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Linear Normal Forms of Differential Equations* 

RICHARD J. VENTI 

Sandia Laboratory, Albuquerque, New Mexico 

1. INTRODUCTION 

Consider the system of real differential equations 

3i = Ax + X(x), (kg) (1) 

where x, X(x) are n-vectors, A is a constant square matrix of order n, X is of 
class Ck on a neighborhood of x = 0 for some integer k > 1, and 
X(x) = o(I x 1) as 3c --f 0 (I x 1 = Euclidean norm). This paper generalizes 
a result of Sternberg and a result of Hartman concerning the existence of a 
Ck change of variables 

y  = x - p(x), where ~(4 =o(lxl) as x + 0, (2) 

which is defined on a neighborhood of x = 0 and transforms (1) into the 
linear system 

j =Ay. (3) 

I f  such a change of variables exists, (1) is said to be Ck equivalent to (3), and 
(3) is called the linear normal form of (1). 

For K >, 2 it can be shown ([I], Lemma 12.1, p. 258) that if the eigen- 
values A1, e-e, A, of A satisfy 

Ai # 2 m,X, , i== 1, “‘,fq 

for all sets of non-negative integers ml , e**, m, such that 
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then there exists an analytic change of variables (2) defined for small 1 x ( and 
transforming (1) into 

9 = 4 + WY), 

where Y E C” on a neighborhood of y  = 0 and Y(y) = o(j y  I”) as y  -+ 0. 
Moreover, if (4) is violated then (1) need not be Ck equivalent to (3), i.e., 
there exists an X = X(x) satisfying the conditions of paragraph one and 
such that (I) is not Ck equivalent to (3). In fact, an analytic X may be chosen 
(for an example, see [2], p. 812). 

Sternberg [2] has proven the following theorem. 

THEOREM A. In (I), suppose that X is of class Ck on a neighborhood of 
x = 0 for some k > 2 and X(x) = o(j x 1”) as x -+ 0. If the eigenvalues of A 
satisfy 

Re Xi < 0, i = 1, -0.) n (5) 

max 1 Re Xi I/min / Re & I < K, (6) 

then (I) is Ck equivalent to (3). (The case where the Re hi > 0 may be reduced 
to the case where (5) holds by making the change of variables t = - s in (I).) 

The following result, for the case k = 1, is due to Hartman [3]. 

THEOREM B. In (I), suppose that X is of class Cl in a neighborhood of 
x = 0 and X(x) = o(I x I) as x -+ 0. If the derivatives of X are uniformly 
Lipschitz continuous for small 1 x 1 and the ekenvalues of A satisfy (5)) then (I) 
is Cl equivalent to (3). 

The main result of this paper, Theorem 3, generalizes both of the above 
results and shows that the seemingly wide difference between the hypotheses 

of Theorem A and the hypotheses of Theorem B disappears when the pro- 
blem of C” linearizations is considered in the framework of C”[Z, ~1 systems. 

Condition (5) will be essential to all arguments in this paper. We first 
prove (Lemma 1) that a partially linear system, satisfying certain conditions, 
has a smooth manifold of solutions which may be used (Theorem 1) to put 
the system into a particular nonlinear form. Then we show (Theorem 2) 
that this nonlinear form can be further linearized. Repeated application of 
Theorems 1 and 2 yield Theorem 3, which roughly states that (1) is Ck equi- 
valent to (3) provided that the Re hi satisfy a certain spacing condition. To 
what extent the spacing condition, which depends on the smoothness of X, 
can be weakened remains undecided. In the last section, we construct some 
Ck systems (1) which are not Ck equivalent to (3); these examples show that 
condition (5) together with X(x) = o(I x jk) as x -+ 0 is not enough to ensure 
the existence of a Ck linearizing map (2). 
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Sufficient conditions for the existence of smooth linearizing maps (2) 
in the absence of condition (5) have been given by Nagumo and I& [q, 

Sternberg [.5], Hartman [3], Chen [6], and Brjuno [7]. 
In the analytic case the problem of normal forms has been considered by 

Poincare, Siegel and others. (For references, see [I], pp. 271-272.) 
I would like to express my sincere gratitude to Professor S. P. Diliberto 

for suggesting this topic and for advising and encouraging me throughout the 
course of this work. I am also grateful to Dr. Allen Kelley for many helpful 
conversations. 

