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Abstract
BACKGROUND: Epidermal growth factor receptor (EGFR)–targeted agents have demonstrated clinical benefit in
patients with cancer. Identifying tissue-of-origin–independent predictive biomarkers is important to optimally treat
patients. We sought to identify a gene array profile that could predict responsiveness to panitumumab, a fully human
EGFR-binding antibody, using preclinical models of human cancer. METHODS: Mice bearing 25 different xenograft
models were treated twice weekly with panitumumab or immunoglobulin G2 control to determine their responsive-
ness to panitumumab. Samples from these xenografts and untreated xenografts were arrayed on the Affymetrix
human U133A gene chip to identify gene sets predicting responsiveness to panitumumab using univariate and multi-
variate analyses. The predictive models were validated using the leave-one-group-out (LOO) method. RESULTS:Of the
25 xenograft models tested, 12 were responsive and 13were resistant to panitumumab. Unsupervised analysis demon-
strated that the xenograftmodels clusteredby tissue type rather than responsiveness topanitumumab.After normalizing
for tissue effects, samples clustered by responsiveness using an unsupervised multidimensional scaling. A multi-
variate selection algorithmwas used to select 13 genes that could stratify xenograft models based on responsiveness
after adjustment for tissue effects. The method was validated using the LOO method on a training set of 22 models
and confirmed independently on three newmodels. In contrast, a univariate gene selection method resulted in higher
misclassification rates. CONCLUSION: A model was constructed from microarray data that prospectively predict
responsiveness to panitumumab in xenograft models. This approach may help identify patients, independent of dis-
ease origin, likely to benefit from panitumumab.
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Introduction
The epidermal growth factor receptor (EGFR) is a tyrosine kinase
transmembrane receptor that mediates the mitogen-activated protein
kinase (MAPK), phosphoinositide 3-kinase (PI3K), and STAT signaling
pathways [1]. Activation of these pathways results in cellular prolifer-
ation, adhesion, migration, and survival [2–4]. EGFR is overexpressed
in solid tumors, including colorectal, lung, head and neck, and breast
carcinomas, and correlates with poorer prognosis in patients [5,6].
Panitumumab is a fully human monoclonal antibody that binds to

the EGFR and prevents ligand-induced activation, resulting in arrest
of tumor cell proliferation, production of angiogenic factors, and sur-
vival [7–10]. Panitumumab is approved as monotherapy for the treat-
ment of metastatic colorectal cancer refractory to fluoropyrimidine-,
oxaliplatin-, and irinotecan-based chemotherapy regimens, but it is
not recommended for patients with mutations in KRAS codon 12 or
13 [11].

Currently, anti-EGFR therapies result in clinical benefit in approxi-
mately 32% to 44% of patients, with response rates of approximately
8% to 11% and median survival times ranging from approximately 6 to
7 months as monotherapy [12–16] and response rates of approximately
50% to 60% and median survival of approximately 20 to 24 months
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in combination with chemotherapy in the first line setting [12,17,18].
These relatively low response rates continue to challenge clinicians in
determining the best treatment options for their patients, especially
for those with metastatic late-stage disease, and underscore the need
for better patient selection to maximize clinical benefit and the risk/
benefit ratio. Although some progress has been made to help stratify
patients using biomarkers such as gene amplification, mutations in
genes including KRAS, BRAF, PI3K, and PTEN; and expression of
EGFR ligands, many patients with normal expression of these markers
progress on anti-EGFR therapy [19–25]. A further understanding of
the underlying mechanisms of dependency on the EGFR signaling
pathway may aid in identifying biomarkers that have a stronger pre-
dictive value than those that currently exist.
Microarray technology has been useful in identifying genes that

