Journal of differential equations 2, 182-194 (1966)

Linear Normal Forms of Differential Equations*

Richard J. Venti
Sandia Laboratory, Albuquerque, Nero Mexico

1. Introduction

Consider the system of real differential equations

$$
\begin{equation*}
\dot{x}=\Lambda x+X(x), \quad\left(\dot{x}=\frac{d x}{d t}\right) \tag{1}
\end{equation*}
$$

where $x, X(x)$ are n-vectors, Λ is a constant square matrix of order n, X is of class C^{k} on a neighborhood of $x=0$ for some integer $k \geqslant 1$, and $X(x)=o(|x|)$ as $x \rightarrow 0(|x|=$ Euclidean norm). This paper generalizes a result of Sternberg and a result of Hartman concerning the existence of a C^{k} change of variables

$$
\begin{equation*}
y=x-\varphi(x), \quad \text { where } \quad \varphi(x)=o(|x|) \quad \text { as } \quad x \rightarrow 0 \tag{2}
\end{equation*}
$$

which is defined on a neighborhood of $x=0$ and transforms (1) into the linear system

$$
\begin{equation*}
\dot{y}=\Lambda y . \tag{3}
\end{equation*}
$$

If such a change of variables exists, (1) is said to be C^{k} equivalent to (3), and (3) is called the linear normal form of (1).

For $k \geqslant 2$ it can be shown ([1], Lemma 12.1, p. 258) that if the eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$ of Λ satisfy

$$
\begin{equation*}
\lambda_{i} \neq \sum_{j=1}^{n} m_{j} \lambda_{j}, \quad i=1, \cdots, n \tag{4}
\end{equation*}
$$

for all sets of non-negative integers m_{1}, \cdots, m_{n} such that

$$
2 \leqslant \sum_{j=1}^{n} m_{j} \leqslant k
$$

[^0]then there exists an analytic change of variables (2) defined for small $|x|$ and transforming (1) into
$$
\dot{y}=\Lambda y+Y(y)
$$
where $Y \in C^{k}$ on a neighborhood of $y=0$ and $Y(y)=o\left(|y|^{k}\right)$ as $y \rightarrow 0$. Moreover, if (4) is violated then (1) need not be C^{k} equivalent to (3), i.e., there exists an $X=X(x)$ satisfying the conditions of paragraph one and such that (1) is not C^{k} equivalent to (3). In fact, an analytic X may be chosen (for an example, see [2], p. 812).
Sternberg [2] has proven the following theorem.

Theorem A. In (1), suppose that X is of class C^{k} on a neighborhood of $x=0$ for some $k \geqslant 2$ and $X(x)=0\left(|x|^{k}\right)$ as $x \rightarrow 0$. If the eigenvalues of Λ satisfy

$$
\begin{gather*}
\operatorname{Re} \lambda_{i}<0, \quad i=1, \cdots, n \tag{5}\\
\max \left|\operatorname{Re} \lambda_{i}\right| / \min \left|\operatorname{Re} \lambda_{i}\right|<k, \tag{6}
\end{gather*}
$$

then (1) is C^{k} equivalent to (3). (The case where the $\operatorname{Re} \lambda_{i}>0$ may be reduced to the case where (5) holds by making the change of variables $t--s$ in (1).)

The following result, for the case $k=1$, is due to Hartman [3].
Theorem B. In (1), suppose that X is of class C^{1} in a neighborhood of $x=0$ and $X(x)=o(|x|)$ as $x \rightarrow 0$. If the derivatives of X are uniformly Lipschitz continuous for small $|x|$ and the eigenvalues of Λ satisfy (5), then (I) is C^{1} equivalent to (3).

The main result of this paper, Theorem 3, generalizes both of the above results and shows that the seemingly wide difference between the hypotheses of Theorem A and the hypotheses of Theorem B disappears when the problem of C^{k} linearizations is considered in the framework of $C^{k}[x, \mu]$ systems.

Condition (5) will be essential to all arguments in this paper. We first prove (Lemma 1) that a partially linear system, satisfying certain conditions, has a smooth manifold of solutions which may be used (Theorem 1) to put the system into a particular nonlinear form. Then we show (Theorem 2) that this nonlinear form can be further linearized. Repeated application of Theorems 1 and 2 yield Theorem 3, which roughly states that (1) is C^{k} equivalent to (3) provided that the $\operatorname{Re} \lambda_{i}$ satisfy a certain spacing condition. To what extent the spacing condition, which depends on the smoothness of X, can be weakened remains undecided. In the last section, we construct some C^{k} systems (1) which are not C^{k} equivalent to (3); these examples show that condition (5) together with $X(x)=o\left(|x|^{k}\right)$ as $x \rightarrow 0$ is not enough to ensure the existence of a C^{k} linearizing map (2).