2. PRELIMINARIES 

Let F(x) = (f&N,, b e a real Cr matrix function on real x-space, where x 
is finite dimensional, and define Fi , F, F, , F” by 

Fi = ith row of F F = (Fl -a- F,),,,, 9 

F, = the Jacobian matrix a5F, Fx = (F*)% , 

where FT denotes the transpose of F. For r = 1,2, a+-, define a,(F), p,(F) by 

Then if F = DE where D, E are pxs, sxq Cl matrix functions, respectively, 
it is easily verified that 

F, = B,(D) E” + 4E=) D, 

Fz = a,(D) E” + j3,(ET) D, . (7) 

For a real constant rectangular matrix r define the norm 1 r 1 to be the 

max 1 r[ 1 for 1 E 1 = 1, where 5 is a real vector of appropriate dimension. 
With this norm it follows that 

I %m I = I /%m I = I r I (8) 

for every positive integer r. 
Let f  be a real continuous function defined on a set N of real (x, y)-space, 

where x, y  are finite dimensional, and let p be a real number satisfying 
0 < p < 1. We say that f  is uniformly P-Holder continuous on N with 
respect to x, if there exists a y  > 0 such that 

If(X,Y) -fc%Y) I <A * -‘f I’) 
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for every (x, y), (2, y) E N. If on some neighborhood of (x, y) = 0, f E Ck, 

I+, Y) = 4 x, Y I”> as (x7 Y) + 0 and the Kth order derivatives of f  are 
uniformly v-Holder continuous with respect to x and uniformly P-Holder 
continuous with respect to y, then f  is said to be of class C”[X, y; v, ~1 (if 
the variable y is absent, we simply write f  E C”[x; v]). A vector function is of 
class Ck[x, y; v, ,u] if each of its components is. 

In the next section we shall need the following simple fact: 

If 0 < cy < I, p, , q,, > 0, qn -+ 0 as n --f co and 

P .+l<orp,+q, for n=l,2;-*, then p,+O as n+oo. (9) 

3. A NONLINEAR NORMALIZATION 

Consider the real system of differential equations 

S=Ax 

9 = BY + Y(x, Y), (10) 

where x, y, Y(x, y) are vectors of dimension m, n, n, respectively, and A, B 

are constant square matrices of order m, n, respectively. 

LEMMA 1. Suppose that Y E Ck[x, y; Y, ~1, where k > 1 and 
0 < v  < p < 1, and A, B satisfy 

max {Re h : h = eigenvalues of A or B} < 0, (11) 

maxRe/\ <(k +v)minReh. 
A = e.v. or B A = 0.“. Of A 

(12) 

Then there exists an n-vector function q = p)(x) of class Ck[x; v] such that for 

some E > 0 the munifold M = {(x, v(x)) : 1 x 1 < E} has the property that every 
solution of (IO) which is on M at t = 0 remains on M for all t > 0. 

Proof. Put C = e-‘, D = eB; h t en in view of (ll), (12) we may assume, 
by making a linear change of variables, if necessary, that 

ICI>17 lCTl >l, lDl<l, ) D ) ) C / (I+v’ I CT /(k-l) < 1, 

(13) 
and 

$1 
etAx 1 < 0, (for all x # 0, - co < t < co). (14) 

Thus, by (14), for every E > 0 there exists a unique non-negative analytic 
function t = t(x) defined by 

I e- t(=)AX 1 = E, 
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i.e., t(x) is just the time it takes for the positive half-trajectory of 2 = - Ax 

starting at x to reach {x : 1 x 1 = E}. 
By (11) we may choose an E,, > 0 such that for 1 X, y  1 < cc, , t > 0 there 

exists a unique solution (et%, ~(t, x, y)) of (10) satisfying ~(0, x, y) 3 y  
and ~(t, X, y) - 0 as t -+ 00. Let co be chosen so small that all the kth order 
derivatives of V defined by 

~7)~ Y(eTAx, T(T, x, y)) dT (I %Y I < EO) (16) 

exist and are uniformly v-Holder continuous with respect to (x, y); clearly, 

v(x, Y) = 4 x, Y I”> as (x, Y) - 0. 
Further, there exists an E > 0 such that the vector function T = v(x) 

defined by 
I&X) = ~(t(x), eetcajAx, 0) (0 < I x I G 4, 

where t(x) is given by (15), is of class CL and satisfies the inequality 

I x9 dx, I G 60 (0 < I * I < 4, 

Clearly, q(x) + 0 as x + 0 and the manifold ((x, T(X)) : 0 < / x / < c> 
consists of all positive half-trajectories of (10) which start on ((x, 0) : 1 x 1 = c>. 

