Gi is a minor of Gj and
GI+1 is the first graph in the sequence having less than n/ log n vertices. To this end, a sequence of parameters zi is used to
specify the size of the next graph in the sequence as follows: let ni be the number of vertices of Gi. In the original algorithm,
the sequence is defined as z0 = 2 and zi+1 = 7z

1/5
i and has the effect that Gi is partitioned into at most ni/zi connected

components, each one having at most 3zi vertices (using Frederickson’s FindClusters [9]). Each of these components is
contracted to construct Gi+1, a minor of Gi with ni+1 ≤ ni/zi vertices.
Our first two changes occur in this phase of the algorithm. First, instead of using Frederickson’s FindClusters, wemake

use of theH-Partitionprocedure of Reed andWood [12], to achieve a similar effectwithout depending on the graphhaving
bounded degree (cf. Section 2.2). Secondly, we had to change the definition of the zi’s to be z0 = 2 and zi+1 = 14z

1/7
i . This

is due the fact that in order to prove inequality (1) in our case, we need the exponent of zi to be 17 instead of
1
5 ; but then, in

order to ensure that the zi’s still grow (extremely fast) towards infinity, the base of the exponentiation had to be changed
from 7 to 14, too. Indeed, 14 is the smallest integer that can be used, so that the zi’s grow towards infinity. Now, using the
H-Partition procedure as in Corollary 2.2, we still have that ni+1 ≤ ni/zi but now, each vertex of Gi+1 represents at most
c0zi vertices of Gi (instead of the original 3zi).
In the second phase, the algorithm works backwards from GI+1 towards G0, building (r, s)-divisions and a recursive

division tree as follows: it starts with the trivial division DI+1 of GI+1 as a single region and initializes the recursive division
tree T with a single node vG. Then, for each Gi, it considers each region R of Gi+1 and builds an (r, s)-division on it (with
appropriate values of r and s defined below); each resulting region R′ of R (of Gi+1) is turned into a region R′′ of Gi by
expanding every vertex into the at most c0zi vertices it represents in Gi; afterwards, a child vR′′ of vR is added to T . The
division Di is defined to be the decomposition of Gi by the regions R′′ obtained this way. Note that a boundary vertex is
expanded in multiple regions, creating multiple copies of the edges it expands to; there should be only one copy of these
edges and this may be achieved by assigning them to one of these regions arbitrarily.
It remains to specify how exactly and with what parameters the (r, s)-division is built in the iteration above. This is the

third place where our algorithm differs from the original. The original algorithm uses a modified version of Frederickson’s
(r, s)-division algorithm [10], called Divide, as follows: it takes three parameters G, S and r and divides the edges of an n-
vertex graph G into at most c2(|S|/

√
r + n

r ) regions, each one having at most r vertices and at most c1
√
r boundary vertices,

where c1 and c2 are constants; a vertex is considered as a boundary vertex if (i) it belongs to more than one region, or (ii)
it belongs to the set S. Internally, the linear-time planar O(

√
n)-separator of Lipton and Tarjan [11] is used to achieve the

desired division. We make use of the linear-time O(n
2
3 )-separator of Reed and Wood [12] instead; our Divide procedure

takes four parameters G, S, r , and ` and has the properties specified in Lemma 3.4 below; as it can be seen in the lemma,
a number of constants and exponents are changed. The parameter ` is a constant taken to indicate the fixed excluded K`-
minor.
In the last phase of the algorithm, the edges of each region R of D0 are added as children of the node vR to the recursive

division tree T . This completes the description of our generalized algorithm.

3.2. Correctness of our generalized recursive division algorithm

Theorem 3.3. Algorithm 3.1 is a linear-time algorithm that given a K`-minor-free graph G, finds an (r, f )-recursive division of
G that satisfies inequality (1) for all ri exceeding a constant and whose recursive division tree has O(n) nodes.

The proof of the correctness of the algorithm follows the proof of Henziger et al. [8] very closely. For the sake of
completeness, and since a number of subtle details and calculations have to be filled in and replaced at several places,
we have included the full proof in this section; only the proof of Lemma 3.4 is left for the Appendix. This lemma shows the
correctness of the Divide procedure and is based on the original proof of Frederickson [10]; Lemmas 3.5–3.7 step-by-step
complete the proof of Theorem 3.3.

