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SUMMARY
Two recurrent mutations, K27M and G34R/V, within histone variant H3.3 were recently identified in �50% of
pHGGs. Both mutations define clinically and biologically distinct subgroups of pHGGs. Here, we provide
further insight about the dominant-negative effect of K27M mutant H3.3, leading to a global reduction of
Significance

Loss of polycomb repression, which is reflected by reduced H3K27me3 levels, is associated with unfavorable prognosis in
several cancer entities. Here, we highlight themolecular mechanism of global H3K27me3 loss in pHGGs harboring the K27M
mutation of histone H3.3. Additionally, we provide evidence that H3K27me3 occupancy as well as DNAmethylation are spe-
cifically altered in K27M mutant pHGGs. Both deregulated epigenetic mechanisms cooperate to establish a transcriptional
program that is specific for K27Mmutant pHGGs. In conclusion, our data shed light on themolecular consequences induced
by one of the two histone H3.3 mutations driving tumorigenesis in �50% of pHGGs.
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the repressive histone mark H3K27me3. We demonstrate that this is caused by aberrant recruitment of the
PRC2 complex to K27Mmutant H3.3 and enzymatic inhibition of the H3K27me3-establishing methyltransfer-
ase EZH2. By performing chromatin immunoprecipitation followed by next-generation sequencing and
whole-genome bisulfite sequencing in primary pHGGs, we show that reduced H3K27me3 levels and DNA
hypomethylation act in concert to activate gene expression in K27M mutant pHGGs.
INTRODUCTION

Pediatric high-grade gliomas (pHGGs), which include glioblas-

tomas and diffuse intrinsic pontine gliomas (DIPGs), represent

a highly malignant type of brain tumor in children, which is

reflected by a 3-year overall survival rate of only 5%–10%

(Louis et al., 2007). Similar to other cancers, comprehensive

sequencing studies have revealed a variety of genetic abnormal-

ities in chromatin remodeling factors in pHGGs (Fontebasso

et al., 2013). However, unique to HGGs in children and adoles-

cents are two recurrent mutations within the histone H3.3 gene

H3F3A, which have been identified in �50% of cases (Schwart-

zentruber et al., 2012; Wu et al., 2012). These two mutations

result in substitutions at residues K27 and G34 on the amino-ter-

minal tail of H3.3. The K27 mutations universally substitute the

K27 with a methionine (K27M), whereas the G34 mutations typi-

cally replace the G34 with an arginine (G34R), and in some cases

with a valine (G34V). Similar mutations have also been reported

at a lower frequency in HIST1H3B, which encodes the canonical

histone H3.1. These HIST1H3Bmutations have exclusively been

identified in DIPGs (Wu et al., 2012). Interestingly, K27M and

G34R/V mutations are associated not only with clinical parame-

ters such as patient age or tumor location, but they also exhibit a

mutation-specific gene expression and DNA methylation profile

(Khuong-Quang et al., 2012; Sturm et al., 2012). Recently, it has

been reported that K27M mutant pHGGs display a global

decrease of the repressive posttranslational histone modifica-

tion H3K27me3 (Chan et al., 2013; Lewis et al., 2013; Venneti

et al., 2013), which under physiological conditions is mainly

established by the H3K27-specific histone methyltransferase

enhancer of zeste 2 (EZH2) within the Polycomb Repressive

Complex 2 (PRC2) (Margueron and Reinberg, 2011). Mechanis-

tically, reduction of H3K27me3 levels is caused by an inhibitory

effect of the K27M mutant H3.3 protein (Lewis et al., 2013).

In this study, we explore the dominant-negative effect of K27M

mutant H3.3 and the association of K27M-induced H3K27me3

reduction with DNA methylation and gene expression.

RESULTS

H3K27me3 Is Strongly Reduced in K27MMutant pHGGs
Recent studies have reported a reduction of H3K27me3 levels in

K27M mutant pHGGs by using immunohistochemistry (IHC) on

small numbers of patient samples (n % 20 tumors; Lewis et al.,

2013; Venneti et al., 2013). To investigate whether immunohisto-

chemical testing of H3K27me3 abundance in pHGGs might be

useful for routine clinical application, we performed IHC for

H3K27me3 in a large cohort of pHGGs with known H3F3Amuta-

tion status (n = 104). Strikingly, all K27M mutant pHGGs (n = 21)

showed a strong reduction of overall H3K27me3 levels (Fig-

ure 1A), even though the antibody detects H3K27me3 at all H3
Can
variants including canonical histone proteins. H3K27me3-

positive endothelial cells lining the blood vessels show that

H3K27me3 is specifically lost in the tumor cells (Figure 1B). In

contrast, all G34R/V mutant cases (n = 7) and 74 out of 76

pHGGs (97%) without H3.3 mutation (wild-type H3.3 [H3.3-

WT]) were strongly positive for H3K27me3. No mutation of

canonical H3.1 was found in the two H3K27me3-negative

tumors without H3.3 mutation. The average number of

H3K27me3 immunopositive cell nuclei in K27M mutant pHGGs

did not exceed 8% (average, 5%) compared with at least 71%

(average, 95%) of H3K27me3-positive cell nuclei in non-K27M

tumor cores (Figure 1C). Moreover, no global differences

were observed for several other key histone marks including

H3K4me3, H3K9me3, and H3K36me3, which are all known

to also substantially influence chromatin structure and gene

expression. Immunopositivity for these three histone marks

was detected in all analyzed tumor samples (data not shown).

To further confirm the IHC results, we isolated histone extracts

from a non-overlapping cohort of additional primary pHGG

samples and studied H3K27me3 levels by western blot analysis.