Sufficient conditions for the existence of smooth linearizing maps (2) in the absence of condition (5) have been given by Nagumo and Isé [4], Sternberg [5], Hartman [3], Chen [6], and Brjuno [7].

In the analytic case the problem of normal forms has been considered by Poincaré, Siegel and others. (For references, see [1], pp. 271-272.)

I would like to express my sincere gratitude to Professor S. P. Diliberto for suggesting this topic and for advising and encouraging me throughout the course of this work. I am also grateful to Dr. Allen Kelley for many helpful conversations.

2. Preliminaries

Let $F(x)=\left(f_{i j}(x)\right)_{p x a}$ be a real C^{1} matrix function on real x-space, where x is finite dimensional, and define F_{i}, F, F_{p}, F^{x} by

$$
\begin{array}{ll}
F_{i}=i \text { th row of } F & \mathbf{F}=\left(F_{1} \cdots F_{p}\right)_{1 x p q}, \\
F_{x}=\text { the Jacobian matrix } \partial_{x} \mathbf{F}, & F^{x}=\left(F^{\tau}\right)_{x},
\end{array}
$$

where F^{T} denotes the transpose of F. For $r=1,2, \cdots$, define $\alpha_{r}(F), \beta_{r}(F)$ by

$$
\alpha_{r}(F)=\left(\begin{array}{ccccc}
F & 0 & 0 & \cdots & 0 \\
0 & F & 0 & \cdots & 0 \\
. & \cdot & \cdot & \cdots & \cdot \\
0 & 0 & \cdots & 0 & F
\end{array}\right)_{r p x r q} \quad \beta_{r}(F)=\left(\begin{array}{c}
\alpha_{r}\left(F_{1}\right) \\
\vdots \\
\alpha_{r}\left(F_{p}\right)
\end{array}\right)_{r p x r q}
$$

Then if $F=D E$ where D, E are $p x s$, sxq C^{1} matrix functions, respectively, it is easily verified that

$$
\begin{align*}
& F_{x}=\beta_{\eta}(D) E^{x}+\alpha_{\nu}\left(E^{T}\right) D_{x} \\
& F^{x}=\alpha_{q}(D) E^{x}+\beta_{p}\left(E^{T}\right) D_{x} \tag{7}
\end{align*}
$$

For a real constant rectangular matrix Γ define the norm $|\Gamma|$ to be the $\max |\Gamma \xi|$ for $|\xi|=1$, where ξ is a real vector of appropriate dimension. With this norm it follows that

$$
\begin{equation*}
\left|\alpha_{r}(\Gamma)\right|=\left|\beta_{r}(\Gamma)\right|=|\Gamma| \tag{8}
\end{equation*}
$$

for every positive integer r.
Let f be a real continuous function defined on a set N of real (x, y)-space, where x, y are finite dimensional, and let μ be a real number satisfying $0 \leqslant \mu \leqslant 1$. We say that f is uniformly μ-Holder continuous on N with respect to x, if there exists a $\gamma>0$ such that

$$
|f(x, y)-f(\bar{x}, y)| \leqslant \gamma\left(|x \quad \bar{x}|^{\mu}\right)
$$

for every $(x, y),(\bar{x}, y) \in N$. If on some neighborhood of $(x, y)=0, f \in C^{k}$, $f(x, y)=o\left(|x, y|^{k}\right)$ as $(x, y) \rightarrow 0$ and the k th order derivatives of f are uniformly ν-Holder continuous with respect to x and uniformly μ-Holder continuous with respect to y, then f is said to be of class $C^{k}[x, y ; \nu, \mu]$ (if the variable y is absent, we simply write $f \in C^{k}[x ; \nu]$). A vector function is of class $C^{k}[x, y ; v, \mu]$ if each of its components is.

In the next section we shall need the following simple fact:

$$
\begin{align*}
& \text { If } 0<\alpha<1, \quad p_{n}, \quad q_{n} \geqslant 0, \quad q_{n} \rightarrow 0 \text { as } n \rightarrow \infty \text { and } \\
& p_{n+1} \leqslant \alpha p_{n}+q_{n} \text { for } n=1,2, \cdots, \text { then } p_{n} \rightarrow 0 \text { as } n \rightarrow \infty . \tag{9}
\end{align*}
$$

3. A Nonlinear Normalization

Consider the real system of differential equations

$$
\begin{align*}
\dot{x} & =A x \\
\dot{y} & =B y+Y(x, y), \tag{10}
\end{align*}
$$

where $x, y, Y(x, y)$ are vectors of dimension m, n, n, respectively, and A, B are constant square matrices of order m, n, respectively.