can serve as potential biomarkers in a variety of settings. Numerous
microarray studies have identified genes that can classify tumor
pathologic subtype, metastatic potential, correlation to therapeutic
outcome, and potential for disease recurrence [26]. More recently,
efforts have focused on understanding EGFR pathway dependence
[27] and responsiveness to EGFR inhibitors [25,28]. In colorectal
tumors, transcript expression levels of single genes involved in the
EGFR pathway (AREG and EREG) were significantly associated
with progression-free survival [25,29] with cetuximab treatment;
however, these results were not better predictors of response than
using a simple genetic test for mutations in the KRAS gene [28].
Furthermore, many patients with wild-type KRAS do not benefit
from anti-EGFR therapy [20]. Because pathways can have overlap-
ping sets of transcriptional targets, univariate gene selection methods
may not be sufficient to find the pathway(s) driving a particular
tumor. Identification of a gene signature consisting of multiple genes
using a multivariate selection methodology as described by Liu and
Wu [30] that could predict responsiveness to targeted therapies, such
as panitumumab, could ultimately improve the ability of clinicians
to provide optimal treatment for their patients.
Microarray analysis on 25 different, untreated xenograft models was

performed to determine a potential gene array profile that could pre-
dict responsiveness to panitumumab and to investigate any potential
advantage of a multivariate selection methodology compared with a
univariate selection for determining this predictive profile.

Materials and Methods

Xenograft Models
A total of 25 cell lines were selected for the xenograft models and

for microarray analyses (Table 1). Female CD-1 nu/nu mice (Charles
River Laboratories, Wilmington, MA) aged 5 to 6 weeks were received
and housed in sterilized caging and acclimated. Xenograft models of
each cell line were prepared by subcutaneous injection of 1 × 106 to
1 × 107 cells of a single cell line into the left flank of the mouse. The
mice were observed daily, and tumors were allowed to grow to an
average size of approximately 200 mm3 before treatment. Because
archival tissue from the initial surgery/diagnosis is most commonly
available for cancer patients, we sought to determine a predictive profile
using tumors collected prior to panitumumab treatment. Therefore,
untreated tumors from five animals from each xenograft model were
subjected to microarray analysis.
The mice were then treated with 5, 20, 100, 200, or 500 μg of

panitumumab from a stock solution (20 mg/ml panitumumab in

50 mM acetate, 100 mM NaCl, pH 5.8) or immunoglobulin G2
(IgG2) control antibody twice weekly via intraperitoneal injection.
Response was determined as a ≥40% inhibition of mean tumor
volume in the treatment group compared with the control group
at the last time point at the highest tested dose of panitumumab. Five
to ten animals per dose group were tested to determine the response
to panitumumab versus IgG2 control antibody treatment (see Legend,
Table 1). Tumor volumes, calculated as length × width × height in
millimeters cubed, and body weights were recorded at regular in-
tervals. Statistical significance of observed differences between growth
curves was evaluated by repeated measures analysis of variance fol-
lowed by Scheffé post hoc testing for multiple comparisons.
All animal studies were performed under an internal Institutional

Animal Care and Use Committee protocol and met all Associa-
tion for Assessment and Accreditation of Laboratory Animal Care
international specifications.

RNA Preparation for Microarray Assays
To minimize bias during the preparation of sample RNA from the

tumors, we processed together samples from as many models as pos-
sible (between 6 and 12 models at a time). Any bias introduced from a
particular batch would apply equally to all models processed in the
same batch. Replicate runs from five different animals carrying the
same xenograft model were processed in separate batches and hybrid-
ized on five different lots of microarray chips.
For each xenograft, 300-mm3 untreated tumors were collected.

Total RNA was extracted from approximately 100 to 150 mg of
tissue using Qiagen RNeasy Kit (Qiagen, Valencia, CA). Standard
cRNA labeling and array processing were conducted per protocol
(Affymetrix Technical Manual [31], Chapter 2: Eukaryotic Target Pro-
cessing). First-strand synthesis was performed using 5 μg of total RNA,

Table 1. Xenograft Models of Human Cancer Cell Lines and In Vivo Response (as Observed by
Tumor Growth Inhibition with Panitumumab Treatment)*.