We shall now show that the derivatives of v  through order K tend to zero 

as x-to. Let 

W”={X:X=etA~,O~t~l,IR/ ==E}, 

wr = {x : x = eAR, 3i; E w’-I}, for r 3 1, 

thus if x E wr for some Y 3 1, it follows that 

v(x) = 41, e-Ax, p(e-Ax)) 
= T(L cx, v(C4) 

= D&) + Jl e (l-T)B Y(e7ACx, ~(7, Cx, p(Cx))) dr, 

and by (16), 

where Cx E wr-l 

P(X) = WC4 + wx, dCx>), (17) 

Taking the Jacobian of both sides of (17) we get 

P)z(x) = (D + V?dO) ys”c + Yz°C, (18) 

where the superscript O on vx and Y, , V, means that the arguments are CX 
and (Cx, I) respectively; therefore 

I d4 I < I D + vv’,O I I so I I C I + I vz°C I . 
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By (13) there exists a 6 > 0 such that 

(Y = y% / D + V&x, y(x)) / / C l’l+“) 1 CT I+l) < 1. 

Let 

Pv = FE;: I %4x) I > q7 = y$ I V&9 944) c I . 

Since 

P r+1 G aPr + Pr 

for Y sufficiently large and qV ---f 0 as Y -+ co, it follows from (9) that p, -+ 0 
as y--t co and thus q~Jx)+0 as x+0. 

If  k > 1, x E wT, Y 3 1, then by (7), (18) we get 

P)&) = AnP + I/,‘) (s”C)” + ~4bz”C)‘) Wx,‘L + (vz”C), 

= MD + vv”) &,(CT) d,C + TACT v”, GO), (19) 

where 

T,(Cx, To9 ?bO) = 49)z0W) (~llO)e + (~z°C)z * 

Let alp, = 9. and let a’g, = (a”-$), for 8 > 1. Also, if P is a p-by-p matrix, 
define h(P) by 

w = Bm(P> Mm. 

Then (19) becomes 

L+(x) = X(D + V,O) &p°C + T,(Cx, q+‘, &p’O). 

In fact, for/ = 2, *.*, k,xEw*,r>l,wehave 

&q.(x) = @(D + V,O) aGvoC + Tt(Cx, vo, &$J, . . . . ae-l,o), 

where Tt -+ 0 as its argument tends to zero. 
Let 

Pr6 = Fca$ I ~%+) I > 

Then for sufficiently large Y 

Since y(x), alp(x) -+ 0 as x -+ 0, it follows that qr2 + 0 as Y  + co; therefore 
p,.’ -+ 0 as r -+ co and Pip --+ 0 as x -+ 0. Suppose 8$(x), e-e, &r&c) -+ 0 
asx~O;thenq,d--tOasr~oO,andthusp,c--tOasr--toOandad~(X)-O 
as x -+ 0. The fact that the kth order derivatives of v  are uniformly v-Holder 
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continuous with respect to x on a neighborhood of x = 0 follows by a similar 
argument. 

THEOREM 1. Under the assumptions of Lemma 1 there exists a change of 
variables 

x = x, 24 “Y - v(x) (20) 

defined in a neighborhood of x = 0 and transforming (10) into 

k=Ax 

ti = Bu + U(x, u) 

where 

‘p E C”[x, VI, u E qx, y; “9 PI and U(x, 0) = 0. 

Proof. Let v  and M be as in Lemma 1, and consider the change of varia- 
bles (20). Differentiating the equation u = y  - F(X) with respect to t, we get 

li = j - l&(x) 3i 

= BY + WY) + B&4 - Bdx) - d4 Ax 

= Bu + Y(x, u + v(x)) 4 Bdx) - ~$4 Ax 

= Bu + U(x, u). 

Since the change of variables (20) maps M into the plane u = 0, it follows 
that U(x, 0) = 0 for small j x 1 and 

U(% u) = Y(x, u + &g) - Y(x, v(x)) 

for small 1 x, u / . 