Lemma 1. Suppose that $Y \in C^{k}[x, y ; \nu, \mu]$, where $k \geqslant 1$ and $0<\nu \leqslant \mu \leqslant 1$, and A, B satisfy

$$
\begin{gather*}
\max \{\operatorname{Re} \lambda: \lambda=\text { eigenvalues of } A \text { or } B\}<0, \tag{11}\\
\max _{\lambda=\text { e.v. or } B} \operatorname{Re} \lambda<(k+\nu) \min _{\lambda=\text { e.v. of } A} \operatorname{Re}_{A} \lambda \tag{12}
\end{gather*}
$$

Then there exists an n-vector function $\varphi=\varphi(x)$ of class $C^{k}[x ; \nu]$ such that for some $\epsilon>0$ the manifold $M=\{(x, \varphi(x)):|x| \leqslant \epsilon\}$ has the property that every solution of (10) which is on M at $t=0$ remains on M for all $t>0$.

Proof. Put $C=e^{-A}, D=e^{B}$; then in view of (11), (12) we may assume, by making a linear change of variables, if necessary, that

$$
\begin{equation*}
|C|>1, \quad\left|C^{T}\right|>1, \quad|D|<1, \quad|D||C|^{(1+\nu)}\left|C^{T}\right|^{(k-1)}<1 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{d t}\left|e^{t A} x\right|<0, \quad(\text { for all } x \neq 0,-\infty<t<\infty) \tag{14}
\end{equation*}
$$

Thus, by (14), for every $\epsilon>0$ there exists a unique non-negative analytic function $t=t(x)$ defined by

$$
\begin{equation*}
\left|e^{-t(x)} x\right|=\epsilon, \quad(0<|x| \leqslant \epsilon), \tag{15}
\end{equation*}
$$

i.e., $t(x)$ is just the time it takes for the positive half-trajectory of $\dot{x}=-A x$ starting at x to reach $\{x:|x|=\epsilon\}$.

By (11) we may choose an $\epsilon_{0}>0$ such that for $|x, y| \leqslant \epsilon_{0}, t \geqslant 0$ there exists a unique solution ($e^{t /} x, \eta(t, x, y)$) of (10) satisfying $\eta(0, x, y) \equiv y$ and $\eta(t, x, y) \rightarrow 0$ as $t \rightarrow \infty$. Let ϵ_{0} be chosen so small that all the k th order derivatives of V defined by

$$
\begin{equation*}
V(x, y)=\int_{0}^{1} e^{(1-\tau) B} Y\left(e^{\tau A} x, \eta(\tau, x, y)\right) d^{\tau} \quad\left(|x, y| \leqslant \epsilon_{0}\right) \tag{16}
\end{equation*}
$$

exist and are uniformly ν-Holder continuous with respect to (x, y); clearly, $V(x, y)=o\left(|x, y|^{k}\right)$ as $(x, y) \rightarrow 0$.

Further, there exists an $\epsilon>0$ such that the vector function $\varphi=\varphi(x)$ defined by

$$
\varphi(x)=\eta\left(t(x), e^{-t(x) A} x, 0\right) \quad(0<|x| \leqslant \epsilon)
$$

where $t(x)$ is given by (15), is of class C^{k} and satisfies the inequality

$$
|x, \varphi(x)| \leqslant \epsilon_{0} \quad(0<|x| \leqslant \epsilon)
$$

Clearly, $\varphi(x) \rightarrow 0$ as $x \rightarrow 0$ and the manifold $\{(x, \varphi(x)): 0<|x| \leqslant \epsilon\}$ consists of all positive half-trajectories of (10) which start on $\{(x, 0):|x|=\epsilon\}$.

We shall now show that the derivatives of φ through order k tend to zero as $x \rightarrow 0$. Let

$$
\begin{aligned}
& w^{0}=\left\{x: x=e^{t A} \bar{x}, 0 \leqslant t \leqslant 1,|\bar{x}|=c\right\} \\
& w^{r}=\left\{x: x=e^{A} \bar{x}, \bar{x} \in w^{r-1}\right\}, \quad \text { for } \quad r \geqslant 1
\end{aligned}
$$

thus if $x \in w^{r}$ for some $r \geqslant 1$, it follows that

$$
\begin{aligned}
\varphi(x) & =\eta\left(1, e^{-A} x, \varphi\left(e^{-A} x\right)\right) \\
& -\eta(1, C x, \varphi(C x)) \\
& =D_{\varphi}(x)+\int_{0}^{1} e^{(1-\tau) B} Y\left(e^{\tau A} C x, \eta(\tau, C x, \varphi(C x))\right) d \tau
\end{aligned}
$$

and by (16),

$$
\begin{equation*}
\varphi(x)=D_{\varphi}(C x)+V(C x, \varphi(C x)) \tag{17}
\end{equation*}
$$

where $C x \in w^{r-1}$.
Taking the Jacobian of both sides of (17) we get

$$
\begin{equation*}
\varphi_{x}(x)=\left(D+V_{y}^{0}\right) \varphi_{x}^{0} C+V_{x}^{0} C \tag{18}
\end{equation*}
$$

where the superscript ${ }^{0}$ on φ_{x} and V_{x}, V_{y} means that the arguments are $C x$ and $(C x, \varphi(C x))$ respectively; therefore

$$
\left|\varphi_{x}(x)\right| \leqslant\left|D+V_{y}^{\mathbf{0}}\right|\left|\varphi_{x}^{\mathbf{a}}\right||C|+\left|V_{x}^{0} C\right|
$$