Two different H3K27me3-specific antibodies detected signifi-

cantly lower H3K27me3 levels in all K27M mutant tumors

(n = 3) compared with H3.3-WT samples (n = 2) and a G34R

mutant tumor (Figure 1D).

We also determined H3K27me3 levels in a set of primary

cultures/cell lines, which cover the whole spectrum of H3.3 mu-

tations that have been identified in primary pHGG tumors. We

used primary cell lines established from freshly resected K27M

mutant pHGGs (NEM157 and NEM165) as well as a G34R

mutant tumor (MGBM1) and compared them with the levels in

a human embryonal kidney cell line (HEK293T, H3.3-WT), human

epithelial carcinoma cells (HeLa-S3, H3.3-WT), and two well-

established pediatric glioblastoma cell lines (SF188, H3.3-WT

and KNS42, H3.3-G34V). Whereas H3K27me3 levels were found

to be subject to fluctuations in non-K27M cell types (very high in

HEK293T, low in MGBM1), H3K27me3 was almost completely

absent in NEM157 and NEM165 cells, which harbor a hetero-

zygous K27M mutation (Figure 1E).

H3.3-K27M Is a Dominant-Negative Inhibitor of H3K27
Di- and Trimethylation
All described H3F3A mutations in primary tumors and cell lines

are heterozygous and thus affect only one H3F3A allele, indi-

cating a dominant-negative effect of the K27M mutant protein

on the wild-type histone H3 protein. Although transgene-

induced reduction of H3K27me3 was shown to take place in a

cell-type-independent manner in HEK293T, human astrocytes,

mouse embryonic fibroblasts, and human neural stem cells

(NSCs; Chan et al., 2013; Lewis et al., 2013), we aimed to mimic

the genetic background of pHGGs more closely by generating

isogenic SF188 glioblastoma cells stably overexpressing ectopic
cer Cell 24, 660–672, November 11, 2013 ª2013 Elsevier Inc. 661
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Figure 1. pHGGs Carrying Histone H3.3-K27M Mutations Show a Global Reduction of K27 Trimethylation on Histone H3

(A) Summary of H3K27me3 immunostaining of 104 pHGGs containing wild-type (H3.3-WT), K27M mutant, or G34R/V mutant H3.3 (***p < 0.001).

(B) Representative results of immunohistochemistry for H3K27me3 of a K27M mutant (left) and H3.3-WT (right) pHGG.

(C) Quantification of H3K27me3 positive cell nuclei in pHGGs without (non-K27M) or with the K27M mutation (200 cell nuclei/tumor) (***p < 0.001). Box plots

represent the maximum/minimum number (%) of H3K27me3 positive cell nuclei. The mean is indicated by the dashed line.

(D) Western blot analysis of histone extracts from primary pHGGs using two different H3K27me3-specific antibodies. Numbers below the western blots indicate

H3K27me3 band intensity (normalized to total histone H4) measured by using ImageJ.

(E) Evaluation of H3K27me3 expression in patient-derived pHGG cell lines, HEK293T, and HeLa-S3 cells. Numbers below the western blots indicate H3K27me3

band intensity (normalized to total histone H4) measured by using ImageJ.
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wild-type, K27M or G34R mutant H3.3. Initially, at 6 days after

transduction, K27M-expressing SF188 cells did not show differ-

ences in H3K27 trimethylation compared with cells overexpress-

ing H3.3-WT or the G34R variant (Figure S1A available online).

However, it was previously reported that reshaping of the epige-

nome occurs over an extended time period (Turcan et al., 2012).

In line with this, Chan et al. (2013) showed that K27M-induced

reduction of H3K27me3 is dependent on several cell divisions.

Therefore, we re-analyzed transduced SF188 cells maintained

in culture for 70 days (25 passages). At this later time point,

H3K27me3 levels were significantly reduced in SF188 cells ex-

pressing the K27M mutant (Figure 2A). We further verified this

regulatory effect of the K27M transgene on global H3K27me3

levels in vitro by using wild-type, K27M-transduced, or G34R-
662 Cancer Cell 24, 660–672, November 11, 2013 ª2013 Elsevier Inc
transduced HEK293T, cultured for the same time period

(Figure 2A).

To confirm the dominant-negative effect of the K27M mutant

on endogenous H3 histones, we immunoprecipitated mono-

nucleosomes using epitope-tagged wild-type or K27M mutant

H3.3 expressed in SF188, HEK293T, and HeLa-S3 cells for at

least 10 days. As expected, mono-, di-, and trimethylation of

H3K27 was absent on exogenous K27Mmutant H3.3 (Figure 2B,

labeled with *). In addition, reduced di- and trimethylation was

also detected at endogenous wild-type H3 proteins within the

same nucleosomes (Figure 2B, labeled with **; Table S1) as

well as with global endogenous H3 protein (Figure 2B, labeled

with ***; Table S1). Notably, H3K27me1 levels were found to be

unchanged at wild-type H3 within the same nucleosome, as
.
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well as overall endogenous H3 protein (Figure 2B). Together, our

results strongly suggest that K27M mutant H3.3 interferes with

PRC2 function, as this complex is responsible for di- and trime-

thylation (but not monomethylation) of H3K27 through its enzy-

matic subunit EZH2 (Margueron and Reinberg, 2011).