4. A PARTIAL LINEARIZATION AND MAIN RESULT 

Consider the real vector differential equations 

& = Ax 

j = BY + Y(x,Y,.~ 

d = cz + 2(x, y, z), (21) 

where x, y, z are finite dimensional, A, B, C are constant square matrices of 
appropriate order, Y, 2 E Ck[x, (y, a); v, r-11, where k 2 1 and 0 < v  < p < 1, 
and Y(x, 0, 0), 2(x, 0,O) vanish identically. Suppose the eigenvalues of A, B, 
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C satisfy 

and put 

max Re X 
A = C.Y. of c 

< max Re X 
r+ = e.v. of B G ,?a&--,“, CO, 

a = / max Re X 1 
A = ct.“. of A 

, b = ( max Re X / . 
,I = e.v. of B 

For small / x, y, z / and t >, 0 there exists a unique solution 

5(6 x, y, 4 = (et”, 71(& x, Y, 3) 

of (21) such that ((0, X, y, a) = (x, y, a). By a straightforward extension of 

the arguments in ([?I], p. 315), estimates of the derivatives of 77 with respect 
to the x, y, z coordinates can be obtained which yield the following result: 

LEMMA 2. Let the above assumptions hold; let 

F(4 x, Y> 4 = (Wt, x9 Y9 41, -a(4 x, y, 4)); 

let Fck) be any kth order derivative of F with respect to the x, y, z coordinates 

and suppose that 

L=min((k-1 +v)a,ka-(1 -p)b)>O. 

Then for every E > 0, there exist positive numbers y, 6, OL such that 

j Fck)(t, x, y, z) ( < ye(-b-L+e)t 

and 

) Ftk)(t, x, y, z) - Fck)(t, R, 9, z) 1 

< ~(1 x - f la” + / (y, z) - (9,.2) 1’) e(-b--L+f)t 

for jx,y,zj, 15$7,51 <Sand t>O. 

The proof of Lemma 2 is essentially contained in ([9], Lemmas 1.1-l .5); 
there it is shown that the derivatives of T(t, x, y, z) with respect to the X, y, z 
coordinates through order k are O(e(-b+Clt) as t -+ co uniformly on some 

neighborhood of (x, y, z) = 0. 

THEOREM 2. Let the hypotheses of Lemma I hold and suppose that 

hi =~~;~ofBl Reh - ReA I -CL. 

Then there exists a change of variables 

(22) 

x = x, 2-4 = y - &G y* z), z=z 
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defined in a neighborhood of (x, y, z) = 0 and transforming (21) into 

& = Ax 
J = Bu 
% = cz + 2(x, 24, z), 

where q~ E Ck[x, (y, z); W, p] and % E Ck[x, (u, z); W, p] for some OL > 0. 

Proof. Put w = (x, y, z) and rewrite (21) as ti = H’(w), where 

Yw) = (Ax, BY + W,Y, 4, C-Z + -WY, 4). 

Differentiating both sides of u = y - p(w) with respect to t we get 

zi =j - q&(w)ti 

= BY + Y(w) - s,(w) w(w) 
= BY - &J(W) + B&4 + Y(w) - vw(w> Ww) 
= Bu + B&J) + Y(w) - yw(w) W(w). 

Thus a necessary and sufficient condition that zi = Bu is that 

G@) Yw) = Bdw) + Y(w). (23) 

By Lemma 2 and (22) there exists an open neighborhood N of w = 0 such 
that [(t, w) = {(t, x, y, z) is defined for all w E IV, t > 0 and the vector 
function q~ defined by 

q(w) = - 1: ecTB Y(<(T, w)) d7, (w E N), (24) 

is continuously differentiable and of class Ck[x, (y, z); OLV, ~1 for some 
01 > 0. We shall now show that v satisfies (23). 

Let Q = Q(t, w) be defined by 

Q(t, w) = etB [v(w) + 1: edTn Y({(T, w)) d’] , (w EN, t > 0). 

Note that Q satisfies 

and 

!&, 4 = BQ(t, 4 + Wt, 4, Q(O, 4 = dwu) 

Q(t, w) = - 1: edTB Y({(t + 7, w)) dr; (25) 

hence for w E N, t 3 0, {(t, w) E N, it follows from (24) and (25) that 
Q(t, 4 = d5(t, 4). 
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Thus for w E N, t > 0, [(t, zu) E N, 

g d5(4 WI) = P(4 w) 
= x?(4 4 + wt, 4) 
= &G-(t, 4) + W(4 w)) 

and 

therefore setting t = 0 we obtain (23). 
Let 

x = x, y  = 24 + #J(x, % z), Z=Z 

be the inverse change of variables; then 

-&, u, z) = qx, u + 4(x, u, z), z). 

Remark 1. If  Y, Z are independent of x, then Theorem 2 holds when L. 

isdefinedbyL=(k-1 +p)b. 
Let a, , h-s, a, be real numbers satisfying 

a, < a,-, < .** < a, < 0, 

and let S = {al , *a., a,>. We shall say that S is (k, p)-spaced if S is the dis- 
joint union of subsets S, , e.0, S, with the following properties: 

(Pr) if agSj, d~S~+i, j#t, then E<ka; 

(Ps) if a,dESj, j=#l, then ja-~~<(k--l)ja,1; 

(Ps) if a, d E Sj , i = 1, .*a, 8, then 

/ a - d I < k I aI I - (1 - p) I max S, I . 