By (13) there exists a $\delta>0$ such that

$$
\alpha=\max _{|x| \leqslant \delta}\left|D+V_{y}(x, \varphi(x))\right||C|^{(1+\nu)}\left|C^{T}\right|^{(k-1)}<1 .
$$

Let

$$
p_{r}=\max _{x \in w^{r}}\left|\varphi_{x}(x)\right|, \quad q_{r}=\max _{x \in w^{r}}\left|V_{x}(x, \varphi(x)) C\right| .
$$

Since

$$
p_{r+1} \leqslant \alpha p_{r}+q_{r}
$$

for r sufficiently large and $q_{r} \rightarrow 0$ as $r \rightarrow \infty$, it follows from (9) that $p_{r} \rightarrow 0$ as $r \rightarrow \infty$ and thus $\varphi_{x}(x) \rightarrow 0$ as $x \rightarrow 0$.

If $k>1, x \in w^{r}, r \geqslant 1$, then by (7), (18) we get

$$
\begin{align*}
\varphi_{x x}(x) & =\beta_{m}\left(D+V_{y}{ }^{0}\right)\left(\varphi_{x}{ }^{0} C\right)^{x}+\alpha_{n}\left(\left(\varphi_{x}{ }^{0} C\right)^{T}\right)\left(V_{y}{ }^{0}\right)_{x}+\left(V_{x}{ }^{0} C\right)_{x} \\
& =\beta_{m}\left(D+V_{y}{ }^{0}\right) \beta_{n}\left(C^{T}\right) \varphi_{x x}^{0} C+T_{2}\left(C x, \varphi^{0}, \varphi_{x}{ }^{0}\right), \tag{19}
\end{align*}
$$

where

$$
T_{2}\left(C x, \varphi^{0}, \varphi_{x}{ }^{0}\right)=\alpha_{n}\left(\left(\varphi_{x}{ }^{0} C\right)^{T}\right)\left(V_{y}{ }^{0}\right)_{x}+\left(V_{x}{ }^{0} C\right)_{x} .
$$

Let $\partial^{1} \varphi=\varphi_{x}$ and let $\partial^{\prime} \varphi=\left(\hat{\partial}^{\ell-1} \varphi\right)_{x}$ for $\ell>1$. Also, if P is a p-by $-p$ matrix, define $\lambda(P)$ by

$$
\lambda(P)=\beta_{m}(P) \beta_{p}\left(C^{T}\right) .
$$

Then (19) becomes

$$
\partial^{2} \varphi(x)=\lambda\left(D+V_{z}{ }^{0}\right) \partial^{2} \varphi^{0} C+T_{2}\left(C x, \varphi^{0}, \partial^{1} \varphi^{0}\right) .
$$

In fact, for $\ell=2, \cdots, k, x \in w^{r}, r \geqslant 1$, we have

$$
\partial^{\prime} \varphi(x)=\lambda^{\ell-1}\left(D+V_{y}{ }^{0}\right) \partial^{\prime} \varphi^{0} C+T_{\ell}\left(C x, \varphi^{0}, \partial^{1} \varphi^{0}, \cdots, \hat{\partial}^{\ell-1} \varphi^{0}\right),
$$

where $T_{\boldsymbol{\ell}} \rightarrow 0$ as its argument tends to zero.
Let

$$
\begin{aligned}
& p_{r}^{\ell}=\max _{x \in w^{r}}\left|\partial^{\ell} \varphi(x)\right|, \\
& q_{r}^{\ell}=\max _{x \in w^{r}}\left|T_{\ell}\left(x, \varphi(x), \partial^{1} \varphi(x), \cdots, \partial^{\ell-1} \varphi(x)\right)\right| .
\end{aligned}
$$

Then for sufficiently large r

$$
p_{r}^{t} \leqslant \alpha p_{r-1}^{t}+q_{r-1}^{t} .
$$

Since $\varphi(x), \partial^{1} \varphi(x) \rightarrow 0$ as $x \rightarrow 0$, it follows that $q_{r}^{2} \rightarrow 0$ as $r \rightarrow \infty$; therefore $p_{r}{ }^{2} \rightarrow 0$ as $r \rightarrow \infty$ and $\partial^{2} \varphi(x) \rightarrow 0$ as $x \rightarrow 0$. Suppose $\partial^{1} \varphi(x), \cdots, \partial^{\ell-1} \varphi(x) \rightarrow 0$ as $x \rightarrow 0$; then $q_{r}^{\ell} \rightarrow 0$ as $r \rightarrow \infty$, and thus $p_{r}^{\prime} \rightarrow 0$ as $r \rightarrow \infty$ and $\partial^{\prime} \varphi(x) \rightarrow 0$ as $x \rightarrow 0$. The fact that the k th order derivatives of φ are uniformly ν-Holder
continuous with respect to x on a neighborhood of $x=0$ follows by a similar argument.