K27M Mutant H3.3 Aberrantly Binds PRC2 and
Interferes with Its Enzymatic Activity
Di- and trimethylation of K27 at histone H3 is mainly mediated by

the nonredundant H3K27-specific histone methyltransferase

EZH2, which is part of PRC2. Recently, it has been reported

that synthetic peptides containing the K27M mutant interact

with the catalytic site of EZH2 (Lewis et al., 2013). By performing

coimmunoprecipitation (coIP) experiments in SF188, HEK293T,

and HeLa-S3 cells ectopically expressing HA-tagged wild-type

or K27M mutant H3.3, we found that EZH2 as well as the

PRC2 component suppressor of zeste homolog 12 (SUZ12)

was dramatically enriched in immunoprecipitated K27M-con-

taining mono-nucleosomes relative to wild-type H3.3 protein in

all three cell lines (Figure 2C; Table S1). Conversely, coIP for

endogenous EZH2 in all three cell lines led to an enrichment of

exogenous K27M mutant H3.3 compared with the exogenous

wild-type H3.3 protein (Figure 2D).

Next, we investigated whether PRC2 complexes bound to

K27M mutant H3.3 were associated with an altered enzymatic

activity of EZH2. Using total chromatin lysate and an immuno-

precipitation (IP) fraction bound to anti-HA beads from both

wild-type H3.3 and K27M-transduced SF188, HEK293T, or

HeLa-S3 cells, we performed in vitro histone methyltransferase

(HMT) assays.We observed a significant decrease of HMT activ-

ity of 40%–70%with chromatin lysate from all three K27M-trans-

duced cell lines. Even more strikingly, with the IP fraction

composed of K27M-containing mono-nucleosomes from each

cell line, EZH2 enzymatic activity was decreased by at least

85% (Figure 2E; Figure S1B). To evaluate the inhibitory effect

of K27M mutant H3.3 on EZH2 catalytic activity, we determined

the IC50 value of K27M-containing peptides and compared it

with the highly potent and selective small molecule EZH2-inhib-

itor GSK343 (Verma et al., 2012). Whereas addition of wild-type

H3.3 peptide was found to have a stimulatory effect on PRC2

activity (Figure S1C), the IC50 value of the K27M-containing pep-

tide (0.067 mM) was in a range similar to that of GSK343

(0.027 mM) (Figure 2F). Instead of using synthetic peptides, we

also performed in vitro HMT assays using oligonucleosomes

purified directly from K27M mutant NEM157 cells or SF188 cells

(H3.3-WT). The addition of oligonucleosomes purified from

NEM157 cells led to a significant inhibition of PRC2 enzymatic

activity compared with SF188 oligonucleosomes (Figure S1D).

In contrast, the enzymatic activities of the H3K27me3 deme-

thylases JMJD3/UTX were found to remain largely unchanged

between wild-type and K27M-containing mono-nucleosomes

when tested with the same chromatin lysates and IP-bound frac-

tions (Figure 2G).

Genome-wide Analysis of H3K27me3 in K27M Mutant
pHGGs
To generate genome-wide maps of H3K27me3 in primary K27M

mutant pHGGs, we performed chromatin IP followed by next-

generation sequencing (ChIP-Seq) on fresh-frozen primary
Can
tumor tissue from two K27M mutant pHGGs and two pHGGs

without H3.3 mutation. In addition, we conducted H3K27me3

ChIP-Seq in the K27M mutant primary cell line NEM165 as well

as the established pediatric glioblastoma cell line SF188 (H3.3-

WT). As expected, the identified number of H3K27me3 ChIP-

Seq peaks in both K27Mmutant pHGGs was substantially lower

across the entire genome (promoter: transcriptional start site

[TSS] ± 3 kb, gene body, intergenic regions) compared with

both H3.3-WT tumors (Figure 3A). The proportions of overlap-

ping ChIP-Seq peaks among H3.3-WT pHGGs and among

K27M mutant tumors were comparable (37% overlapping

H3K27me3 peaks in both groups; Figure 3B). In line with

the K27M-induced reduction of H3K27me3, the number of

H3K27me3 peaks unique to H3.3-WT tumors was four times of

the number of peaks unique to K27Mmutant pHGGs (Figure 3B).

Although global H3K27me3 levels detected by western blot

are dramatically reduced in K27M mutant NEM165 cells (Fig-

ure 1E), there was no clear reduction in peak number in these

cells compared with SF188 cells (Figure 3A). Moreover, only

57% of ChIP-Seq Peaks detected in NEM165 cells overlapped

with peaks detected in at least one of the K27M mutant primary

tumors (Figure 3B). In contrast, we identified a higher concor-

dance between SF188 cells and H3.3-WT primary tumors

(92% overlapping ChIP-Seq peaks).

Next, we looked at global differences in H3K27me3 ChIP-Seq

peaks (n = 21,217) identified in primary tumors (Figure 4A). In

total, 75% of all detected H3K27me3 peaks were found to be

reduced or lost in K27M mutant tumors (n = 15,853). However,

our analysis also revealed a significant number of H3K27me3

peaks showing increased H3K27me3 occupancy in K27M

mutant tumors (n = 5,364). Even more interestingly, peaks with

reduced H3K27me3 levels had a significantly different genomic

location to peaks with increased H3K27me3 occupancy (c2

test; p < 0.01). Peaks with reduced and increased H3K27me3

levels in K27M mutant tumors were more frequently associated

with gene promoters and intergenic regions, respectively

(Figure 4A).

In order to find out to what extent our in vitro cultures recapit-

ulate H3K27me3 occupancy in primary pHGGs, we conducted a

similar analysis with global peak distribution for the analyzed cell

lines (NEM165 and SF188). This highlighted substantial differ-

ences in H3K27me3 distribution between primary tumors and

both cell lines (Figures S2A and S2B). Due to these differences,

ChIP-Seq data from in vitro cultures were excluded from sub-

sequent analyses.

