Discrete Mathematics 30 (1980) 111–116. © North-Holland Publishing Company

REPRESENTATION OF LUKASIEWICZ ALGEBRAS BY MEANS OF ORDERED STONE SPACES

Alexandru FILIPOIU

Catreda matematici 1, Institutul Politehnic București, Splaiul Independentei, Bucharest, Romania.

Received 28 May 1979

In this paper the author defines the notion of a θ -valued Ordered Lukasiewicz Space and a study of the dual of the category of θ -valued Lukasiewicz algebras, using ordered topological spaces, is given.

The paper is devoted to the study of the dual of the category of θ -valued Lukasiewicz algebras (θ .v.L.a), using ordered topological spaces (see [4]). For the category of distributive lattices see [4, 5].

1. Preliminaries

The notions and notations for the category of θ -valued Lukasiewicz algebras, Luk (θ), are given in [3] and for the category of ordered topological spaces are given in [4].

Definition 1. (a) Let (X, \leq) be a quasi-ordered set. A subset E of X will be called *increasing* if $x \in E$, $y \in X$, $x \leq y$ imply $y \in E$ (a decreasing set is defined dually).

(b) An ordered space is a triple (X, \mathcal{T}, \leq) , where X is a set, \mathcal{T} a topology on X and \leq a quasi-order on X.

(c) An ordered space (X, \mathcal{T}, \leq) will be called *totally order disconnected* if, given $x, y \in X$, with $x \leq y$ there exist an increasing \mathcal{T} -clopen set U and a decreasing \mathcal{T} -clopen set L such that $U \cap L = \emptyset$, $x \in L$ and $y \in U$.

(d) An ordered space (X, \mathcal{T}, \leq) will be called an *ordered Stone space* if it is compact and totally order disconnected.

Throughout this paper all distributive lattices are assumed to have zero and one and the homomorphisms preserve these elements. If A is a distributive lattice, then its dual space is defined to be $T(A) = (X, \mathcal{T}, \leq)$, where X is the set of homomorphisms from A onto $\{0, 1\}, \mathcal{T}$ is the product topology induced from $\{0, 1\}^A$, and \leq is the partial order: $f \leq g$ in X iff $f(a) \leq g(a)$ for all $a \in A$.

If $\mathscr{X} = (X, \mathcal{T}, \leq)$ is an ordered Stone space, then the set

 $L(\mathscr{X}) = \{Y \subseteq X/Y \text{ increasing and } \mathcal{T}\text{-clopen}\}$

is a distributive lattice with respect to union and intersection of subsets in X.

Lemma [4]. (a) If A is a distributive lattice, then $T(A) = (X, \mathcal{T}, \leq)$ is an ordered Stone space.

(b) If $\mathscr{X} = (X, \mathcal{T}, \leq)$ is an ordered Stone space, then $L(\mathscr{X})$ is a distributive lattice with zero and one.

Theorem 1 [4]. (a) Let A be a distributive lattice. The map $F_A: A \to L(T(A))$ defined by $F_A(a) = \{f \in X \mid f(a) = 1\}$ is a lattice isomorphism.

(b) Let $\mathscr{X} = (X, \mathcal{T}, \leq)$ be an ordered Stone space. The map $G_{\mathscr{X}} : \mathscr{X} \to T(L(\mathscr{X}))$ defined by

$$G_{\mathscr{X}}(x)(Y) = \begin{cases} 1 & \text{if } x \in Y, \\ 0 & \text{if } x \notin Y, \end{cases}$$

for every $Y \in L(\mathcal{X})$ is an isomorphism of ordered Stone spaces.

(c) If $f: A_1 \rightarrow A_2$ is a lattice homomorphism, then the map $T(f): T(A_2) \rightarrow T(A_1)$ defined by $T(f)(g) = g \circ f$ is a homomorphism of ordered Stone spaces (a continuous and increasing map).

(d) If $H:\mathscr{X}_1 \to \mathscr{X}_2$ is a homomorphism of ordered Stone spaces, then the map $L(h): L(\mathscr{X}_2) \to L(\mathscr{X}_1)$ defined by $L(h)(Y) = h^{-1}(Y)$ for every $Y \in L(\mathscr{X}_2)$ is a lattice homomorphism.

(e) If f and h are in (c) and (d) the diagrams

are commutative.

Theorem 1 shows that the category of ordered Stone spaces is equivalent with the dual of the category of distributive lattices.