Tissue Model Response

Breast MDA-MB468 +
CNS U118 +
Colon DLD-1 +
Colon HT-29 +
Lung A549 +
Lung NCI-H1650 +
Lung NCI-H1975 +
Pancreas BxPC-3 +
Pancreas MIAPaCa +
Prostate DU-145 +
Prostate PC-3 +
Skin A431 +
Breast BT-474 −
Breast MCF-7 −
Breast MDA-MB231 −
Breast ZR-75-1 −
CNS U-87 −
Colon Colo-205 −
Lung Calu-6 −
Lung NCI-H1299 −
Lung NCI-H460 −
Lung NCI-H82 −
Lung SK-MES-PD −
Pancreas CaPan-1bw −
Pancreas Panc-1 −

CNS indicates central nervous system.
*Five animals per model were used, with the exception of CaPan-1bw and Panc-1, where 10 animals
per model were used.
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10 pmol of T7-(dT)24 primer, and Superscript II RNase-H reverse
transcriptase (Invitrogen, Carlsbad, CA). Double-stranded cDNA
was purified using the MinElute Reaction Cleanup Kit (Qiagen).
Biotinylated cRNA was synthesized using Bioarray High-Yield RNA
Transcript Labeling Kit (Enzo Diagnostics, Farmingdale, NY) over
6 hours at 37°C, purified using the Qiagen RNeasy Mini Kit, and
hybridized to the Affymetrix Human Genome U133A gene chip
(Affymetrix, Santa Clara, CA). This chip contained approximately
22,000 probe sets.

Statistical Analysis
Data from Affymetrix .CEL files were imported into Matlab

Version 7.0.1 (Mathworks, Inc, Natick, MA) and processed without
background subtraction. Only the intensities from the perfect match
probes were used. The minimum intensity from each chip was sub-
tracted from all intensities on the chip and the value of 1 was added
so that the subsequent minimum intensity on each chip equaled 1.
The intensities were transformed using a natural log transformation.
Finally, a chip-specific nonlinear normalization function that mapped
intensities to a common distribution that was based on the entire data
set was found. This was done so that the intensities from each chip had
approximately the same minimum, range, and variance. This has a
similar goal to the popular Robust Multichip Average method [32],
but our method preserves the local structure seen in the original inten-
sity distribution. Finally, the average of the transformed and normalized
intensities for each probe in a probe set was computed. These averaged
intensity values were used in all subsequent analysis. Some figures were
prepared after reimporting data into Partek Pro Version 6.0 (Partek
Incorporated, St Charles, MO). Tissue effects were estimated for each
gene using the following model:

Intensity = Tissue + Response + Error

where response is a nominal factor (R/NR). Least squares estimates for
the tissue effect were subtracted from each intensity to produce tissue-
adjusted intensities.
The number of genes was reduced from a total of approximately

22,000 on the microarray chip to approximately 9500 genes by select-
ing those that had the greatest variance in expression across all of the
samples and those that had the greatest entropy (i.e., the union of the
top 60% of entropy and variance). For the univariate selection method,
a t test was used and the top genes were selected on the basis of the
significance of the response effect. For the multivariate gene selection,
an approach that could effectively search the most probable combina-
tions was needed because too many gene combinations exist to search
them all. For this, we used a genetic algorithm [33], which was de-
signed using Matlab Genetic Algorithm and Direct Search Toolbox,
Version 1.0.3 (R14SP2).
Ideally, the optimal search parameters that would not bias the results

would be determined in a nested leave-one-group-out (LOO) method
[34]. However, because we had a limited number of samples from
certain tissues, we were unable to obtain these optimal parameters.
Instead, we selected search parameters first before conducting a super-
vised examination of the data set to avoid biasing the results. Also,
the best number of genes to include in the gene set was not initially
known. Based on an unsupervised principal component analysis cal-
culated using the covariance matrix, the first 13 principal components
represented approximately 80% of the variability in the data. We de-
cided to build the predictive model using 13 genes.

A genetic algorithm attempts to find the best gene sets, called indi-
viduals, in an iterative process. In each iteration, called a generation,
the individuals are scored, and the best, most fit, individuals are
increased in their likelihood of contributing their genes to the next
generation. In our case, the individuals were scored using a linear
discriminant method function, which is a measure of the within-group
to between-group variance [35]. We started with the same number of
individuals as there were candidate genes, and in each generation, the
top 20% of the individuals were retained and their gene sets were
passed along unaltered to the next search generation. The remaining
80% of the individuals in the new population were either a random
combination of the genes from two individuals or the gene sets from
one of the best individuals that were subject to mutation (substitute
one gene for another one at random). In both cases, the parents were
found using a fitness-weighted random selection method. The muta-
tion rate was chosen such that each individual undergoing a mutation
had, on average, one gene mutated. The search was conducted for
up to 100 generations or until the best scoring individual no longer
improved for 10 successive generations.
Validation was conducted using a full LOO analysis for both uni-