Alterations in H3K27me3 occupancy in the promoter have

been shown to affect gene expression. Therefore, we compared

gene expression data of 12 K27Mmutant tumors and 10 pHGGs

without H3.3 mutations to specifically analyze H3K27me3 occu-

pancy around the TSS of differentially expressed genes. In doing

so, we identified a total of 294 genes as being differentially

expressed (p < 0.01; Student’s t test, Benjamini-Hochberg

correction; Figure S2C; Table S2). Gene ontology analysis of

differentially expressed genes revealed a significant enrich-

ment of genes involved in neuronal differentiation (Table S3).

Compared with all other genes, differentially expressed genes

were found to be significantly overrepresented within our set of

genes showing alterations in H3K27me3 (p < 0.01, Fisher’s exact

test). Remarkably, 66% (95 out of 143) of transcriptionally
cer Cell 24, 660–672, November 11, 2013 ª2013 Elsevier Inc. 663
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Figure 2. K27M Mutant H3.3 Exerts a Dominant-Negative Effect on the Methylation State of Wild-Type H3K27
(A) Western blot of H3K27me3 in histone extracts from SF188 and HEK293T cells transduced with HA-tagged H3.3 (WT, K27M, or G34R). Numbers below the

western blot indicate H3K27me3 band intensity (normalized to total histone H4) measured by using ImageJ.

(B) Western blot analysis of methylatedmarks onmono-nucleosome immunoprecipitates of HA-tagged histone H3.3 in SF188, HEK293T, and HeLa-S3 cells. The

symbols * and ** denote exogenous HA-tagged histone H3.3 and endogenous histone H3 within mono-nucleosomes, respectively; *** denotes total endogenous

histone H3. Anti-histone H3, H4, anti-HA, and input protein lysates are shown as controls.

(C) Western blot analysis of EZH2 and SUZ12 in immunorecipitates of exogenous HA-tagged histone H3.3 (WT or K27M) expressed in SF188, HEK293T, or

HeLa-S3 cells. Anti-HA is shown as loading control. The * denotes IgG light chain.

(D) Exogenous HA-tagged H3.3 (WT or K27M) coimmunoprecipitated with endogenous EZH2 in SF188, HEK293T, and HeLa-S3 cells was detected by western

blot analysis. Anti-EZH2 and anti-SUZ12 are shown as loading controls.

(legend continued on next page)
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Figure 3. H3K27me3 Occupancy in Primary pHGGs and in Vitro Cultures

(A) Bar chart representing the numbers of overall H3K27me3 ChIP-Seq peaks identified in different genomic regions in four pHGGs and the two patient-derived

glioblastoma cell lines, SF188 and NEM165.

(B) Venn diagrams illustrating overlapping H3K27me3 ChIP-Seq peaks in H3.3-WT and/or K27M mutant samples.
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upregulated genes in K27M mutant pHGGs were found to hold

decreased levels of H3K27me3 compared with H3.3-WT

tumors (Figure 4B). Elevated gene expression and decreased

H3K27me3 occupancy were found for several genes that are

known to be involved in gliomagenesis, such as the platelet-

derived growth factor receptor-a (PDGFRA) gene (Figure 4B;

Table S2) (Verhaak et al., 2010; Zarghooni et al., 2010).

In addition to overall reduction of H3K27me3, we also identi-

fied several genes/loci with increased levels of H3K27me3 and

concomitant reduction of gene expression specifically in K27M

mutant pHGGs (Figures 4A and 4B; Table S2). One example

showing reduced expression and a gain of H3K27me3 occu-

pancy in its promoter in K27M mutant pHGGs was the MHC

class I polypeptide-related sequence A (MICA) gene (Figure 4B).

Downregulation of this gene has been suggested as a potential

mechanism of immune evasion in malignant gliomas (Eisele

et al., 2006). By comparing ChIP-Seq data of a K27M mutant

DIPG cell line and NSCs, a recent study also reported on the

K27M-specific gain of H3K27me3 at specific genes (Chan

et al., 2013). In line with this study, the long isoform of CDK6

was also found to hold elevated levels of H3K27me3 in both

K27M mutant primary pHGGs (Figure S2D).
(E) In vitro histone H3K27methyltransferase enzymatic assay using total chromati

SF188, HEK293T, or HeLa-S3 cells (***p < 0.001, **p < 0.01, *p < 0.05).

(F) IC50 measurement of K27M peptide (AA16–46) and the EZH2 inhibitor GSK34

(G) In vitro JMJD3/UTX histone demethylase activity assay with the same samp

represent standard deviation. See also Figure S1 and Table S1.

Can
In keeping with the above findings, among the differentially

expressed genes we found a significant (p < 0.01, Fisher’s exact

test) enrichment of genes known to be targeted by H3K27me3

(PRC2 target genes; Bernstein et al., 2006; Lee et al., 2006).

Therefore, we subsequently visualized H3K27me3 occupancy

around the TSSs of PRC2 target genes (n = 606; Figure 4C).

Based on H3K27me3 occupancy, PRC2 target genes were

divided into two groups. As expected, the large majority of

these genes (n = 461) had lower H3K27me3 levels in K27M

mutant pHGGs compared with H3.3-WT tumors (H3K27me3

LOSS in K27M). In line with this, average expression of these

genes was significantly higher in K27M mutant pHGGs (n =

12) than in H3.3-WT samples (n = 10; Figure 4C). In contrast,

PRC2 target genes holding increased levels of H3K27me3 in

K27M mutant tumors (n = 145; H3K27me3 GAIN in K27M)

showed reduced average expression in K27M mutant pHGGs

(Figure 4C).

