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In this paper the author defines the notion of a &valued Ordered Lukasiewicz Space and a 
study of the dual of the t:ategory of &valued Lukasiewicz algebras, using ordered topological 
spaces, is given. 

The paper is devoted to the study of the dual of the category of &valued 
Lukasiewicz algebras @.v.L.a), using ordered topological spaces (see [4]). For the 
category of distributive lattices see [4,5]. 

1. Preliminaries 

The notions and 
Luk (e), are given 
given in [4]. 

notations for the category of &valued Lukasiewicz algebras, 
in [3] and for the category of ordered topological spaces are 

IDefinition 1. (a) Let (X, G) be a quasi-ordered set. A subset E of X will be called 
increasing if x E E, y E X, x G y imply y E E (a decreasing set is defined dually). 

(b) An ordered space is a triple (X, J C, G), where X is a set, 9 a topology on X 
and c a quasi-order on X. 

(c) An ordered space (X, J, - C -=) will be called totally order disconnected if, given 

x, y E X, with x$ y there exist an increasing 5clopen set U and a decreasing 
Y-clopen set L such that U n L = 8, x E L and y E U. 

(d) An ordered space (X, Y, <) will be called an ordered Stone space if it is 
compact and totally order disconnected. 

1 

Throughout this paper all distributive lattices are assumed to have zero and one 
and the homomorphisms preserve these elements. If A is a distributive lattice, 
then its dual space is defined to be T(A) =(X, Y, s), where X is the set of 
homomorphisms from A onto (0, l}, 9 is the product topology induced from 

10, I}^, and < is the partial order: f< g in X iff f(a)< g(u) for all Q E A. 
If %‘= (X, 9, G) is an ordered Stone space, then the set 

L(8) = {Y c X/Y increasing and 5clopen) 

is a distributive lattice with respect to union and intersection of subsets in X. 
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Learnra [4]. (a) Irf A is a distributive lattice, then T(A) = (X, 9, s) is an ordered 
Stone space. 

(b) If 2’ = (X, 9, s) is an ordtzred Stone space, then L(2) is a distributive lattice 
with zero and one. 

Theorem I [4]. (a) Let A be a distributive iattice. The map FA :A + L(T(A)) 
defined by F,(a) = (f~ X 1 f(a) = 1) is a lattice isomorphism. 

(b) Let %=(X,9,+ b e an ordered Stone space. The map Gslp :%+ T(L(%‘)) 
defined by 

Jl ifxd’, 
Gg, (x)(Y)= [() if x$ y, 

for every Y E L(27) is an komorphism of ordered Stone spaces. 
(c) If f : Al +A2 is a lattice homomorphism, then the map T(f) : T(A,)-* T(A,) 

defined bv T(f)(g) = gof is a homomorphism of ordered Stone spaces (a continuous 
and increasing map). 

fd) If H : %, +Z2 is a homomorphism of ordered Stone spaces, then the map 
L(h): L(%‘+ L(Z,) defined by L(h)(Y) = h-‘(Y) for every YE L(Z&) is a lattice 
homomorphism. 

(e) If f and h are in (c) and (d) the diagrams 

UT(A,N - U‘WM) 
L(T(fN 

TI(L@?)--T(L(&)) 
T(Ll’h)) 

are commutative. 
Theorem 1 shows that the category of o.r*dered Stone spaces is equivalent with 

the dual of the category of distributive lattices. 

2, Representation of B-valued Lukasiewicz algebras 

Let A be a 6.v.L.a. and T(A) the ordered Stone space of the distributive lattice 
A. For every (Y E 9, cp, : A *A is a lattk homomorphism- let 4, : T(A)-,T(A) 
defined by (bo = T(<F,). 

Lemma 1. The family of maps @a 1 a E: 9”) satisfies the following conditions: 
(a) cb, is a continuous and increasing map, for every CY E .J; 
03) ~&04~ =cb, for every q@EJ; 
W if cwJ3E-C arsp, then 43Y)24,‘(Y) for every YgrL(T(A)); 
(d) if YE L(T(A)), then &‘(Y) and T(A)\&,‘(Y) are in L(T(A)), for every 

WEJ; 

k) ifY,ZzL(T(A)) and’foreveryrw+cJ4,‘(Y)=4,‘fZ), then Y=Z. 
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Proof. (a) from Theorem S. (c) ; 

(c) In the conditions of Lemma 1, if fE&‘(Y), then <bs(j)~ Y, or focppE Y; 
but for CE gfi we have <par 2 qO. It follow.: that fo<p, +(pp and fo<p, E Y, or 
f E &l(Y) (only the fact that Y is increasing has been used); 

(d) using Theorem la), there exist a EA such that Y=&(a) =& 
T(A) 1 f(a) = 1); then 4,‘(Y) and T(A)\&‘(Y) are Cclopen because & is 
continuous; &l(T) is increasing and we have: 

then T(A)\4,‘( Y) = FA((Pa(u)) and it follows that T(A)\c&‘(Y) is increasing. 
(e) Using Theorem l(a) there exists a, b E A such that Y = FA(u) and 2 = 

F,(b); we have: 

and &‘(z)=F,(cp,(b)). If &‘(Y)=&*(Z) for every CXEJ, then FA(~a(~))= 

for cy it that <p,(u) = t&(b) for every ar EJ, therefore 
u--b N Y=Z. 

