Isolation of cytochrome b from the cytochrome bc_1 complex of
Rhodopseudomonas sphaeroides GA

Nadia Gabellini and Günter Hauska

Institut für Botanik, Universität Regensburg, 8400 Regensburg, FRG

Received 31 January 1983

Cytochrome b has been isolated from the cytochrome bc_1 complex of Rhodopseudomonas sphaeroides GA. It represents the largest of the 3 polypeptides of this complex (40, 34, 25 kDa). Spectral heterogeneity is lost, but redox heterogeneity is retained to some extent, and the pH-dependence of the midpoint potential is preserved during isolation.

Rps. sphaeroides Bacterial cytochrome bc_1 complex Cytochrome b
Ubiquinol--cytochrome c oxidoreductase

1. INTRODUCTION

A cytochrome complex which has ubiquinol--cytochrome c oxidoreductase activity can be isolated from chromatophores of Rhodopseudomonas sphaeroides [1,2]. It contains the Rieske FeS center and ubiquinone, and 2 hemes b/cytochrome c_1 [1]. The 2 cytochromes b in the complex correspond [3] to cytochrome b-561 and b-566 in the parent membrane with respect to redox potentials [4,5], absorption spectra [5,6] and spectral effects of the inhibitory antibiotics, antimycin A and myxothiazol [7].

The complex consists of 3 major polypeptides with app. M_r 40000, 34000 and 25000 [1]. Here we show that the 40 kDa polypeptide corresponds to cytochrome b. It can be isolated from the complex and some of its properties are reported.

2. MATERIALS AND METHODS

The cytochrome bc_1 complex from Rps. sphaeroides was prepared as in [1] with the omission of Triton X-100 [3]. Cytochrome b was prepared from the complex by chromatography on hydroxyapatite in the presence of Triton X-100, modified (i.e., omitting urea) from a procedure also successfully employed for the isolation of cytochrome b from the mitochondrial complex [8]. The cytochrome complex from Rps. sphaeroides, which was suspended in 50 mM glycyglycine (pH 7.4), 0.25% cholate, 30 mM octylglucoside and ~30% (w/v) sucrose from the density gradient centrifugation, was loaded onto a short OH-
apatite column, equilibrated with 5 mM phosphate (pH 7.4) and 0.1% Triton X-100. Cytochrome b was then eluted from the complex with 10 mM phosphate/0.1% Triton X-100. The residue of the complex, containing cytochrome c_1 and residual cytochrome b was eluted subsequently with 50 mM phosphate/0.1% Triton X-100.

Protein [9] and pyridine hemochrome [10] were determined by standard procedures. Other methods are described in the legends.

3. RESULTS AND DISCUSSION

The SDS--PAGE pattern of the cytochrome bc_1 complex isolated from Rps. sphaeroides GA is shown (fig.1) in 3 different amounts (track 4--6), together with the reaction center (track 3) and cytochrome c_2 (track 2), both from the same organism [1]. The preparation presented here shows the dominant polypeptides of 40 and 34 kD [1], but contains relatively little of the 25-kD polypeptide. The small polypeptide below 10 kD
Fig. 1. Heme-carrying polypeptides in the preparation of the cytochrome bc₁ complex from *Rps. sphaeroides*. SDS-PAGE was carried out after Laemmli [11], on a gradient gel of 12–18% polyacrylamide. The same gel was first stained for heme [12] (right); then, after destaining, with Coomassie blue (left). Track: (1) protein standards with 92, 66, 45, 31, 21 and 14 kDa; (2) 0.2 nmol cytochrome c₂ from *Rps. sphaeroides*; (3) 0.2 nmol reaction center complex from *Rps. sphaeroides* GA [1]; (4–6) cytochrome bc₁ complex from *Rps. sphaeroides* GA, 0.3, 0.15 and 0.05 nmol cytochrome c₁.

Fig. 2 shows that the isolated cytochrome b corresponds to the 40-kD polypeptide, which loses the heme upon SDS-PAGE (fig.1). Spectra of this cytochrome b preparation are shown in fig.3. In contrast to the cytochrome b in the complex [3], the low-temperature spectrum does not reveal a split α-peak. Up to 80% of cytochrome b from the complex could be isolated, as determined by the pyridine hemochrome [10]. This suggests that all of the cytochrome b is represented by the 40-kD polypeptide. There was a tendency for loss of heme from the cytochrome b after purification.

The midpoint potential of the cytochrome b isolated from the complex was pH-dependent (fig.4). The slopes of the titrations at both pH-values in fig.4 are < 1, indicating redox heterogeneity. It is not possible, however, to resolve the titrations in fig.4 into two components accurately, as done for the cytochrome in the complex [1,3]. Heterogeneity and pH-dependence of the midpoint potential has been also reported for
Fig. 2. SDS-PAGE of cytochrome b isolated from the cytochrome bc₁ complex from Rps. sphaeroides. SDS-PAGE was carried out after Laemmli [11] on 14% polyacrylamide: (1) standard proteins as in fig. 1; (2) cytochrome bc₁ complex, 75 pmol cytochrome c₁; (3) 60 pmol isolated cytochrome b.

cytochrome b isolated from the mitochondrial cytochrome bc₁ complex [8,17], and for cytochrome b₆ isolated from the cytochrome b₆f complexes from chloroplasts and a cyanobacterium (in preparation). Therefore, cytochrome b of these complexes has universal properties (reviewed in [18]).

ACKNOWLEDGEMENT

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 43 C 2).

Fig. 3. Spectra of the isolated cytochrome b. The spectra were recorded with an Aminco DW2 UV/Vis spectrophotometer as in [1,3]. (A) Redox difference spectrum, dithionite minus ferricyanide, at RT: (B) absolute spectrum of the cytochrome reduced with dithionite, at RT; in both cases cytochrome b was 290 nM as determined by pyridine hemochrome [10]. (C) Redox difference spectrum, dithionite minus ferricyanide, over liquid N₂, 120 nM cytochrome b, 0.2 mm cuvette.

Fig. 4. Redox titration of the isolated cytochrome b at two pH values. Redox titrations were done as in [1]. The pH was adjusted to either 6.0 or 7.4 in the presence of 20 mM Tris–HCl, 20 mM MES–NaOH and 5 mM phosphate. Cytochrome b was 350 nM.

REFERENCES