Alterations of H3K27me3 and DNA Methylation
Establish the K27M-Specific Transcriptional Program
Numerous studies have shown a dynamic interaction between

H3K27me3 and DNA methylation (Cedar and Bergman, 2009).
n lysate or immunoprecipitated HA-tagged H3.3 complexes (WT or K27M) from

3. Assay was performed in duplicates.

les from HEK293T cells used in (D) (*p < 0.05; n.s., not significant). Error bars
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Previous work from us and others demonstrated that both of

these epigenetic modifications are specifically altered in K27M

mutant pHGGs (Lewis et al., 2013; Sturm et al., 2012; Venneti

et al., 2013). To study DNA methylation in more detail and to

find a potential cross-talk between H3K27me3 and DNAmethyl-

ation in pHGGs, we subjected 13 primary tumors (six H3.3-WT

and seven K27M) to whole-genome bisulfite sequencing

(WGBS; see Table S4 for an overview of the WGBS statistics).

Globally, K27M mutant tumors have a DNA methylation profile

substantially different from that of H3.3-WT pHGGs (Figures 5A

and S3A). As indicated in our previous study using DNA methyl-

ation arrays (Sturm et al., 2012),WGBSdata confirmed an overall

reduction in global DNA methylation levels in K27M mutant

tumors compared with H3.3-WT pHGGs (Figure 5B). In line

with this, we identified a substantially higher number of hypome-

thylated rather than hypermethylated differentially methylated

regions (DMRs) in our data set when comparing K27M mutant

tumors versus H3.3-WT pHGGs (Figure 5C).

Next, we analyzed overall DNA methylation patterns in

genomic regions flanking the TSSs (± 5 kb) of differentially

expressed genes (n = 294). As shown in Figure 5D, we found

DNA hypomethylation to be specifically pronounced at genomic

regions directly downstream of the TSSs of transcriptionally

upregulated genes such as eyes absent homolog 1 (EYA1;

Figure 5D; Auvergne et al., 2013). In contrast, DNA hypermethy-

lation was found to be centered around the TSSs of transcrip-

tionally downregulated genes such as PDZ and LIM domain 4

(PDLIM4; Figure 5D; de Tayrac et al., 2011). While hypomethy-

lated DMRswere found at 54 out of 143 (38%) of transcriptionally

upregulated genes, hypermethylated DMRs were identified at

only 15% (22 out of 151) of downregulated genes (Table S2).

However, DNA hypomethylation as well as hypermethylation

were significantly associated with transcriptional activation and

repression, respectively (p < 0.01; Fisher’s exact test).

Subsequently, we aimed to find out whether regions with loss

or gain of H3K27me3 were specifically associated with alter-

ations in DNAmethylation. In doing so, average DNAmethylation

at genomic regions flanking H3K27me3 peaks as identified by

ChIP-Seq did not show significant changes (Figure S3B). How-

ever, H3K27me3 occupancy at hypomethylated gene promoters

in K27M mutant pHGGs was found to be substantially lower

compared with hypermethylated promoters in these tumors

(Figure 5E). Although these results do not support a global link

between H3K27me3 and DNA methylation, we identified a sub-

stantial number of transcriptionally activated genes such as pro-

tocadherin-7 (PCDH7) showing loss of H3K27me3 together with
Figure 4. Alterations in H3K27me3 Occupancy in K27M Mutant pHGGs

(A) Heatmap illustrating H3K27me3 occupancy at 21,217 ChIP-Seq peaks identifi

fold change: K27M versus H3.3-WT). Pie charts illustrate genomic location of Ch

(B) Heatmap and intensity plots illustrate H3K27me3 occupancy in the genom

expression values (log2 fold change) are given for every differentially express

55,074,548–55,175,548) andMICA (chr6: 31,353,339–31,403,976) as well as corre

are shown as box plots (**p < 0.01). Box plots represent the interquartile range (IQ

minimum (up to 1.5 IQR). Outliers (>1.5 IQR) are plotted as circles. See also Figu

(C) Heatmap displaying H3K27me3 occupancy in the genomic region flanking th

LOSS in K27M or K27me3 GAIN in K27M) indicated by the dendrogram was b

determined in a cohort of 12 K27M mutant and 10 H3.3-WT pHGGs are given for

target genes of the respective group is shown as a box plot (***p < 0.001). Box plot

the maximum/minimum (up to 1.5 IQR). Outliers (>1.5 IQR) are plotted as circles

Can
DNA hypomethylation (Figure 5E). The PRC2 target gene PCDH7

has been shown to promote metastasis in breast cancer and is

known to be targeted by DNA methylation (Beukers et al.,

2013; Li et al., 2013). In total, 30% (43 out of 143) of all upregu-

lated genes in K27M mutant pHGGs were found to hold

decreased H3K27me3 levels together with DNA hypomethyla-

tion at the promoter. In contrast, only 7% (10 out of 143) of upre-

gulated genes show DNA hypomethylation but no alteration in

H3K27me3. Taken together, whereas the majority of downregu-

lated genes in K27M mutant pHGGs (96 out of 151 genes, 64%)

showed no difference in H3K27me3 or DNA methylation, the

increased expression of 74% (106 out of 143) of upregulated

genesmight be explained by at least one of these two epigenetic

mechanisms, suggesting that increased expression subsequent

to a loss of gene silencing is the principle mode of direct epige-

netic dysregulation in these tumors.