Theorem 1. Under the assumptions of Lemma 1 there exists a change of variables

$$
\begin{equation*}
x=x, \quad u=y-\varphi(x) \tag{20}
\end{equation*}
$$

defined in a neighborhood of $x=0$ and transforming (10) into

$$
\begin{aligned}
& \dot{x}=A x \\
& \dot{u}=B u+U(x, u)
\end{aligned}
$$

where

$$
\varphi \in C^{k}[x, \nu], \quad U \in C^{k}[x, y ; \nu, \mu] \quad \text { and } \quad U(x, 0) \equiv 0 .
$$

Proof. Let φ and M be as in Lemma 1, and consider the change of variables (20). Differentiating the equation $u=y-\varphi(x)$ with respect to t, we get

$$
\begin{aligned}
\dot{u} & =\dot{y}-\varphi_{x}(x) \dot{x} \\
& =B y+Y(x, y)+B \varphi(x)-B \varphi(x)-\varphi_{x}(x) A x \\
& =B u+Y(x, u+\varphi(x))+B \varphi(x)-\varphi_{x}(x) A x \\
& =B u \mid U(x, u) .
\end{aligned}
$$

Since the change of variables (20) maps M into the plane $u=0$, it follows that $U(x, 0) \equiv 0$ for small $|x|$ and

$$
U(x, u)=Y(x, u+\varphi(x))-Y(x, \varphi(x))
$$

for small $|x, u|$.

4. A Partial Linearization and Main Result

Consider the real vector differential equations

$$
\begin{align*}
& \dot{x}-A x \\
& \dot{y}=B y+Y(x, y, z) \\
& \dot{z}=C z+Z(x, y, z), \tag{21}
\end{align*}
$$

where x, y, z are finite dimensional, A, B, C are constant square matrices of appropriate order, $Y, Z \in C^{k}[x,(y, z) ; \nu, \mu]$, where $k \geqslant 1$ and $0 \leqslant \nu \leqslant \mu \leqslant 1$, and $Y(x, 0,0), Z(x, 0,0)$ vanish identically. Suppose the eigenvalues of A, B,
C satisfy

$$
\max _{\lambda=\text { e.v. of } C}^{\max } \lambda \leqslant \max _{\lambda=\text { ev. of } B} \operatorname{Re}_{\lambda} \leqslant \max _{\lambda=\mathrm{evv} \text { of } A} \operatorname{Re}^{\lambda}<0,
$$

and put

$$
a=\left|\max _{\lambda=\mathrm{e} . \mathrm{v} \text { of } \lambda}\right|_{A}, \quad b=\left|\max _{\lambda=\text { e.v. of } B} \operatorname{Re}\right| .
$$

For small $|x, y, z|$ and $t \geqslant 0$ there exists a unique solution

$$
\zeta(t, x, y, z)=\left(e^{t A}, \eta(t, x, y, z)\right)
$$

of (21) such that $\zeta(0, x, y, z)=(x, y, z)$. By a straightforward extension of the arguments in ([8], p. 315), estimates of the derivatives of η with respect to the x, y, z coordinates can be obtained which yield the following result:

Lemma 2. Let the above assumptions hold; let

$$
F(t, x, y, z)=(Y(\zeta(t, x, y, z)), Z(\zeta(t, x, y, z))) ;
$$

let $F^{(k)}$ be any k th order derivative of F with respect to the x, y, z coordinates and suppose that

$$
L=\min \{(k-1+\nu) a, k a-(1-\mu) b\}>0 .
$$

Then for every $\epsilon>0$, there exist positive numbers γ, δ, α such that

$$
\left|F^{(k)}(t, x, y, z)\right| \leqslant y e^{(-b-L+\epsilon) t}
$$

and

$$
\begin{gathered}
\left|F^{(k)}(t, x, y, z)-F^{(k)}(t, \bar{x}, \bar{y}, \bar{z})\right| \\
\leqslant \gamma\left(|x-\bar{x}|^{\alpha \nu}+|(y, z)-(\bar{y}, \bar{z})|^{\mu}\right) e^{(-b-L+e) t}
\end{gathered}
$$

for $|x, y, z|,|\bar{x}, \bar{y}, \bar{z}| \leqslant \delta$ and $t \geqslant 0$.
The proof of Lemma 2 is essentially contained in ([9], Lemmas 1.1-1.5); there it is shown that the derivatives of $\eta(t, x, y, z)$ with respect to the x, y, z coordinates through order k are $0\left(e^{(-b+\epsilon)}\right)$ as $t \rightarrow \infty$ uniformly on some neighborhood of $(x, y, z)=0$.