Defdtion 2, f ,a) An ordered Stone space EE = (X, 9, G) will be called an ordered 
8-zlalued Lukasicwiccz space (0.L.s.) if a family of maps (4#8* : X-+X 1 a E J) is 
given which satisfies the following conditions: 

(1) for every ar E J, c#& is a continuous and increasing map; 
(2) 4a OC#+ = 4, for every cu, p E J; 
(3) if a, p t: J, CY < p, then 43 Y) r, 4;*(Y) for every YE X increasing and 

9-clopen ; 

(4) for every (Y EJ and Y G X increasing and 5cIopen 4,‘(Y) and 
T(A)\&*(Y) are increasing; 

(5) if 4; ‘(Y) = 432) for every CY E J, where Y and 2 are increasing and 
Cclopen in 2, then Y = Z. 

(b) If 2? = (X, 9, G, {4a}aE.r) and %’ =-- (X’, y’, S’, l4;}_,) are o.L.s., a continu- 

ous and increasing map f : X +X’ wiil be called a tl-uppkution if for every ar t’ J, 

the diagrams: 

are commutative. 
We shall denote by L(8) the category of 0.L.s. and O-applications. 
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Propdtion 1. (a) If A is a 8.v. L.a., then thp aidered Stone space T(A) with the 
family of maps (& 1 a E J) given in Lemma 1 id an ordered O-valued Lukasiewiecz 
space. 

(b) If f:A+A’ is a homomorphism of B.v.L.a., then the map T(f): T(A’)+ 
T(A) (given in Theorem l(c)) is a &application. 

P-f. (a) Follows easily from Theorem 1 and Lemma 1. 
(b’~ We shall prove that for every cy E J the diagram 

T(A’)- “’ T(A) 
4: 

I I 
4#B 

T(A’)-e 7-(f) T(A) 

is commutative; we have: 

(4q oT(f))(g) = &(T(f)(g)) = 4cxk”fJ = kOf)Ovcx 

=go(focp,)=go(~~of)=(g”cp,)of 

= WN#;(g)) = UVh#X)(g). 

Pmpdtfon 2. (a) If z= (X, 9, s, i4JaEJ) is an o.L.s., then the lattice L(%‘) 
associated with the ordered Stone space (X, -9, s) with the family of maps 
(cp,.& ((YEJ) given by cp,(Y)=&‘(Y), &JY)=X\&‘(Y) for every cr~.l is a 
B.v.L.a. 

03) IfZ=(X,9,6, {&j&, e =(X’, F, G’, {&),,J) are 0.L.s. and f:X+X’ 
is a O-application, then L(f): L(B”)-+ L(2?) (given in Theorem l(d)) is a 
homomorphism of 8. v. L. a. 

Ptoof, ‘a) The maps <p,,, t& are well defined (conditions 2 and 3, Definition 2). 
We shaBI prove that the conditions of the definition of 0.v.L.a. are verified: 

for every (Y EJ and Y, ZE L(%‘). 

QJfN = 4,w =% Q,#+&'(x)=x 

for every Q E J. 
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If (Y s 0, then &l(Y) 2 &l(Y) or cp,( Y) 2 q@(Y) for every YE L(%‘). 

(‘Pa “V&y) = %(&l(y)) = d,%&‘(Y)) = (‘#‘p od’w?-1(y) =&l(y) = Q@(y) 

for every Q, @ E J and YE L(g). 
If <p,(Y) = ~~(2) for every cu E& then C&‘(Y) = C&‘(Z) for every a E.& or 

Y=Z. 
(b) L(f) is a homomorphism of lattices; we prove that for every (Y EJ the 

is commutative: 

(Q~OL(~))(Y)=Q~(L(~)(Y))~~Q~(~-*(Y))=~(*~(~-~(Y)) 

= (fo&)-'(Y) = k&fr’(Y) =f-l(d,lwN 

=f-'(Q;(Y)) = (L(f)"Q:)(yh 

Lemma 2. (a) For every 8.v.L.a. A, the isomorphism of distributive lattices given by 
Theorem 1 (a), 

FA :A+L(T(A)) 

is an isomorphism of 6.v.L.a. 
(b) For every 0.L.s. Z= (X, T, C, (4JaEJ), the isomorphism of ordered Stone 

spaces given by Theorem l(b), 

Gz : it?+ T(L(8)) 

is an isomorphism of 0.L.s. 

Proof. (a) We prove that for every cw E J, the diagram 

A -L(T(A)) 

is commutative; we have: 

(~%%db) = Qzt&(a)) = d.G’M”(a)~ = K’(f E T(A) 1 f(a) = 11, 

(FAo%)(a)=FAicPu(a))=(fET(A)(f(cp,(a))=l), 

f NG’(fE T(A)lpC(a)= lW#&f)(a)= lWfw)(a)= 1 

~fdQ~(U))=le=fEIFA"Q~)(a). 
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m We prove that for every ar E J, the diagram 

is commutative; we have: 

Theorem 2. 7%e dual of the cafefgry Luk (0) is equiaalenf with the category L( 0). 

Proof. If we consider the functors 

T:Luk(e)+L(e), L : L@)+Luk (6) 

it follows from Lemma 2 ancl Theorem l(e) that we have the functorial 
isomorphisms 

F: Id, uk(8)+ LOT, G : IdL(B)-+ To i. 
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