variate and multivariate gene selection methods. In our study, a group
corresponds to a tumor xenograft model (typically five animals per
group). In each loop of the LOO, all data from one xenograft model
were removed from the data set and to avoid biasing the results of the
validation, gene selection was repeated during each loop of the LOO
validation [36]. In each loop, a fully specified linear model was used to
predict the responsiveness of the group that was left out. This provides
a binary classification and a distance to the centroids of each class. The
sum of squares error from the continuous distance to the correct class
was calculated and further used to calculate the predicted error sums
of squares, commonly called prediction sum of squares (PRESS)
[37]. The classification was then compared to the actual response
obtained from the original xenograft tumor growth inhibition results.
The results of the LOO validation were compared with those ob-
tained from a univariate selection method using the same size gene
set. As a control, additional validation was achieved by randomly
permuting the response labels within tissues and then repeating the
entire LOO analysis.
To understand the minimal number of genes needed to predict and

to avoid complications due to overfitting [34], we determined an
optimal number of genes to use in a prediction set. This data set
was used to predict the best gene signature for signature sizes from
1 to 13. These will not be considered internally validated until addi-
tional data become available.

Results

Identification of Panitumumab-Responsive Cell Lines in
Xenograft Models
Panitumumab treatment of 25 established xenograft models demon-

strated that 12 xenograft models, including three lung, two colon,
two pancreas, two prostate, one breast, one glioblastoma, and one
epidermoid cancer lines, were responsive to panitumumab as deter-
mined by tumor growth inhibition versus IgG2 control, whereas the
remaining 13 models were not responsive to panitumumab (Table 1).
In the 12 responsive models, tumor growth inhibition was statistically
significant at the highest dose of panitumumab at 500 μg once every
2 weeks (P < .05). These results were used to assign the models to
either responder or nonresponder groups.

Neoplasia Vol. 15, No. 2, 2013 Expression Profiles Predict Panitumumab Response Boedigheimer et al. 127



Tissue Type Is a Major Factor in Clustering in the Principal
Component Microarray Analysis
For each of the 25 untreated xenograft models, microarray analysis

was performed on tumor samples from five different animals to deter-
mine the relative level of gene expression on both responsive and non-
responsive models. In an unsupervised principal component analysis
clustering, the xenograft models separated on the basis of tissue type
rather than responsiveness to panitumumab (Figure 1A). The principal
component intensities for each model were used to calculate means
and two SD radii for ellipsoids. In an analysis of variance, the average
mean square error was 1.139 for tissue type and 0.819 for response
to panitumumab, indicating that tissue type was the largest source
of variability.

Response Is a Major Factor in Gene Regulation after
Subtracting Tissue Effects
A mixed-effects nested model with tissue, response, and tumor

model was applied to each gene, where model was treated as a random
effect. Tissue and response were contained in the tumor model. Vari-
ance components were estimated using Restricted Estimated Maxi-
mum Likelihood. Adjusting for multiple tests using Bonferroni led
to no differentially expressed genes between responders and non-
responders. At a false discovery rate of 0.05 [38], nearly 500 genes

that were statistically different between responders and nonresponders
were found.
Because tissue was the major contributing source of variability, we

sought to reduce the effects of tissue on the prediction of response, which
would interfere with our multivariate gene selection procedure. For each
of the 9500 genes evaluated, we adjusted the observed intensities by sub-
tracting the marginal mean intensity for each tissue. Thus, for a given
gene, the average adjusted intensities for each tissue were the same. After
subtracting the tissue effect, a multidimensional scaling analysis showed
that the samples clustered by responsiveness (Figure 1B).