Theorem 2. Let the hypotheses of Lemma 1 hold and suppose that

$$
\begin{equation*}
\max _{\lambda, \bar{x}=\text { ev. of } B}|\operatorname{Re} \lambda-\operatorname{Re} \bar{\lambda}|<L . \tag{22}
\end{equation*}
$$

Then there exists a change of variables

$$
x=x, \quad u=y-\varphi(x, y, z), \quad z=z
$$

defined in a neighborhood of $(x, y, z)=0$ and transforming (21) into

$$
\begin{aligned}
& \dot{x}=A x \\
& \dot{u}=B u \\
& \dot{z}=C z+\tilde{Z}(x, u, z),
\end{aligned}
$$

where $\varphi \in C^{k}[x,(y, z) ; \alpha \nu, \mu]$ and $\tilde{Z} \in C^{k}[x,(u, z) ; \alpha \nu, \mu]$ for some $\alpha>0$.
Proof. Put $w=(x, y, z)$ and rewrite (21) as $\dot{w}=W(w)$, where

$$
W(w)=(A x, B y+Y(x, y, z), C z+Z(x, y, z))
$$

Differentiating both sides of $u=y-\varphi(w)$ with respect to t we get

$$
\begin{aligned}
\dot{u} & =\dot{y}-\varphi_{w}(w) \dot{w} \\
& =B y+Y(w)-\varphi_{w}(w) W(w) \\
& =B y-B \varphi(w)+B \varphi(w)+Y(w)-\varphi_{w}(w) W(w) \\
& =B u+B \varphi(w)+Y(w)-\varphi_{w}(w) W(w) .
\end{aligned}
$$

Thus a necessary and sufficient condition that $\dot{u}=B u$ is that

$$
\begin{equation*}
\varphi_{w}(w) W(w)=B \varphi(w)+Y(w) . \tag{23}
\end{equation*}
$$

By Lemma 2 and (22) there exists an open neighborhood N of $w=0$ such that $\zeta(t, w)=\zeta(t, x, y, z)$ is defined for all $w \in N, t \geqslant 0$ and the vector function φ defined by

$$
\begin{equation*}
\varphi(w)=-\int_{0}^{\infty} e^{-\tau B} Y(\zeta(\tau, w)) d \tau, \quad(w \in N) \tag{24}
\end{equation*}
$$

is continuously differentiable and of class $C^{k}[x,(y, z) ; \alpha \nu, \mu]$ for some $\alpha>0$. We shall now show that φ satisfies (23).

Let $Q=Q(t, w)$ be defined by

$$
Q(t, w)=e^{t B}\left[\varphi(w)+\int_{0}^{t} e^{-\tau B} Y(\zeta(\tau, w)) d \tau\right], \quad(w \in N, t \geqslant 0)
$$

Note that Q satisfies

$$
\dot{Q}(t, w)-B Q(t, w)+Y(\zeta(t, w)), \quad Q(0, w)=\varphi(w)
$$

and

$$
\begin{equation*}
Q(t, w)=-\int_{0}^{\infty} e^{-\tau B} Y(\zeta(t+\tau, w)) d \tau \tag{25}
\end{equation*}
$$

hence for $w \in N, t \geqslant 0, \zeta(t, w) \in N$, it follows from (24) and (25) that $Q(t, w)=\varphi(\zeta(t, w))$.

Thus for $w \in N, t \geqslant 0, \zeta(t, w) \in N$,

$$
\begin{aligned}
\frac{d}{d t} \varphi(\zeta(t, w)) & =\dot{Q}(t, w) \\
& =B Q(t, w)+Y(\zeta(t, w)) \\
& =B \varphi(\zeta(t, w))+Y(\zeta(t, w))
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{d}{d t} p(\zeta(t, w)) & =\varphi_{w}(\zeta(t, w)) \dot{\zeta}(t, w) \\
& =\varphi_{w}(\zeta(t, w)) W(\zeta(t, w))
\end{aligned}
$$

therefore setting $t=0$ we obtain (23).
Let

$$
x=x, \quad y=u+\psi(x, u, z), \quad z=\boldsymbol{z}
$$

be the inverse change of variables; then

$$
\tilde{Z}(x, u, z)=Z(x, u+\psi(x, u, z), z)
$$

Remark 1. If Y, Z are independent of x, then Theorem 2 holds when L is defined by $L=(k-1+\mu) b$.