2. Representation of 0-valued Lukasiewicz algebras

Let A be a θ .v.L.a. and T(A) the ordered Stone space of the distributive lattice A. For every $\alpha \in \mathcal{T}$, $\varphi_{\alpha} : A \to A$ is a lattice homomorphism let $\phi_{\alpha} : T(A) \to T(A)$ defined by $\phi_{\alpha} = T(\varphi_{\alpha})$.

Lemma 1. The family of maps $(\phi_{\alpha} \mid \alpha \in J)$ satisfies the following conditions:

(a) ϕ_{α} is a continuous and increasing map, for every $\alpha \in J$;

(b) $\phi_{\alpha} \circ \phi_{\beta} = \phi_{\alpha}$ for every $\alpha_1 \beta \in J$;

(c) if $\alpha, \beta \in J, \alpha \leq \beta$, then $\phi_{\alpha}^{-1}(Y) \supseteq \phi_{\beta}^{-1}(Y)$ for every $Y \in L(T(A))$;

(d) if $Y \in L(T(A))$, then $\phi_{\alpha}^{-1}(Y)$ and $T(A) \setminus \phi_{\alpha}^{-1}(Y)$ are in L(T(A)), for every $\alpha \in J$;

(e) if $Y, Z \in L(T(A))$ and for every $\alpha \in J \phi_{\alpha}^{-1}(Y) = \phi_{\alpha}^{-1}(Z)$, then Y = Z.

Proof. (a) from Theorem 1 (c);

(b) $(\phi_{\alpha} \circ \phi_{\beta})(f) = \phi_{\alpha}(\phi_{\beta}(f)) = \phi_{\alpha}(f \circ \varphi_{\beta}) = (f \circ \varphi_{\beta}) \circ \varphi_{\alpha} = f \circ (\varphi_{\beta} \circ \varphi_{\alpha}) = f \circ \varphi_{\alpha} = \phi_{\alpha}(f)$ for every $f \in T(A)$;

(c) In the conditions of Lemma 1, if $f \in \phi_{\beta}^{-1}(Y)$, then $\phi_{\beta}(f) \in Y$, or $f \circ \varphi_{\beta} \in Y$; but for $\alpha \leq \beta$ we have $\varphi_{\alpha} \geq \varphi_{\beta}$. It follows that $f \circ \varphi_{\alpha} \geq f \circ \varphi_{\beta}$ and $f \circ \varphi_{\alpha} \in Y$, or $f \in \phi_{\alpha}^{-1}(Y)$ (only the fact that Y is increasing has been used);

(d) using Theorem 1a), there exist $a \in A$ such that $Y = F_A(a) = \{f \in T(A) \mid f(a) = 1\}$; then $\phi_{\alpha}^{-1}(Y)$ and $T(A) \setminus \phi_{\alpha}^{-1}(Y)$ are \mathcal{T} -clopen because ϕ_{α} is continuous; $\phi_{\alpha}^{-1}(T)$ is increasing and we have:

$$f \in T(A) \setminus \phi_{\alpha}^{-1}(Y) \Leftrightarrow f \notin \phi_{\alpha}^{-1}(Y) \Leftrightarrow \phi_{\alpha}(f) \notin Y = F(a) \Leftrightarrow \phi_{\alpha}(f)(a) = 0$$
$$\Leftrightarrow f(\varphi_{\alpha}(a)) = 0 \Leftrightarrow f(\bar{\varphi}_{\alpha}(a)) = 1 \Leftrightarrow f \circ F_{A}(\bar{\varphi}_{\alpha}(a)),$$

then $T(A)\setminus \phi_{\alpha}^{-1}(Y) = F_A(\bar{\varphi}_{\alpha}(a))$ and it follows that $T(A)\setminus \phi_{\alpha}^{-1}(Y)$ is increasing.

(e) Using Theorem 1(a) there exists $a, b \in A$ such that Y = FA(a) and $Z = F_A(b)$; we have:

$$\phi_{\alpha}^{-1}(Y) = \{ f \mid \phi_{\alpha}(f) \in Y \} = \{ f \mid f \circ \varphi_{\alpha} \in F_{A}(a) \} = \{ f \mid f(\varphi_{\alpha}(a)) = 1 \} = F_{A}(\varphi_{\alpha}(a))$$

and $\phi_{\alpha}^{-1}(Z) = F_A(\varphi_{\alpha}(b))$. If $\phi_{\alpha}^{-1}(Y) = \phi_{\alpha}^{-1}(Z)$ for every $\alpha \in J$, then $F_A(\varphi_{\alpha}(a)) = F_A(\varphi_{\alpha}(b))$ for every $\alpha \in J$; it follows that $\varphi_{\alpha}(a) = \varphi_{\alpha}(b)$ for every $\alpha \in J$, therefore a = b or Y = Z.