A Set of 13 Genes Can Predict Responsiveness
Twenty-two xenograft models were selected to be the training set

because these were derived from tissues that included examples of
both responder and nonresponder (i.e., the tissues were balanced).
The remaining three models were responders from completely differ-
ent tissue types than those used to build the model and were used as
an independent test set.
We used a genetic algorithm combined with a linear discriminant

to select 13 genes that could separate responsive and nonresponsive
models. Validation runs were conducted with the LOO method. In
this analysis, all data from one model were removed from the data
set. The remaining data were used to select a set of genes and to build
a predictive model, which was then applied on the xenograft model
left out. The prediction was then compared to the actual response
obtained from the original xenograft tumor growth inhibition results.
Twenty-two independent tests were performed and response predic-
tion was 100%. As a control, the same analyses were conducted on
xenograft models that were randomly assigned to the responsive or
nonresponsive group regardless of actual responsiveness. This random
assignment resulted in an overall predictive rate of 55% (Table 2).
After LOO validation of the multivariate algorithm, a final set of

13 genes was selected from all 22 models. This predictive model was
used to prospectively predict responsiveness in the three independent
xenograft models (Figure 2).

Multivariate Compared with Univariate Gene Selection
To compare the gene selection methods, we chose an additional set

of 13 genes using a univariate gene selection methodology. A t test was
used to select the top 13 genes with the most significant difference in
expression between responders from nonresponders, and a classifica-
tion model was built using a linear discriminant analysis. The first
two canonical variables are plotted in Figure 2. Genes selected using

Figure 1. (A) Tissue type is a major factor in clustering in the princi-
pal component analysis of 120 spots—each point is the average of
five replicates. Data from the training set are shown. (B) Response
to panitumumab is a major factor after subtracting tissue effects—
each one is a separate model, connected by lines.

Table 2. Prediction of Responsiveness via Univariate or Multivariate Methodology and Comparison
with Xenograft Results*.

Method Correct Prediction Overall Prediction (%)

Response (+, %) Nonresponse (−, %)

Thirteen gene set—multivariate 100 100 100
Five gene set—multivariate 100 100 100
Four gene set—multivariate 100 100 100
Thirteen gene set—univariate 64 81 75
Five gene set—univariate 64 81 75
Four gene set—univariate 62 69 67
Random assignment 44 61 55

N = 13, randomized control.
*Four, 5, or 13 genes were selected by either methodology. A control experiment denoted as
“Random assignment,” which randomly assigned models as either positive or negative for response,
was included (n = 13 genes).
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the multivariate method had a Mahalanobis distance between group
means of 22.8, whereas genes selected using the t test had a distance
of only 6.9. These results indicate that separation of groups is greater
using a multivariate methodology versus univariate methodology.

Optimization of the Number of Genes
The intention of the previous analysis was to obtain an unbiased

estimate of the performance of the algorithm. In addition, we used this
same data to determine the optimal number of genes to prospectively
predict outcomes. This is usually a balance between predictive power
(reduction in bias) of the gene set and its ability to generalize (minimum
variance). Too few genes will tend to be lacking in predictive power and
too many genes will tend to overfit the data and simply add variance
without aiding, and perhaps harming, predictive power [39].
To determine the optimal number of genes, we varied the num-

ber from 1 to 13 genes. For each specified gene set size, the LOO
analysis was repeated. We found that as few as four genes resulted
in 100% correct prediction (Table 2). Interestingly, both 5 and
13 genes also resulted in 100% correct prediction. After testing both
methods, the univariate gene selection methodology resulted in
lower prediction rates (67% to 75%) than the multivariate gene
set selection methodology (100%) when compared using 4, 5, and
13 genes. These results further confirm that multivariate method-
ology provided the best predictive power.
The separation achieved using the best gene set of a given size, which

were identified using the whole data set, is shown in Figure 3A. This
figure shows the first two canonical variables using the given number
of genes selected by either the univariate or multivariate method. From
these plots, the intergroup variability compared to the intragroup vari-
ability is clearly greater in the multivariate analysis for all three gene
sets than in any group using the univariate selection method. The
distance between groups using four genes selected together was 10.9,
whereas the distance using 13 genes selected independently was 6.9.
The separation distance between groups also increased as the number
of genes in the set increased; however, because of previously described
overfitting concerns, and because adding more than five genes did not
significantly reduce the PRESS, we maintained the optimal gene set
at five genes.
To quantify the separation from each of the runs, we used the