Lemma 3.4. Replacing the planar separator in Frederickson’s Divide procedure [10] with the separator algorithm of Reed and
Wood [12] causes the Divide (G, S, r, `) procedure to work as follows (where G is a graph with n vertices and excludes K` as a
minor and c1 and c2 are constants depending only on `):

• it divides G into at most c2(|S|/r
2
3 +

n
r ) regions;

• each region has at most r vertices;
• each region has at most c1r

2
3 boundary vertices, where the vertices in S also count as boundary;

• it takes time O(n log n).

Recall that we start with the graph G0 = G and repeatedly apply the procedure H-Partition to each Gi to obtain Gi+1.
For each i, let ni denote the number of vertices of Gi. Afterwards wework our way back from GI+1 to G0 and obtain a division
Di on each Gi. Let ki denote the number of regions of Di. Note that the recursive division tree T has depth I + 1.
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The following proof has four parts. First, we show that each region of the division Di has at most O(z2i ) vertices and at

most O(z
5
3
i ) boundary vertices. Second, we show that the number ki of regions is O(ni/z

2
i ). Third, we show that Algorithm

3.1 takes linear time and finally, we show that the division fulfills inequality (1).
For notational convenience, let zI+1 =

√
nI+1, so the single region of the division DI+1 of GI+1 has z2I+1 vertices. Consider

iteration i ≤ I in the second phase of the algorithm. By the correctness of Divide, the decomposition DR of a region of
Di+1 consists of regions R′ of size at most zi. By the correctness of H-Partition, each vertex of Gi+1 expands to at most c0zi
vertices of Gi. Hence, each region R′′ obtained from R′ by expanding its vertices has size at most c0z2i . Similarly, each region

R′ has at most c1z
2
3
i boundary vertices by the correctness of Divide, so the corresponding region R

′′ has at most c0c1z
5
3
i

boundary vertices.

Lemma 3.5. The number ki of regions in the division Di is O(ni/z2i ).

Proof. We show by reverse induction on i that ki ≤ c3ni/z2i for all i ≥ i0, where i0 and c3 are constants to be determined.
For the base case, we have kI+1 = 1.
Consider iteration i ≤ I in the second phase, and suppose i ≥ i0. The regions of Di are obtained by subdividing the ki+1

regions comprising the division of Gi+1. Since ni+1 ≤ ni/zi and z2i+1 ≥ zi, we have by the induction hypothesis that

ki+1 ≤ c3ni+1/z2i+1 ≤ c3ni/z
2
i . (2)

Each region R of the division of Gi+1 has |SR| ≤ c0c1z
5
3
i+1 boundary vertices. Summing over all regions R in Di+1, we obtain∑

R

nR =
∑
R

(# of nonboundary vertices + # of boundary vertices)

≤ ni+1 +
∑
R

c0c1z
5
3
i+1

≤ ni+1 + c0c1ki+1z
5
3
i+1. (3)

For each region R, by correctness of Divide, the number of subregions into which R is divided is at most c2(|SR|/z
2
3
i +nR/zi),

which is in turn at most c2(c0c1z
5
3
i+1/z

2
3
i + nR/zi). Summing over all such regions R and using (3) and (2), we infer that the

total number of subregions is at most∑
R

c2(c0c1z
5
3
i+1/z

2
3
i + nR/zi) = c0c1c2ki+1z

5
3
i+1/z

2
3
i + c2

∑
R

nR/zi

≤ c0c1c2ki+1z
5
3
i+1/z

2
3
i + c2(ni+1 + c0c1ki+1z

5
3
i+1)/zi

≤ c0c1c2

(
c3ni+1
z2i+1

)
z
5
3
i+1/z

2
3
i + c2ni+1/zi + c0c1c2

(
c3ni+1
z2i+1

)
z
5
3
i+1/zi

≤ c0c1c2c3ni+1/(z
2
3
i z

1
3
i+1)+ c2ni+1/zi + c0c1c2c3ni+1/(ziz

1
3
i+1)

≤ c0c1c2c3ni/(z
5
3
i z

1
3
i+1)+ c2ni/z

2
i + c0c1c2c3ni/(z

2
i z
1
3
i+1) (4)

where in the last line we use the fact that ni+1 ≤ ni/zi. We have obtained an upper bound on the total number of subregions
into which the regions of Di+1 are divided. Each subregion becomes a region of Di. Thus, we have in fact bounded ki, the
number of regions of Di. To complete the induction step, we show that each of the three terms in (4) is bounded by c3ni/3z2i .
The second term, c2ni/z2i , is bounded by c3ni/3z

2
i if we choose c3 ≥ 3c2. The third term is smaller than the first term. As for

the first term, recall that zi+1 = 14z
1/7
i . For sufficiently large choice of i0, we can ensure that i ≥ i0 implies z

1
3
i+1 ≥ 3c0c1c2/z

2
3
i .