Let a_{1}, \cdots, a_{n} be real numbers satisfying

$$
a_{n} \leqslant a_{n-1} \leqslant \cdots \leqslant a_{1}<0
$$

and let $S=\left\{a_{1}, \cdots, a_{n}\right\}$. We shall say that S is (k, μ)-spaced if S is the disjoint union of subsets S_{1}, \cdots, S_{ℓ} with the following properties:

$$
\begin{aligned}
& \left(P_{1}\right) \text { if } a \in S_{j}, \quad \bar{a} \in S_{j+1}, \quad j \neq \ell \text {, then } \bar{a}<k a ; \\
& \left(P_{2}\right) \text { if } a, \bar{a} \in S_{j}, \quad j \neq 1, \text { then }|a-\bar{a}| \leqslant(k-1)\left|a_{1}\right| \\
& \left(P_{3}\right) \text { if } a, \bar{a} \in S_{j}, j=1, \cdots, \ell, \text { then }
\end{aligned}
$$

$$
|a-\bar{a}|<k\left|a_{1}\right|-(1-\mu)\left|\max S_{j}\right|
$$

Remark 2. By (P_{3}), a necessary condition for S to be (k, μ)-spaced is that

$$
k a_{1}<(1-\mu) a_{n}
$$

This condition is sufficient for $k=1$; to see this, take the S_{j} to be the distinct singletons $\left\{a_{i}\right\}$.

Theorem 3. In (1), let $X \in C^{k}[x, \mu]$ for some k, μ satisfying $k \geqslant 1$, $0 \leqslant \mu \leqslant 1$. If Λ satisfies (5) and the set $S=\{\operatorname{Re} \lambda: \lambda=$ eigenvalue of $\Lambda\}$ is (k, μ)-spaced, then (1) is C equivalent to (3).

Proof. Let S be the disjoint union of S_{1}, \cdots, S_{ℓ} satisfying the three properties above; then, by making a linear change of variables, if necessary, (1) may be written as

$$
\begin{aligned}
\frac{d x^{1}}{d t} & =A^{1} x^{1}+X^{1}\left(x^{1}, \cdots, x^{\ell}\right) \\
& \vdots \\
\frac{d x^{\ell}}{d t} & =A^{t} x^{\ell}+X^{t}\left(x^{1}, \cdots, x^{\ell}\right)
\end{aligned}
$$

where the real parts of the eigenvalues of A^{j} belong to S_{j}. By Remark 1, the x^{1}-equations may be linearized. If $\ell \geqslant 2$, then by Remark 2 and (P_{1}) it follows that $\mu>0$; hence we can make a change of variables of the type indicated in Theorem 1 and then linearize the x^{2}-equations by again applying Theorem 2. Continuing in this way, first applying Theorem 1 and then Theorem 2, we can linearize all the x^{j}-equations.

Remark 3. If $k \geqslant 2$ and the eigenvalues of Λ satisfy (5), then the condition that the set $\{\operatorname{Re} \lambda: \lambda=$ e.v. of $\Lambda\}$ be $(k, 0)$-spaced is equivalent to condition (6); thus, for $k \geqslant 2$ and $\mu=0$, Theorem 3 reduces to Theorem A. By Remark 2, it follows that Theorem B is also a special case of Theorem 1. Since every set $\left\{a_{1}, a_{2}\right\}$, where $a_{1}, a_{2}<0$, is $(k, 1)$-spaced for all k, it follows that every two dimensional system (1), where (5) holds and $X \in C^{k}[x, 1]$, is C^{k} equivalent to (3).

5. C^{k} Systems Which Are Not C^{k} Equivalent to Their Linear Parts

Let $\epsilon=\epsilon(t)$ be a real valued continuous function on ($-\infty, \infty$) satisfying

$$
\begin{gather*}
\epsilon(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow 0 \\
\int_{1}^{x} \frac{\epsilon(\tau)}{\tau} d \tau \rightarrow \infty \quad \text { as } \quad x \rightarrow 0^{+} \tag{26}
\end{gather*}
$$

and define $Y=Y(x)$ by

$$
Y(x)=\int_{0}^{x} \epsilon(\tau) d \tau .
$$

Then $Y \in C^{1}$ on $(-\infty, \infty)$ and $Y(x)=o(|x|)$ as $x \rightarrow 0$.
Consider the two dimensional system

$$
\begin{align*}
& \dot{x}=-x \\
& \dot{y}=-y-Y(x) . \tag{27}
\end{align*}
$$

We shall show that there is no C^{1} change of variables
$u=x-\varphi_{1}(x, y) \quad \varphi_{1}(x, y), \varphi_{2}(x, y)=o(|x, y|) \quad$ as $\quad(x, y) \rightarrow 0$
$v=y-\varphi_{2}(x, y)$
which is defined for small $|x, y|$ and transforms (27) into