PRESS model to estimate the error of each prediction in the context
of an LOO analysis. The average mean square error over all results

for each number of genes using both multivariate and univariate
analyses is shown in Figure 3B. In the multivariate selection method,
there was a significant reduction in error (P < .05) for each new gene
(up to five genes) that was added to the model. However, increasing
the number of genes beyond 5, that is, from 6 to 13 genes, did not
improve the error significantly. Therefore, five genes in the gene set
appeared to be the optimal number of genes. Using univariate analy-
sis, the average mean square error plateaued with four genes, suggest-
ing that a four-gene set is optimal in the univariate selection model.
The PRESS was always equal or lower for the multivariate method
than for the univariate, although we did not try to use the univariate
or multivariate selection method for more than 13 genes.

A Final Search Identified a Set of Five Genes that Can
Predict Responsiveness
We conducted a final search for the best set of five genes. In this

search, the genetic algorithm was run 500 times, compared with
100 times in the previous searches, and the initial population was in-
creased to 1 million individual gene sets. The simulation was stopped
after 50 generations or five generations with no change in the best
score. The top 5 genes and biologic function are listed (Table 3).

Discussion
The advancements in anti-EGFR therapy for many cancers, including
colorectal, lung, and head and neck, are promising and further validate
the role of the EGFR pathway in tumor growth [40]. Although efficacy
across tumor types with small molecule or antibody monotherapies
remains relatively low in unselected patient populations [12], it is im-
proved in a selected population [19,20,41]. To understand the mecha-
nism of action of panitumumab, we used animal models, microarray,
and multivariate methodology to identify a gene signature that would
predict responsiveness to panitumumab in xenograft models. These
findings indicate that additional pathways and genes that are not in-
hibited with anti-EGFR therapies are involved in tumor growth and
metastases. Gene expression profiling can identify these genes, and,
as biomarkers, these genes can potentially be useful in defining a pa-
tient population that will respond and/or have a good prognosis with
certain therapies.
Public DNA and microarray databases, such as the Stanford Micro-

array Database, have been useful in developing tumor classification
models in breast tumors [42] and lymphoma [43,44]. The usefulness

Figure 2. LOO validation using the top 13 genes selected by multivariate methodology.
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of multivariate subset selection in this context has been demonstrated
[30,45]. Here, we show the advantage of using a genetic algorithm
compared with a univariate method for predicting responsiveness to
panitumumab in animal models of human disease.

Multidimensional scaling of data normalized for tissue shows re-
sponsive animals cluster together (Figure 1B), suggesting that a tissue-
independent and EGFR mutation–independent signature may exist.
We also observed that in the multidimensional scaling, the responders

Table 3. Gene Signature of the Top 5 Genes (Multivariate Method).

Number Gene Symbol Probe ID Gene/Biologic Function

1 TP73L 209863_S_AT Tumor protein p73-like
2 POLG 213008_AT Polymerase (DNA directed), gamma
3 MRPS10 218106_S_AT Mitochondrial ribosomal protein S10
4 YWHAH 201020_AT Tyrosine 3/tryptophan 5-monooxygenase activation protein, eta polypeptide
5 ROR1 205805_S_AT Receptor tyrosine kinase–like orphan receptor 1

Figure 3. (A) Multivariate versus univariate separation of groups (responders versus nonresponders) based on gene sets of 4, 5, and
13 genes. The top 4, 5, and 13 genes in each set were selected. The axes are canonical variables 1 and 2. (B) A set of five genes re-
sulted in the best separation and the least prediction error in this data set. This plot illustrates residual error from a linear model using a
different number of genes to predict (PRESS method), using univariate selection (red) and multivariate (blue) methods.
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were clustered more tightly than nonresponders. Given that pani-
tumumab specifically inhibits ligand-induced autophosphorylation
of EGFR, the gene signature may be expected to be similar among
responders, whereas nonresponsiveness can arise from many other
pathways being activated. This would result in a wide array of gene
transcriptional variations in a broad, loosely clustered gene space.
These data may also suggest that it is possible to find a signature