Definition 2. (a) An ordered Stone space $\mathscr{X} = (X, \mathcal{T}, \leq)$ will be called an ordered θ -valued Lukasiewiecz space (o.L.s.) if a family of maps $(\phi_{\alpha} : X \to X \mid \alpha \in J)$ is given which satisfies the following conditions:

(1) for every $\alpha \in J$, ϕ_{α} is a continuous and increasing map;

(2) $\phi_{\alpha} \circ \phi_{\beta} = \phi_{\alpha}$ for every $\alpha, \beta \in J$;

(3) if $\alpha, \beta \in J$, $\alpha \leq \beta$, then $\phi_{\alpha}^{-1}(Y) \supseteq \phi_{\beta}^{-1}(Y)$ for every $Y \subseteq X$ increasing and \mathcal{T} -clopen;

(4) for every $\alpha \in J$ and $Y \subseteq X$ increasing and \mathcal{T} -clopen $\phi_{\alpha}^{-1}(Y)$ and $T(A) \setminus \phi_{\alpha}^{-1}(Y)$ are increasing;

(5) if $\phi_{\alpha}^{-1}(Y) = \phi_{\alpha}^{-1}(Z)$ for every $\alpha \in J$, where Y and Z are increasing and \mathcal{T} -clopen in \mathcal{X} , then $Y = \mathbb{Z}$.

(b) If $\mathscr{X} = (X, \mathscr{T}, \leq, \{\phi_{\alpha}\}_{\alpha \in I})$ and $\mathscr{X}' = (X', \mathscr{T}', \leq', \{\phi'_{\alpha}\}_{\alpha \in J})$ are o.L.s., a continuous and increasing map $f: X \to X'$ will be called a θ -application if for every $\alpha \in J$, the diagrams:

 $\begin{array}{c} X \xrightarrow{f} X' \\ \phi_{\alpha} \downarrow & \downarrow \phi'_{\alpha} \\ X \xrightarrow{f} X' \end{array}$

are commutative.

We shall denote by $L(\theta)$ the category of o.L.s. and θ -applications.

Proposition 1. (a) If A is a θ .v.L.a., then the ordered Stone space T(A) with the family of maps $(\phi_{\alpha} \mid \alpha \in J)$ given in Lemma 1 is an ordered θ -valued Lukasiewiecz space.

(b) If $f: A \rightarrow A'$ is a homomorphism of $\theta.v.L.a.$, then the map $T(f): T(A') \rightarrow T(A)$ (given in Theorem 1(c)) is a θ -application.

Proof. (a) Follows easily from Theorem 1 and Lemma 1.

(b) We shall prove that for every $\alpha \in J$ the diagram

$$T(A') \xrightarrow{T(f)} T(A)$$

$$\downarrow^{\phi'_{\alpha}} \qquad \qquad \downarrow^{\phi_{\alpha}}$$

$$T(A') \xrightarrow{T(f)} T(A)$$

is commutative; we have:

$$(\phi_{\alpha} \circ T(f))(g) = \phi_{\alpha}(T(f)(g)) = \phi_{\alpha}(g \circ f) = (g \circ f) \circ \varphi_{\alpha}$$
$$= g \circ (f \circ \varphi_{\alpha}) = g \circ (\varphi_{\alpha} \circ f) = (g \circ \varphi_{\alpha}) \circ f$$
$$= T(f)(\phi_{\alpha}'(g)) = (T(f) \circ \phi_{\alpha}')(g).$$

Proposition 2. (a) If $\mathscr{X} = (X, \mathcal{T}, \leq \{\phi_{\alpha}\}_{\alpha \in J})$ is an o.L.s., then the lattice $L(\mathscr{X})$ associated with the ordered Stone space (X, \mathcal{T}, \leq) with the family of maps $(\varphi_{\alpha}, \tilde{\varphi}_{\alpha} \mid \alpha \in J)$ given by $\varphi_{\alpha}(Y) = \phi_{\alpha}^{-1}(Y), \ \tilde{\varphi}_{\alpha}(Y) = X \setminus \phi_{\alpha}^{-1}(Y)$ for every $\alpha \in J$ is a $\theta.v.L.a$.

(b) If $\mathscr{X} = (X, \mathcal{T}, \leq, \{\phi_{\alpha}\}_{\alpha \in J}), \mathscr{X}' = (X', \mathcal{T}', \leq', \{\phi'_{\alpha}\}_{\alpha \in J})$ are o.L.s. and $f: X \to X'$ is a θ -application, then $L(f): L(\mathscr{X}') \to L(\mathscr{X})$ (given in Theorem 1(d)) is a homomorphism of $\theta.v.L.a$.