Thus, the first term is also bounded as desired.
We conclude that ki ≤ c3ni/z2i , completing the induction step. We have shown this inequality holds for all i ≥ i0. As for

i < i0, clearly ki ≤ (z2i )ni/z
2
i ≤ (z

2
i0
)ni/z2i . Thus, by choosing c3 to exceed the constant z

2
i0
, we obtain the lemma for every i.

�

Lemma 3.6. The algorithm runs in linear time.

Proof. The time required to form the graphs G1,G2, . . . ,GI+1 is O(
∑
i n/zi), which is O(n). For i ≤ I , the time to apply

Divide to a regionR ofGi+1with nR vertices isO(nR log nR). Each such region hasO(z2i+1) vertices, so the time isO(nR log zi+1).
Summed over all regions R, we get

∑
R O(nR log zi+1) = O(ni+1 log zi+1). The time to obtain the induced division ofGi isO(ni).
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Thus, the time to obtain divisions of all the Gi’s is
∑
i O(ni+1 log zi+1). Since ni+1 ≤ ni/zi ≤ n/zi and log zi+1 = O(z

1
7
i ), the

sum is O(n). �

Lemma 3.7. The recursive division obtained by Algorithm 3.1 satisfies inequality (1).

Proof. First, note that combining the inequalities ni+1 ≤ ni/zi, we obtain

ni ≤ n/
∏
j<i

zj. (5)

Note moreover that each vertex of Gi expands to at most
∏
j<i c0zj vertices of G.

Consider the division Di of Gi, and the division it induces on G. The division Di consists of O(ni/z2i ) regions, each having

O(z2i ) vertices and O(z
5
3
i ) boundary vertices. This induces O(ni/z

2
i ) regions in G, each consisting of O(z

2
i
∏
j<i c0zj) vertices

and O(z
5
3
i
∏
j<i c0zj) boundary vertices.

Let ri = z2i
∏
j<i zj and define

f (ri) = z
5
3
i

∏
j<i

c0zj. (6)

Then, by (5), the induced division of G has O(n/ri) regions each with O(ric i0) vertices and O(f (ri)) boundary vertices. Since
c i0 = O(

∏
j≤i zj), we get that the number of vertices per region is O(r

2
i ). We have

ri
f (ri)
=

z2i

z
5
3
i c
i−1
0

=
z
1
3
i

c i−10
. (7)

Using the definition of zi, one can verify that zi−1 = θ(log7 zi) and
∏
j<i zj = O(log

8 zi). Hence

f (ri−1) = c i−20 z
5
3
i−1

∏
j<i−1

zj = c i−20 O(log
35
3 zi log8 log zi). (8)

We also have

log ri+1 = log

(
z2i+1

∏
j≤i

zj

)
= O(log(z2i+1 log

8 zi+1)) = O(log zi+1) = O(z
1
7
i ) (9)

and consequently
∑i+1
j=1 log rj = O(z

1
7
i ). For a sufficiently large constant i0, we have for all i ≥ i0,

8if (ri−1) log ri+1

(
i+1∑
j=1

log rj

)
≤ 8ic i−20 O(log

35
3 zi log8 zi)O(z

1
7
i )O(z

1
7
i )

= 8ic i−20 O(z
2
7
i log

20 zi)

≤
z
1
3
i

c i−10
=

ri
f (ri)

, (10)

since the zi’s grow much faster than any exponential function having a constant in the base; specifically, we can see below

that z
1
21
i ≥ g

i
0 log

20 zi for any constant g0 ≥ 0 if i is larger than a constant:

1
21
log zi ≥ i log g0 + 20 log log zi ⇔

1
21
log 14z

1
7
i−1 ≥ i log g0 + 20 log log 14z

1
7
i−1

⇔ z
1
7
i−1 ≥ g1i+ g2 log z

1
7
i−1 + g3, (11)

for some constants g1, g2, and g3. And the last inequality is true if i is large enough, since z
1
7
i grows much faster than i. So,

inequality (1) is fulfilled for all ri exceeding the constant ri0 . �
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Fig. 2. (a) A given graph with 3 regions indicated by different line-styles and shaded boundary vertices; (b) the transformed graph, such that every vertex
has degree at most 3; the number of boundary vertices of each region has exactly doubled.