in the entire gene set (Figure 1B). However, for clinical usefulness,
selecting a small number of genes that could be assayed from a formalin-
fixed, paraffin-embedded section is more practical. Therefore, we
decided to use a subset selection method to find a small set of genes
that would adequately separate responders and nonresponders.
Our multivariate method was built on 22 heterogeneous tumor

xenografts representing five different tissue types, and we successfully
identified an optimal gene signature of five genes that could predict re-
sponsiveness to panitumumab in tumor models. Our predictive model
was internally validated using the LOO method with test models, each
resulting in 100% correct predictive power. Although the gene signa-
tures (from 4 to 13 genes) from the multivariate analysis all had 100%
correct prediction rate, we determined that signatures with more than
five genes did not significantly reduce the marginal error rate.
Most of the genes identified have been implicated in tumorigenesis

or in cell proliferation. Tumor-protein 73–like plays a role in apoptosis
and cell cycle regulation and has also been implicated in increasing the
transcription rate of vascular endothelial growth factor [46]. ROR1 is
an orphan receptor tyrosine kinase. Although its function is unclear,
knock-out mice studies suggest a role in development of various tissues.
YWHAH is a 14-3-3 family member that interacts with p53 and may
regulate apoptosis. Tumor models with high levels of expression of
these genes tend to respond to treatment with anti-EGFR antibody.
The last two genes in the signature (MRPS10 and PolG) are related
to mitochondrial function. High levels of these gene products correlate
with nonresponsiveness in this study. MRPS10 is a nuclear encoded
mitochondrial ribosomal protein S10. It is a structural component of
the mitochondrial ribosome and is necessary for protein production
within the mitochondria. PolG is the only DNA polymerase for mito-
chondrial DNA replication. The role of these genes in predicting
responsiveness is unclear and warrants further investigation.
Interestingly, this signature predicts responsiveness well when

used prospectively on tumors arising from different tissue types. The
model was built using five different tissue types, and we successfully
prospectively predicted outcomes on two new tissue types that were
not used to build the predictive model. This supports the hypothesis
that one mechanism of action for EGFR in tumor growth exists and
that this mechanism is consistent across all tissue types. Further, our
data show that this tissue-independent molecular signature can be iden-
tified, and, eventually, may be used on patient samples to potentially
predict outcomes.
We noted during our LOO and subsequent analysis that it is possi-

ble and likely that any given run of the genetic algorithm may produce
a different set of five genes. Our experience has been consistent with
other published results [30] such that the top set from any run performs
well in predicting an outcome. We have also shown that it is possible
to substitute highly correlated genes for any or all of the five genes in
the set that can be used to build highly predictive models (data not
shown). We suggest that the gene in the correlation group may repre-
sent a biological phenomenon useful in some aspect of the prediction.
In light of numerous attempts to predict response or other clinical

outcomes using univariate gene selection methods, our study indicates

that better results may be obtained using multivariate gene selection
methods. Multivariate methods have been shown to offer improve-
ments in other settings, such as in tumor classification [30], but are
not widely used to stratify patients. Our results indicate that for any
number of genes in the model to predict responsiveness, multivariate
modeling results in smaller error than univariate modeling (Figure 3A).
Recently, EREG and AREG expression levels have been shown to

be predictive of disease control [25]. In our data set, EREG and AREG
expression levels were well correlated (P < .001 for Pearson correlation
coefficient of 0.86). However, a linear discriminant classifier based on
the expression of these genes gave a relatively high error rate of 0.36.
In summary, the goal of clinicians is to treat patients with the best

therapy that will provide the greatest probability of success in terms of
response and survival. With anti-EGFR therapies, more than 40% of
patients have a partial response or stable disease, whereas another 50%
have progressive disease in the monotherapy setting. If clinicians had
biomarkers that would help define tumors that were dependent on
EGFR signaling, the success rate in treating patients would increase
significantly. In this study, we identified a gene signature that was
predictive in animal models. However, because there are fundamental
differences between the animal models and human subjects, this model
will not likely perform as well in humans. Instead, we suggest that
multivariate gene selection techniques may be important to identify
signatures driving tumor growth. If this holds, we could then use this
algorithm on patient samples to identify biomarkers and aid in future
trial designs.
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