Proof. (a) The maps φ_{α} , $\bar{\varphi}_{\alpha}$ are well defined (conditions 2 and 3, Definition 2). We shall prove that the conditions of the definition of θ .v.L.a. are verified:

$$\varphi_{\alpha}(Y \cup Z) = \phi_{\alpha}^{-1}(Y \cup Z) = \phi_{\alpha}^{-1}(Y) \cup \phi_{\alpha}^{-1}(Z) = \varphi_{\alpha}(Y) \cup \varphi_{\alpha}(Z),$$

$$\varphi_{\alpha}(Y \cap Z) = \phi_{\alpha}^{-1}(Y \cap Z) = \phi_{\alpha}^{-1}(Y) \cap \phi_{\alpha}^{-1}(Z) = \varphi_{\alpha}(Y) \cap \varphi_{\alpha}(Z),$$

for every $\alpha \in J$ and $Y, Z \in L(\mathscr{X})$.

$$\varphi_{\alpha}(\emptyset) = \phi_{\alpha}^{-1}(\emptyset) = \emptyset, \qquad \varphi_{\alpha}(X) = \phi_{\alpha}^{-1}(X) = X$$

for every $\alpha \in J$.

$$\varphi_{\alpha}(Y) \cup \bar{\varphi}_{\alpha}(Y) = \phi_{\alpha}^{-1}(Y) \cup [X \setminus \phi_{\alpha}^{-1}(Y)] = X,$$

 $\varphi_{\alpha}(Y) \cap \overline{\varphi}_{\alpha}(Y) = \phi_{\alpha}^{-1}(Y) \cap [X \setminus \phi_{\alpha}^{-1}(Y)] = \emptyset,$

for every $\alpha \in J$ and $Y \in L(\mathscr{X})$.

If
$$\alpha \leq \beta$$
, then $\phi_{\alpha}^{-1}(Y) \supseteq \phi_{\beta}^{-1}(Y)$ or $\varphi_{\alpha}(Y) \supseteq \varphi_{\beta}(Y)$ for every $Y \in L(\mathscr{X})$.

$$(\varphi_{\alpha}\circ\varphi_{\beta})(Y) = \varphi_{\alpha}(\phi_{\beta}^{-1}(Y)) = \phi_{\alpha}^{-1}(\phi_{\beta}^{-1}(Y)) = (\phi_{\beta}\circ\phi_{\alpha})^{-1}(Y) = \phi_{\beta}^{-1}(Y) = \varphi_{\beta}(Y)$$

for every $\alpha, \beta \in J$ and $Y \in L(\mathscr{X})$.

If $\varphi_{\alpha}(Y) = \varphi_{\alpha}(Z)$ for every $\alpha \in J$, then $\phi_{\alpha}^{-1}(Y) = \phi_{\alpha}^{-1}(Z)$ for every $\alpha \in J$, or Y = Z.

(b) L(f) is a homomorphism of lattices; we prove that for every $\alpha \in J$ the diagram

$$\begin{array}{c|c} L(\mathscr{X}') \xrightarrow{L(f)} L(\mathscr{X}) \\ & \varphi_{\alpha} \\ & & & & & & \\ & & & & \\ L(\mathscr{X}') \xrightarrow{L(f)} L(\mathscr{X}) \end{array}$$

is commutative:

$$\begin{aligned} (\varphi_{\alpha} \circ L(f))(Y) &= \varphi_{\alpha}(L(f)(Y)) = \varphi_{\alpha}(f^{-1}(Y)) = \phi_{\alpha}^{-1}(f^{-1}(Y)) \\ &= (f \circ \phi_{\alpha})^{-1}(Y) = (\phi_{\alpha}' \circ f)^{-1}(Y) = f^{-1}(\phi_{\alpha}^{-1}(Y)) \\ &= f^{-1}(\varphi_{\alpha}'(Y)) = (L(f) \circ \varphi_{\alpha}')(Y). \end{aligned}$$

Lemma 2. (a) For every θ .v.L.a. A, the isomorphism of distributive lattices given by Theorem 1(a),

 $F_A: A \rightarrow L(T(A))$

is an isomorphism of θ .v.L.a.

(b) For every o.L.s. $\mathscr{X} = (X, \mathcal{T}, \leq, \{\phi_{\alpha}\}_{\alpha \in J})$, the isomorphism of ordered Stone spaces given by Theorem 1(b),

$$G_{\mathscr{X}}:\mathscr{X}\to T(L(\mathscr{X}))$$

is an isomorphism of o.L.s.