DISCUSSION

Deregulated H3K27me3 levels have been demonstrated in

a variety of human cancers. For most of these entities,

H3K27me3 levels are altered due to genetic hits within the

machinery responsible for H3K27me3 turnover (Martinez-Garcia

and Licht, 2010). Several findings, such as activating mutations

of EZH2 (e.g., Y641) in lymphomas or overexpression of EZH2

in numerous tumor entities, point toward an oncogenic role of

EZH2 and H3K27me3. However, a different set of mutations

leading to loss of EZH2 methyltransferase activity and reduced

H3K27 trimethylation indicate a dual role of EZH2 and this

histone mark in tumorigenesis, depending on context (Greer

and Shi, 2012). Accordingly, reduced H3K27me3 levels are

associated with unfavorable prognosis in breast, ovarian, and

pancreatic cancers (Greer and Shi, 2012; Wei et al., 2008).

Recently, pHGGs harboring the K27M mutation of histone H3.3

were reported to have strongly reduced H3K27me3 levels as a

consequence of a dominant-negative effect of the K27Mmutant

H3.3 protein (Chan et al., 2013; Lewis et al., 2013; Venneti et al.,

2013). Interestingly, K27M mutant pHGGs also show a trend

toward inferior overall survival compared with their nonmutated

counterpart (Khuong-Quang et al., 2012; Sturm et al., 2012). In

this study, we demonstrate that immunohistochemical staining

of H3K27me3 is a valuable tool to identify K27M mutant pHGGs

with an overall accuracy of 98% using a large cohort of 104

pHGGs. This stratification may help to inform future clinical trial

design and/or to identify patients who may respond to specific

targeted therapy. The identification of 3% of pHGGs without
Are Directly Associated with Differential Gene Expression

ed in pHGGs. Peaks are sorted according to H3K27me3 occupancy (RPM log2
IP-Seq peaks.

ic region flanking the TSS of differentially expressed genes (n = 294). Gene

ed gene. H3K27me3 occupancy in the genomic region of PDGFRA (chr4:

sponding gene expression in 12 K27Mmutant pHGGs and 10 H3.3-WT tumors

R), with the median represented by a solid line. Bars extend to the maximum/

re S2 and Tables S2 and S3.

e TSS of known PRC2 target genes (n = 606). Group separation (H3K27me3

ased on H3K27me3 occupancy. Gene expression values (log2 fold change)

each PRC2 target gene. Average gene expression (log2 fold change) of PRC2

s represent the IQR, with the median represented by a solid line. Bars extend to

. See also Figure S2 and Tables S2 and S3.
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Figure 5. Global DNA Hypomethylation Contributes to Differential Gene Expressions in Concert with Loss of H3K27me3

(A) Cluster analysis of WGBS data in six H3.3-WT pHGGs and seven K27M mutant tumors.

(B) Box plot illustrating global DNAmethylation levels in 13 pHGGs analyzed byWGBS (***p < 0.001). Box plots represent the IQRwith the median represented by

a solid line. Bars extend to the maximum/minimum (up to 1.5 IQR). Outliers (>1.5 IQR) are plotted as circles. See also Figure S3 and Table S4.

(legend continued on next page)
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H3.3/H3.1 mutation showing similar reduced H3K27me3 levels

suggests the existence of other (epi)genetic alterations affecting

H3K27me3 establishment or maintenance.

Although there are conflicting data, several lines of evidence

point to PRC2-mediated establishment of H3K27me3 and DNA

methylation acting in parallel to modulate gene expression

(Gal-Yam et al., 2008; Schlesinger et al., 2007; Viré et al., 2006;

Widschwendter et al., 2007). In this study, we describe

concerted alterations in H3K27me3 occupancy and DNA

methylation in K27M mutant pHGGs. Both of these epigenetic

mechanisms, involved in regulation of gene expression, are

found to be specifically impaired in pHGGs harboring the

K27M mutation of H3.3. Whereas the main focus of our study

deals with the K27M-induced reduction of the repressive histone

mark H3K27me3, our data also provide evidence that K27M

mutant pHGGs are characterized by global DNA hypomethyla-

tion, a feature which has recently been described as being

even more strongly prevalent in G34R mutant pHGGs (Sturm

et al., 2012). As expected, reduced H3K27me3 and DNA

hypomethylation were both found to be significantly associated

with activated gene expression. Strikingly, reduced H3K27me3

alone or in combination with DNA hypomethylation was found

at 74%of all transcriptionally upregulated genes in K27Mmutant

tumors, indicating that these are the two main mechanisms

conferring the highly characteristic gene expression program.

Loss of PRC2 activity (e.g., due to depletion of EZH2 or EED)

has been shown to induce changes in DNA methylation,

including DNA hypomethylation (Reddington et al., 2013; Wu

et al., 2008). In line with this, overexpression of K27R mutant

canonical H3 was reported to lead to a significant reduction of

global DNA methylation levels in human ovarian cancer cells

(Abbosh et al., 2006). The high percentage (45%) of transcrip-

tionally upregulated genes with reduced H3K27me3 levels in

K27M mutant pHGGs that also showed a loss of DNA methyl-

ation suggests that K27M-induced reduction of H3K27me3

might indeed prime for DNA hypomethylation.

In addition, we aimed to find out whether K27M-induced

reduction of H3K27me3 primes for DNA hypomethylation by

using modified isogenic cell lines. Although these cells show

a strong reduction of H3K27me3 after lentiviral overexpression

of K27M mutant H3.3, we did not detect any consistent alter-

ation in gene expression or DNA methylation in these cell

lines (data not shown). In line with this, our study revealed

substantial differences in H3K27me3 occupancy between

primary tumor samples and pHGG cell lines. Therefore, cau-

tion is needed when attempting to extrapolate from cell models

to disease pathology of different cancer entities including

pHGGs in vivo (Houshdaran et al., 2010). Although our
(C) Overall number of DMRs in 13 pHGGs detected by WGBS.