3.3. Establishing the degree requirement

After having computed a recursive division, we still have to transform the graph to have maximum degree 3; otherwise,
Theorem 2.3 can not be applied, see Section 2.4. We can achieve this, using our recursive division, by the following lemma.
Note that according to Proposition 3.2. the resulting graph might not be K`-minor-free but it will still serve our purpose of
finding shortest paths in linear time, since it is now accompanied by a recursive division satisfying inequality (1).

Lemma 3.8. Let G be an edge-weighted directed graph excluding a fixed minor and let T be a recursive division tree representing
an (r, f )-recursive division of G. Then one can replace every vertex of G with a zero-weight cycle to obtain a graph G′ and at the
same time modify T into a tree T ′, so that G′ has in-/outdegree at most 2 and T ′ represents an (r, f )-recursive division of G′. This
modification takes linear time.

Proof. Recall that the leaves of T represent the edges of G and that internal nodes of T correspond to regions of G, namely,
the region induced by all the leaves in the subtree of that node. We modify G and T at the same time. First, for every vertex
v of Gwith degree d(v) (the sum of the indegree and outdegree), we add new vertices v1, . . . , vd(v) to G. We do an in-order
traversal of T and for every leaf of T representing an edge e = vw of G, we do the following: let e be the ith edge of v and the
jth edge of w that we encounter. We change the endpoints of e to be the vertices vi and wj and add two new zero-weight
edges vivi+1 and wjwj+1 as siblings of e to T (if i = d(v), we use vd(v)v1 instead; same for w). This way, every vertex v of
G is replaced by a zero-weight cycle (v1, . . . , vd(v)) (see Fig. 2). The original vertices of G will become isolated and can be
removed. We call the resulting graph G′ and the modified recursive division tree T ′. Note that since T has size O(n), this
procedure takes only linear time. Also note that we only added new leaves to T and thus, the internal nodes of T and T ′
correspond one-to-one to each other.
Now consider an internal node q′ of T ′. It represents a region R′ of G′ and corresponds to a node q of T , representing a

region R of G. R has rO(1) vertices and O(f (r)) boundary-vertices. The number of edges of R′ is at most three times as large as
in R and the number of vertices is proportional to the number of edges of R. But R is a subgraph of G, excludes the same fixed
minor and thus, the number of its edges is linear in the number of its vertices. Hence, R′ still has rO(1) vertices and edges.
Also, since R is represented by the subtree rooted at q, its edges were traversed in order while building T ′ and G′. So, every
vertex v in R is replaced by a path vi, vi+1, . . . , vj with 1 ≤ i ≤ j ≤ d(v) in R′. Thus, if v is a boundary vertex of R, then
instead, we have vi and vj as boundary vertices of R′. So R′ has at most twice as many boundary vertices as R, i.e. still O(f (r))
(see Fig. 2). So, T ′ represents an (r, f )-recursive division of G′. �

Proof of Theorem 3.1. Note that up to the choice of the start- and endvertex inside the zero-weight cycles of G′, shortest
paths in G and G′ correspond one-to-one to each other. G′ fulfills all the requirements of Theorem 2.3 and combining this
with Theorem 3.3, and Lemma 3.8, we obtain our main theorem, namely, Theorem 3.1. �

4. Steiner tree approximation

We show how to implement Mehlhorn’s 2-approximation algorithm for the Steiner tree problem [20] in linear time on
proper minor-closed graph classes using the result above and the observation that Mehlhorn’s distance network is a minor
of the input graph. First, we briefly review Mehlhorn’s algorithm and then we present our implementation.

4.1. Overview of Mehlhorn’s algorithm

Given an n-vertex graph G = (V , E) with nonnegative edge-weights and a vertex-subset K of terminals, one can
determine a Steiner tree of K in G as follows: first, buildMehlhorn’s distance network N?D = (K , E