Proof. (a) We prove that for every $\alpha \in J$, the diagram

$$\begin{array}{c|c} A \xrightarrow{F_{A}} L(T(A)) \\ \downarrow \varphi_{\alpha} & \downarrow & \downarrow L(T(\varphi_{\alpha})) = \varphi_{\alpha}^{*} \\ A \xrightarrow{F_{A}} L(T(A)) \end{array}$$

is commutative; we have:

$$\begin{aligned} (\varphi_{\alpha}^{*} \circ F_{A})(a) &= \varphi_{\alpha}^{*}(F_{A}(a)) = \phi_{\alpha}^{-1}(F_{A}(a)) = \phi_{\alpha}^{-1}\{f \in T(A) \mid f(a) = 1\}, \\ (F_{A} \circ \varphi_{\alpha})(a) &= F_{A}(\varphi_{\alpha}(a)) = \{f \in T(A) \mid f(\varphi_{\alpha}(a)) = 1\}, \\ f \in \phi_{\alpha}^{-1}\{f \in T(A)/f(a) = 1\} \Leftrightarrow \phi_{\alpha}(f)(a) = 1 \Leftrightarrow (f \circ \varphi_{\alpha})(a) = 1 \\ \Leftrightarrow f(\varphi_{\alpha}(a)) = 1 \Leftrightarrow f \in (F_{A} \circ \varphi_{\alpha})(a). \end{aligned}$$

(b) We prove that for every $\alpha \in J$, the diagram

$$\begin{array}{c} \mathscr{X} \xrightarrow{G_{\mathscr{Y}}} T(L(\mathscr{X})) \\ \downarrow^{\phi_{\alpha}} & \downarrow^{T(L(\phi_{\alpha})) = \phi_{\alpha}^{*}} \\ \mathscr{X} \xrightarrow{G_{\mathscr{Y}}} T(L(\mathscr{X})) \end{array}$$

is commutative; we have:

$$(\phi_{\alpha}^{*} \circ G_{\mathscr{X}})(x), \qquad (G_{\mathscr{X}} \circ \phi_{\alpha})(x) : L(\mathscr{X}) \to \{0, 1\},$$

$$(\phi_{\alpha}^{*} \circ G_{\mathscr{X}})(x)(Y) = \phi_{\alpha}^{*}(G_{\mathscr{X}}(x))(Y) = (G_{\mathscr{X}}(x) \cdot \varphi_{\alpha})(Y) = G_{\mathscr{X}}(x)(\varphi_{\alpha}(Y))$$

$$= G_{\mathscr{X}}(x)(\phi_{\alpha}^{-1}(Y))$$

$$= \begin{cases} 1 & \text{if } x \in \phi_{\alpha}^{-1}(Y) \\ 0 & \text{if } x \notin \phi_{\alpha}^{-1}(Y) \end{cases}$$

$$= \begin{cases} 1 & \text{if } \phi_{\alpha}(x) \in Y, \\ 0 & \text{if } \phi_{\alpha}(x) \notin Y, \end{cases}$$

$$(G_{\mathscr{X}} \circ \phi_{\alpha})(x)(Y) = (G_{\mathscr{X}}(\phi_{\alpha}(x)))(Y) = \begin{cases} 1 & \text{if } \phi_{\alpha}(x) \in Y, \\ 0 & \text{if } \phi_{\alpha}(x) \notin Y. \end{cases}$$

Theorem 2. The dual of the category Luk (θ) is equivalent with the category $L(\theta)$.

Proof. If we consider the functors

 $T: Luk(\theta) \rightarrow L(\theta), \qquad L: L(\theta) \rightarrow Luk(\theta)$

it follows from Lemma 2 and Theorem 1(e) that we have the functorial isomorphisms

$$F: \mathrm{Id}_{\mathrm{Luk}(\theta)} \to L \circ T, \qquad G: \mathrm{Id}_{\mathrm{L}(\theta)} \to T \circ L.$$

Acknowledgement

The author wishes to express his gratitude to Professor S. Rudeanu for stimulating him to investigate this problem and also for the valuable remarks.

References

- [1] R. Cignoli, Algebras de Moisil de orden n, Bahia Blanca, Univ. Nac. del Sur, 1969.
- [2] G. Georgescu, Les algebras de Lukasiewiecz-valentes, Logique, automatique, informatique, Ed. Acad., 1971.
- [3] Gr.C. Moisil, Essais sur les logiques non chrysippiennes, Ed. Acad. Bucarest, 1972.
- [4] H.A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970) 186–190.
- [5] H.A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. Londo (Math. Soc. 24 (3) (1972) 507-530.