$$
\begin{align*}
\dot{u} & =-u \\
\dot{v} & =-v . \tag{29}
\end{align*}
$$

Suppose such a change of variables exists. Let $T:(x, y) \rightarrow(u, v)$ denote the transformation (28) and let T^{-1} denote the inverse transformation. Choose $\delta>0$ so that T^{-1} is of class C^{1} on $B=\{(u, v):|u, v| \leqslant \delta\}$ and let M be the intersection of the line $v=0$ with B. Since M consists of positive half-trajectories of (29), it follows that $T^{-1}(M)$ consists of positive halftrajectories of (27). Since T^{-1} is of the form

$$
\begin{aligned}
& x=u+\psi_{1}(u, v) \quad \psi_{1}(u, v), \psi_{2}(u, v)=o(|u, v|) \quad \text { as } \quad(u, v) \rightarrow 0 \\
& y=v+\psi_{2}(t, v)
\end{aligned}
$$

it follows that

$$
T^{-1}(M)=\left\{\left(u+\psi_{1}(u, 0), \psi_{2}(u, 0)\right):|u| \leqslant \delta\right\}
$$

and hence there exists a $\gamma>0$ and a real valued function $Q=Q(x)$ such that $Q \in C^{1}$ for $|x| \leqslant \gamma$ and $\{(x, Q(x)):|x| \leqslant \gamma\} \subset T^{-1}(M)$. By (27), if $0<|x| \leqslant \gamma$, then

$$
\frac{d Q(x)}{d x}=\frac{Q(x)}{x}+\frac{Y(x)}{x} .
$$

Thus if $0<x \leqslant \gamma$, then

$$
Q(x)=\frac{Q(\gamma)}{\gamma} x+x \int_{\gamma}^{x} \frac{Y(\tau)}{\tau^{2}} d \tau
$$

and

$$
\frac{d Q(x)}{d x}=\frac{Q(\gamma)}{\gamma}+\int_{\gamma}^{x} \frac{Y(\tau)}{\tau^{2}} d \tau+\frac{Y(x)}{x} .
$$

But

$$
\int_{\nu}^{x} \frac{Y(\tau)}{\tau^{2}} d \tau=-\left.\frac{1}{\tau} Y(\tau)\right|_{\nu} ^{x}+\int_{\nu}^{x} \frac{\epsilon(\tau)}{\tau} d \tau \rightarrow \infty \quad x \rightarrow 0^{+}
$$

by (26), and therefore $Q \notin C^{1}$ in any neighborhood of $x=0$.
Let $Y^{1}(x)=Y(x)$ and let

$$
Y^{k}(x)=\int_{0}^{x} Y^{k-1}(\tau) d \tau \quad \text { for } \quad k \geqslant 2 .
$$

Then by a similar argument the C^{k} system

$$
\begin{aligned}
& \dot{x}=-x \\
& \dot{y}=-k y+Y^{k}(x)
\end{aligned}
$$

is not C^{k} equivalent to its linear part. Note that $Y^{k} \in C^{k}[x ; \mu]$ only for $\mu=0$, but the numbers $-1,-k$ are (k, μ)-spaced only for $\mu>0$; therefore Theorem 3 does not apply.

References

1. Hartman, P. "Ordinary Differential Equations." Wiley, New York (1964).
2. Sternberg, S. Local contractions and a theorem of Poincaré. Amer. 7. Math. 79 (1957), 809-824.
3. Hartman, P. On local homeomorphisms of Euclidean spaces. Bol. Soc. Mat. Mexicana 5 (1960), 220-241.
4. Nagumo, M., and Ise, K. On the normal forms of differential equations in the neighborhood of an equilibrium point. Osaka Math. 7. 9 (1957), 221-234.
5. Sternberg, S. On the structure of local homeomorphisms of Euclidean n-space. II, Amer. F. Math. 80 (1958), 623-631.
6. Chen, K. T. Equivalence and decomposition of vector fields about an elementary critical point. Amer. F. Math. 85 (1963), 693-722.
7. Brjuno, A. D. Normal form of differential equations. Dokl. Akad. Nauk SSSR 157 (1964), 1276-1279.
8. Coddington, E. A., and Levinson, N. "Theory of Ordinary Differential Equations." McGraw-Hill, New York (1955).
9. Venti, R. On the problem of normal forms for a system of ordinary differential equations at a singular point. O.N.R. Report prepared under Contract Nonr 222(88), University of California, Berkeley, August 1964.

[^0]: * This research was supported by the Office of Naval Research and by the United States Atomic Energy Commission. The results here are an extension of the author's thesis [9], which was written under the direction of Professor S. P. Diliberto. Reproduction in whole or in part is permitted for any purpose of the U.S. Government.