Remark 2. By (Ps), a necessary condition for S to be (k, p)-spaced is 
that 

ka, < (1 - P) a, . 

This condition is sufficient for k = 1; to see this, take the Sj to be the 
distinct singletons {ai}. 

THEOREM 3. In (I), let X E Ck[x, p] for some k, p satisfying k > 1, 
0 ,( p < 1. If  A satisjes (5) and the set S = (Re X : h = eigenvalue of A) 
is (k, p)-spaced, then (I) is C” equivalent to (3). 
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Proof. Let S be the disjoint union of S, , .**, S, satisfying the three 
properties above; then, by making a linear change of variables, if necessary, 
(1) may be written as 

dxl 
z = Alxl + x (x , 1 1 . ..) -/) 

where the real parts of the eigenvalues of Ai belong to Sj . By Remark 1, 
the xl-equations may be linearized. If L > 2, then by Remark 2 and (PJ 
it follows that TV > 0; hence we can make a change of variables of the type 
indicated in Theorem 1 and then linearize the x2-equations by again applying 
Theorem 2. Continuing in this way, first applying Theorem 1 and then 
Theorem 2, we can linearize all the &equations. 

Remark 3. If k > 2 and the eigenvalues of /l satisfy (5), then the con- 
dition that the set (Re X : X = e.v. of A> be (k, 0)-spaced is equivalent to 
condition (6); thus, for k 3 2 and p = 0, Theorem 3 reduces to Theorem A. 
By Remark 2, it follows that Theorem B is also a special case of Theorem 1. 
Since every set {a, , a,}, where a i , a2 < 0, is (k, 1)-spaced for all k, it follows 
that every two dimensional system (l), where (5) holds and X E C”[x, 11, 
is C” equivalent to (3). 

5. Ck SYSTEMS WHICH ARE NOT Ck EQUIVALENT TO THEIR LINEAR PARTS 

Let E = c(t) be a real valued continuous function on (- CO, CO) satisfying 

c(t) --z 0 as t + 0, 

s x 47, -dr+o3 as x--+0+, 
1 7 

and define Y = Y(x) by 

Y(x) = j-i C(T) dr. 

Then Y E Cl on (- co, co) and Y(x) = o() x I) as x ---t 0. 
Consider the two dimensional system 

k=-x 
p = --y - Y(x). 

(26) 

(27) 
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We shall show that there is no Cl change of variables 

24 = x - ?Jl(X, Y) 74~~ Y), v2(x9 Y) = 4 x9 Y I> as 

v = Y - 54% Y) 

(%Y)-+O 

(28) 

which is defined for small 1 x, y / and transforms (27) into 

c=..-u 
d=-v. (29) 

Suppose such a change of variables exists, Let T : (x, y) -+ (u, v) denote 
the transformation (28) and let T-l denote the inverse transformation. 
Choose S > 0 so that T-l is of class Cl on B = {(u, v) : 1 u, v I < S} and let 
M be the intersection of the line v = 0 with B. Since M consists of positive 
half-trajectories of (29), it follows that T-l(M) consists of positive half- 
trajectories of (27). Since T-l is of the form 

x = u + QQ4 v) Icl&, v), Ic1&, 4 = 41 u, v I) as (u, 4 + 0 

y = v + w, v) 

it follows that 

T-‘(M) = {(u + Mu, (9, Mu, 0)) : I u I < a> 
and hence there exists a y > 0 and a real valued function Q = Q(X) such 
that Q E Cl for j x 1 < y and {(x, Q(x)) : I x 1 < r} C T-‘(M). By (27), 
if 0 < I x 1 < y, then 

dQ(4 Q(x) I Y(x) . -=- 
dx X X 

Thus if 0 < x < y, then 

and 

s “~d7=-fY(7)):+S:~d7-4, x+0+ 
Y 

by (26), and therefore Q $ Cl in any neighborhood of x = 0. 
Let Y’(X) = Y(x) and let 

Y”(x) = j-= Yk-l(7) dr for k >2. 
0 
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Then by a similar argument the C’” system 

*E-X 
j = - ky + Y”(x) 

is not CL equivalent to its linear part. Note that Yk E Ck[x; ~1 only for 
p = 0, but the numbers - 1, - k are (R, CL)-spaced only for p > 0; therefore 
Theorem 3 does not apply. 
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