?
D), a special graph defined

on the set of terminals, in which every edge corresponds to a path in G. To calculate N?D, we first have to partition the graph
into Voronoi regions with respect to the set of terminals K . Every vertex of the graph belongs to the Voronoi region of its
closest terminal (if a vertex happens to have the same distance to more than one terminal, it should belong to the Voronoi
region of the terminal with the smallest index). Voronoi regions in graphs can be calculated easily using a shortest-paths
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computation: add a super-source s0 to the graph and connect it to every terminal with a directed zero-weight edge; find the
shortest paths from s0 to every vertex and then remove s0 from the resulting shortest-paths tree. The tree falls apart into |K |
connected components, each having a terminal as their root. These components correspond exactly to the Voronoi regions
of the terminals. Using Dijkstra’s algorithm, one obtains a running time of O(n log n+m) for general graphs.
In the distance networkN?D, there exists an edge between two terminals u and v if and only if there exists an edge between

two vertices x and y in G, so that x belongs to the Voronoi region of u and y belongs to the Voronoi region of v. The weight
of such an edge is the length of the shortest such paths connecting u and v. Once the Voronoi regions of Gwith respect to K
are determined, N?D can be constructed in linear time using bucket sort.
After the distance network N?D is determined, one can find its minimum spanning tree and replace every edge with the

corresponding path in G. Mehlhorn shows that the resulting graph is indeed a tree and its weight is at most (2− 2
|K | ) times

the weight of the minimum Steiner tree of K in G. The implementation he offers runs in time O(n log n + m) for general
graphs.

4.2. A linear-time implementation for proper minor-closed classes

Theorem 4.1. There is a linear-time algorithm that calculates a 2-approximation for the Steiner minimum tree problem in any
proper minor-closed class of graphs.

We first show how to find the Voronoi regions in linear time. In graphs excluding a fixed minor K`, we observe that the
graph with an added super-source will exclude K`+1; so, Theorem 3.1 applies and shortest paths can be calculated in linear
time. Alternatively, using a similar method as in Section 3.3, one can first find a recursive division of G and then add the
super-source and its edges to G and to the recursive division. This could result in much better constants in the running time
of the algorithm, especially for planar graphs. We get

Lemma 4.2. For a graph G excluding a fixed minor and having nonnegative edge-weights and a given set of terminals K in G, the
Voronoi regions of G with respect to K can be determined in linear time.

Corollary 4.3. In a proper minor-closed class of graphs, the distance network N?D can be calculated in linear time for any given
set of terminals in a given graph from the class.

The next step of Mehlhorn’s algorithm is to calculate the minimum spanning tree of N?D. But notice that N
?
D is obtained

by contracting the Voronoi regions of the graph (which are connected) and removing loops and parallel edges, i.e.

Observation 4.4. For a given graph G and a set of terminals, the distance network N?D is a minor of G.

Thus, N?D belongs to the same proper class of minor-closed graphs as G and one can apply the linear-time minimum
spanning tree algorithm of Mares [24]. When we are dealing with planar graphs, the algorithm of Cheriton and Tarjan can
be used [25]. Asmentioned before, the last step ofMehlhorn’s algorithm is to replace the edges ofN?D with the corresponding
paths from G and this can clearly be done in linear time. Hence, Theorem 4.1 is proven. �
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Appendix. Proof of Lemma 3.4

Lemma A.1. Replacing the planar separator in Frederickson’s Divide procedure [10] with the separator algorithm of Reed and
Wood [12] causes the Divide (G, S, r, `) procedure to work as follows (where G is a graph with n vertices and excludes K` as a
minor and c1 and c2 are constants depending only on `):

• it divides G into at most c2(|S|/r
2
3 +

n
r ) regions;

• each region has at most r vertices;
• each region has at most c1r

2
3 boundary vertices, where the vertices in S also count as boundary;

• it takes time O(n log n).

Proof. In the following, when we refer to boundary vertices, we mean vertices that belong to more than one region or
vertices that belong to the set S. The Divide procedure works as follows: assign weight 1n to each vertex of G and find a

O(n
2
3 )-separator in G; recursively apply the separation algorithm to each region with more than r vertices. Now each region

has at most r vertices. While there is a region with more than c1r
2
3 boundary vertices, do the following: if such a region has

n′ boundary vertices, assign weight 1n′ to each of them, assign weight zero to the other vertices of that region and apply the
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separator theorem. In the end, all regionswill have the desired properties and the algorithm takes timeO(n log n). It remains
to show the bound on the number of the regions.
Consider the division before the regions are further split to enforce the requirement on the number of boundary vertices

(i.e. just when we have achieved that each region has size at most r). Let VB be the set of vertices that are included in more
than one region. For a vertex v ∈ VB, let b(v) be one less than the number of regions that contain v in the division. Let B(n, r)
be the total of b(v) over all vertices v ∈ VB. Thus, B(n, r) is the sum of the number of vertices v ∈ VB weighted by the count
b(v). From the separation theorem in [12], we have the following recurrence:

B(n, r) ≤ d0n
2
3 + B(αn, r)+ B((1− α)n, r) for n > r ,

B(n, r) = 0 for n ≤ r
(A.1)

where d0 is a constant and 12 ≤ α ≤
2
3 . We claim that

B(n, r) ≤ d1
n

r
1
3
− d2n

2
3 for n ≥

r
3
, (A.2)

with some constants d1 and d2. The claim can be shown by induction:
As the base of the induction, we consider the cases r3 ≤ n ≤ r . Note that since after splitting a region, each subregion

still has at least one-third of the total vertices, it is sufficient to only consider graphs with at least r/3 vertices. By choosing
d1 ≥ 3

1
3 d2, we have

d1n

r
1
3
≥
3
1
3 d2n

3
1
3 n

1
3
= d2n

2
3 ⇒

d1n

r
1
3
− d2n

2
3 ≥ 0 = B(n, r). (A.3)

For the inductive step, i.e. for n > r , we have

B(n, r) ≤ d0n
2
3 + d1

αn

r
1
3
− d2α

2
3 n

2
3 + d1

(1− α)n

r
1
3
− d2(1− α)

2
3 n

2
3

= d1
n

r
1
3
+ n

2
3 (d0 − d2α

2
3 − d2(1− α)

2
3 )

≤ d1
n

r
1
3
− d2n

2
3 (A.4)

if we choose d2 ≤ d2α
2
3 + d2(1− α)

2
3 − d0. This can be achieved by setting d2 = 5d0 ≥

d0

α
2
3 +(1−α)

2
3 −1
.

In particular, we have shown so far that B(n, r) = O(n/r
1
3 ). The sum of the number of vertices in each region is

n+ B(n, r) = n+ O(n/r
1
3 ) and each region hasΘ(r) vertices, so the number of regions we have so far isΘ(n/r).

Let ti be the number of regionswith i boundary vertices (recall that in our definition, the set of boundary vertices is VB∪S).
We have∑

i

iti =
∑
v∈VB

(b(v)+ 1)+ |S \ VB| < 2B(n, r)+ |S| = O(n/r
1
3 + |S|). (A.5)

Let s(i) be an upper bound on the number of splits that have to be applied to a graph with at most r vertices and i boundary
vertices, until each of its regions has at most c1r

2
3 boundary vertices, for a constant c1 to be determined. We have that

s(i) ≤ s(αi+ d0r
2
3 )+ s((1− α)i+ d0r

2
3 )+ 1 for i > c1r

2
3

s(i) = 0 for i ≤ c1r
2
3

(A.6)

where 12 ≤ α ≤
2
3 . We claim that

s(i) ≤
d3i

c1r
2
3
−
2d0d3
c1
− 1 for i ≥

c1r
2
3

3
(A.7)

for some constant d3. We prove our claim by induction. Like in the previous induction, for the base case we may assume
c1r

2
3

3 ≤ i ≤ c1r
2
3 . By choosing d3 = 12 and c1 = 8d0, we have

d3i

c1r
2
3
−
2d0d3
c1
− 1 ≥ 12 ·

1
3
−
24d0
8d0
− 1 = 0 = s(i). (A.8)
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For the inductive stepwith i > c1r
2
3 , note thatαi+d0r

2
3 ≤

2
3 i+

d0
c1
i ≤ ( 23+

1
8 )i < i. The sameway,wehave (1−α)i+d0r

2
3 < i.

So, we may apply the induction hypothesis to (A.6) and a straightforward calculation will prove our claim.
We have shown that for a region with i boundary vertices, where i > c1r

2
3 , at most d3i

c1r
2
3
splits need be done for some

constants c1 and d3. This will result in at most d0r
2
3 new boundary vertices per split and a total of at most d3i/(c1r

2
3 ) new

regions. Thus, the total number of new boundary vertices is at most∑
i

(d0r
2
3 )(d3i/(c1r

2
3 ))ti ≤

d0d3
c1

∑
i

iti = O(n/r
1
3 + |S|). (A.9)

The number of new regions is at most∑
i

(d3i/(c1r
2
3 ))ti =

d3

c1r
2
3
O(n/r

1
3 + |S|) = O(n/r + |S|/r

2
3 ). � (A.10)
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