(D) Heatmap illustrating averaged difference in DNAmethylation detected byWGB

addition, averaged DNA methylation levels in H3.3-WT (gray) and K27M mutant p

downregulated genes, respectively. DNA methylation the genomic regions fla

131,583,226–131,604,226) are shown as examples together with gene expressio

blots (**p < 0.01). Box plots represent the IQR with the median represented by a s

IQR) are plotted as circles.

(E) Intensity plot illustrating H3K27me3 occupancy around the TSS of genes found

well as H3K27me3 occupancy at the genomic region of PCDH7 (chr4: 30,687,

expression data (log2) in 12 K27M mutant pHGGs and 10 H3.3-WT tumors illus

represented by a solid line. Bars extend to the maximum/minimum (up to 1.5 IQR

Can
H3K27me3 ChIP-Seq data of primary pHGGs are in line with

most of the recently described K27M-induced changes found

by comparing a K27M mutant cell line with neural stem cells

(global H3K27me3 reduction and focal gain of H3K27me3 at

some loci/genes such as CDK6), not all conclusions generated

out of a comparison of cell lines will reflect the situation in pri-

mary tumors (e.g., there are no differences in H3K27me3 peak

widths between K27M mutant and H3.3-WT pHGGs; Chan

et al., 2013).

Promoter hypermethylation was reported to be a general

mechanism to silence known PRC2 target genes in several

human cancer entities (Avissar-Whiting et al., 2011; Bennett

et al., 2009; Schlesinger et al., 2007; Widschwendter et al.,

2007). Interestingly, gain of H3K27me3 at the TSSs of several

genes in K27M mutant pHGGs was not associated with DNA

hypermethylation. This is consistent with other studies reporting

on PRC2-mediated gene silencing independent of DNA hyper-

methylation (Kondo et al., 2008). However, the identification of

specific loci with gain of H3K27me3 in the context of overall

reduction of this epigenetic mark (in K27Mmutant tumors) raises

interesting questions about the molecular mechanisms behind

PRC2 targeting, which is still a field of intense research (Simon

and Kingston, 2013). A recently describedmodel, which is based

on the fact that DNAmethylation attenuates PRC2 binding, might

explain increased H3K27me3 levels at specific loci in K27M

mutant pHGGs (Reddington et al., 2013). Global DNA hypome-

thylation may allow for increased binding of PRC2 and establish-

ment of H3K27me3 at genomic sites that are normally protected

by the DNA methylation mark. As a consequence, this may also

enhance the reduction of H3K27me3 at normal PRC2 targets

due to dilution of PRC2 molecules.

In conclusion, our study provides intriguing evidence that

reduced H3K27me3 and/or DNA hypomethylation are the major

driving forces of activated gene expression in K27M mutant

pHGGs. Although our data suggest a potential link between

K27M-induced loss of PRC2 repression and DNA hypomethyla-

tion, further work will be required to elucidate how these changes

are targeted to specific genomic loci.
EXPERIMENTAL PROCEDURES

Patient and Tumor Samples

All primary tumor samples used in this study were collected at the German

Cancer Research Center (DKFZ) and the Burdenko Neurosurgical Institute in

accordance with the respective research ethics boards. Informed consent

was obtained from all patients included in this study. An ethical vote was

obtained from the ethics committee of the Medical Faculty of Heidelberg.

The majority of primary tumor samples for gene expression analysis were

part of a previously described study cohort (n = 17; Sturm et al., 2012). Five
S in genomic regions flanking the TSS of 294 differentially expressed genes. In

HGGs (green) are given as intensity plots for transcriptionally upregulated and

nking the TSS of EYA1 (chr8: 72,249,222–72,300,222) and PDLIM4 (chr5:

n (log2) in 12 K27M mutant pHGGs and 10 H3.3-WT tumors illustrated by box

olid line. Bars extend to the maximum/minimum (up to 1.5 IQR). Outliers (>1.5

to be hypo- or hypermethylated in K27Mmutant pHGGs. DNA methylation as

866–30,768,866) is shown as an example together with corresponding gene

trated by box blots (**p < 0.01). Box plots represent the IQR with the median

). Outliers (>1.5 IQR) are plotted as circles. See also Figure S3 and Table S4.

cer Cell 24, 660–672, November 11, 2013 ª2013 Elsevier Inc. 669



Cancer Cell

Epigenetic Deregulation in H3.3 K27M Mutant Glioma
additional tumor samples were analyzed on the Affymetrix GeneChip Human

GenomeU133 Plus 2.0 Array. A list of all used primary tumor samples and their

use in the study of Sturm et al. (2012) is provided in Supplemental Experimental

Procedures.

Immunohistochemistry

Tumor cores or whole tumor sections of 104 pHGGs with known H3F3A

mutation status were stained for H3K27me3 by using the following antibody:

H3K27me3 (Millipore 07-449).

Western Blot Analysis

The Histone Purification Mini Kit (Active Motif) was used to isolate and purify

histone proteins followed by electrophoretic separation and transfer to a

polyvinylidene fluoride membrane. Antibodies against the following antigens

were applied: H3K27me3 (Millipore 07-449), H3K27me3 (Abcam ab6002),

H3K27me2 (Abcam ab24684), H3K27me1 (Abcam 07-448), HA-tag (Abcam

ab9110), histone H4 (Abcam ab10158), H3 (Abcam ab1791), SUZ12 (Active

Motif 39357), and EZH2 (Active Motif 39933).

Generation of H3.3-Overexpressing Cell Lines

SF188 glioblastoma cells (University of California, San Francisco), HEK293T

cells (ATCC), or HeLa-S3 cells (ATCC) were lentivirally transduced (multiplicity

of infection of 5) using the open reading frame of H3.3 cloned into pLVX-Puro

(Clontech) or pCDH1-CMV-MCS-EF1-copGFP backbone (System Bio). Both

H3.3 mutants were generated by using the QuikChange II Site-Directed Muta-

genesis Kit (Agilent).

Cell Culture

HEK293T, HeLa-S3, SF188, MGBM1, and KNS42 cells were cultured in high

glucose Dulbecco’s modified Eagle’s medium (Life Technologies) supple-

mented with 10% fetal calf serium (GIBCO) at 37�C and 5% CO2. NEM157

and NEM165 primary pHGG cells were cultured in AmniomaxC100 + 10%

AmniomaxC100 supplement (GIBCO). Upon reaching a confluency of 80%,

cells were trypsinized and used for protein extraction.

Coimmunoprecipitation

To compare the binding of PRC2 complex components with H3.3-WT or K27M

mutant protein, mono-nucleosome IP was performed with EZview Red Anti-

HA Affinity Gel or anti-EZH2 antibody (Active Motif 39901) using HA-tagged

H3.3 (WT or K27M)-transduced HEK293T, HeLa-S3, or SF188 cells. The

precipitates were analyzed by western blot using antibodies against EZH2,

SUZ12, and HA, as indicated.

Chromatin Lysate Preparation and Mono-Nucleosome IP

Cells were harvested by centrifugation and washed in PBS before cell lysis.

Cell nuclei were pelleted and lysed to collect insoluble chromatin followed

by MNase digestion. For mono-nucleosome IP, EZview Red Anti-HA Affinity

Gel (Sigma E6779) was added into the chromatin lysate. After incubation at

4�C overnight, samples were analyzed by western blot using the indicated

antibodies.

In Vitro Histone Methyltransferase/Demethylase Assay

In vitro HMT assays were performed using the EpiQuik HistoneMethyltransfer-

ase Activity/Inhibition Assay Kit (H3K27; Epigentek; P-3005-96). In vitro his-

tone demethylase assays were performed using the Epigenase JMJD3/UTX

Demethylase Activity/Inhibition Assay Kit (Fluorometric; Epigentek; P-3085-

48). The assays were performed using either chromatin lysate or anti-HA

beads after mono-nucleosome IP, as per the manufacturer’s instructions.

H3K27me3 ChIP-Seq Sequencing and Data Processing

H3K27me3 ChIP-Seq of primary pHGG samples and cell lines has been

performed at Active Motif according to proprietary methods. Libraries were

sequenced on the Illumina HiSeq 2000 platform. To make the number of

detected peaks comparable between samples, we first applied Picard Down-

sampleSam to equalize the number properly paired reads per sample.
670 Cancer Cell 24, 660–672, November 11, 2013 ª2013 Elsevier Inc
Whole-Genome Bisulfite Sequencing and Data Processing

Strand-specific MethylC-seq libraries were prepared using a previously

described approach with modifications (Lister et al., 2011). Adaptor-ligated

DNA fragments with insert lengths of 200–250 bp were isolated and bisulfite

converted using the EZ DNA Methylation kit (Zymo Research). After PCR

amplification, libraries were sequenced on the Illumina HiSeq 2000 platform.

An overview of generated WGBS data is provided in Table S4. Differentially

methylated regions (DMRs) were identified using the bsseq Bioconductor

package, version 0.6.2 (Hansen et al., 2012).
Integrative Genomic Analysis

Downstream analyses were performed in R, version 2.15.2 (R Development

Core Team, 2012). Genes were termed differentially expressed between

K27M-mutatnt and H3.3-WT tumors when displaying an adjusted p value <

0.01 (Student’s t test, Benjamini-Hochberg correction for multiple testing).

Overlapping H3K27me3 ChIP-Seq peaks in the four clinical samples were

merged and mean reads per million (RPM) values for all samples were

extracted from the whole-genome coverage tracks. Merged peaks within ±3

kb of the TSS were associated with annotated RefSeq genes. For heatmap

representations of H3K27me3 occupancy surrounding merged peaks or

TSSs, RPM values were extracted from the whole-genome coverage tracks

with a window size of 100, effectively separating the depicted 10-kb region

into 100 equally sized bins. Heatmaps were vertically ordered by mean

RPMs in the combined peak region. Hierarchical clustering in Figure 4C was

performed using Euclidean distance and complete linkage.

All DMRs associated with a RefSeq gene annotation (within ±3 kb of the TSS

[hyper DMRs] and �3/+20 kb of the TSS [hypo DMRs]) were combined per

gene, independently for hypo- and hypermethylated DMRs. Heatmap repre-

sentations of DNA methylation were generated by separating the depicted

10-kb region into 100 equally sized bins.
ACCESSION NUMBERS

Microarray expression data of 22 tumor samples are available in National

Center for Biotechnology Information’s Gene Expression Omnibus (GEO;

http://www.ncbi.nlm.nih.gov/geo) through GEO Series accession numbers

GSE36245, GSE34824, and GSE49822. H3K27me3 ChIP-Seq and WGBS

data are available through European Genome-phenome Archive accession

number EGAS00001000578.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and four tables and can be found with this article online at

http://dx.doi.org/10.1016/j.ccr.2013.10.006.
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