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In this paper the authcr defines the notion of a 6-valued Ordered Lukasiewicz Space and a
study of the dual of the category of @-valued Lukasiewicz algebras, using ordered topological
spaces, is given.

The paper is devoted to the study of the dual of the category of 6-valued
Lukasiewicz algebras (6.v.L.a), using ordered topological spaces (see [4]). For the
category of distributive lattices see [4, 5].

1. Preliiainaries

The notions and notations for the category of #-valued Lukasiewicz algebras,

Luk (0), are given in [3] and for the category of ordered topological spaces are
given in {4].

Definition 1. (a) Let (X, <) be a quasi-ordered set. A subset E of X will be called
increasing if x€E,ye X,x<y imply y€E (a decreasing set is defined dually).

(b) An ordered space is a triple (X, 7, <), where X is a set, 7 a topology on X
and < a quasi-order on X.

(¢) An ordered space (X, 7, <) will be called totally order disconnected if, given
x,y€ X, with x¢y there exist an increasing J-clopen set U and a decreasing
J -clopen set L such that UNL =@, xeL and ye U.

(d) An ordered space (X, 7, <) will be called an ordered Stone space if it is
compact and totally order disconnected. '

Throughout this paper all distributive lattices are assumed to have zero and one
and the homomorphisms preserve these elements. If A is a distributive lattice,
then its dual space is defined to be T(A)=(X,J, <), where X is the sct of
homomorphisms from A onto {0,1},J is the product topology induced from
{0, 1}*, and < is the partial order: f<g in X iff f(a)=<g(a) for all a€ A.

If Z=(X, J, =) is an ordered Stone space, then the set

L(&)={Y < X/Y increasing and J-clopen}

is a distributive lattice with respect to union and intersection of subsets in X.
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Lemma [4]. (a) If A is a distributive lattice, then T(A)=(X,J, <) is an ordered
Stone space.

(b) If X =(X, J, <) is an ordered Stone space, then L(Z) is a distributive lattice
with zero and one.

Theorem 1 [4]. (a) Let A be a distributive lattice. The map F,:A—L(T(A))
defined by Fa(a)={fe X |f(a)=1} is a lattice isomorphism.

(b) Let =(X,J,<) be an ordered Stone space. The map Gg:Z— T(L(X))
defined by

=’1 if e,
G, (UY) =1, if x¢ Y,

for every Y € L(Z) is an isomorphism of ordered Stone spaces.

(c) If f:A,— A, is a lattice homomorphism, then the map T(f): T(A,)—T(A,)
defined kv T(f)(g) = gof is a homomorphism of ordered Stone spaces (a continuous
and increasing map).

(d) If H:Z,—%, is a homomorphism of ordered Stone spaces, then the map
L(hy: L(%,)— L(Z,) defined by L(h)(Y)=h"'(Y) for every Y € L(Z>) is a lattice
homomorphism.

(e) If f and h are in (c) and (d) the diagrams

Al A, &, ——t——

Fa) }F, and G, zll | Ge,

L(T(A))) — L(T(AY) T’(L(%J)““"T(L(%z))
LT TL(h)

are commutative.

Theorem 1 shows that the category of ordered Stone spaces is equivalent with
the dual of the category of distributive lattices.

2. Representation of 0-valued Lukasiewicz algebras

Let A be a 6.v.L.a. and T(A) the ordered Stone space of the distributive lattice

A. For every aeJ, ¢,: A— A is a lattive homomorphism- let ¢, : T(A)—T(A)
defined by ¢, = T(¢,).

Lemma 1. The family of maps (¢, | a € J) satisfies the following conditions:

(a) @, is a continuous and increasing map, for every a € J;

(b) &,°ds =, for every a,Be J;

(© ifa,BeJ,a<p, then ' (Y)2d;'(Y) for every Y e L(T(A));

(d) if YeL(T(A)), then ¢;'(Y) and T{A\&.'(Y) are in L(T(A)), for every
ael;

(e) if Y,Ze L(T(A)) and for every azJ ¢ (Y)=¢."7Z), then Y =Z.
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Proof. (a) from Theorem i (c);

() (da°de)(f) = s (dp() = bu(fope) = (fopa)o@n = fol@p°a) =fo s = du(f)
for every fe T(A);

(c) In the conditions of Lemma 1, if fe ¢5z'(Y), then ¢s(f)e Y, or fepzeY;
but for ¢ < we have ¢, =¢g. 1t follow: that foep,=fops and feq, €Y, or
fed2'(Y) (only the fact that Y is increasing has been used);

(d) using Theorem 1a), there exist aeA such that Y=F,(a)={fe
T(A)|f(a)=1}; then ¢.'(Y) and T(A\@'(Y) are T-clopen because ¢, is
continuous; ¢_'(T) is increasing and we have:

feT(ANG (V)& fE ¢ (Y)S d.()¢ Y = F(a) d.(f)(a) =0
& f(@a(@)) =00 f(8.(a)) = 1 foFa(fa(a)),

then T(A)\¢.'(Y)=F,(&,(a)) and it follows that T(A)\¢,'(Y) is increasing.
(e) Using Theorem 1(a) there exists a,be A such that Y=FA(a) and Z =
F,(b); we have:

¢ (V) ={f| du(He Y}={f|foou e Fala)} ={f | f(¢u(a)) =1} =Fa(eu(a))

and ¢ (Z)=F.(e,(b)). If d.'(Y)=¢_"(Z) for every aeJ, then F (@, (a)) =
Fr{@,(b)) for every a €J; it follows that ¢,(a) = ¢, (b) for every a € J, therefore
a=bor \'=Z.

Definition 2. (a) An ordered Stone space ¥ = (X, 7, <) will be called an ordered
0-valued Lukasicwiccz space (0.L.s.) if a family of maps (¢, : X=X |ae/J) is
given which satisfies the following conditions:

(1) for every a€J, ¢, is a continuous and increasing map;

(2) & od =0, for every a, BeJ;

(3) if a, BeJ, a<pB, then ¢ (Y)245'(Y) for every Y< X increasing and
9 -clopen;

(4) for every aeJ and Y< X increasing and J-clopen ¢_'(Y) and
T(AN\@Z'(Y) are increasing;

(5) if ¢ (Y)=03'(Z) for every acl, where Y and Z are increasing and
T -clopen in &, then Y =L

b) X =(X,T,<,{d)ocs) and ¥ = (X', T', <, {d}}ocs) are 0.L.s., a continu-
ous and increas.ng map f: X — X' will be called a 6-appiication if for every a € J,
the diagrams:

X f XI

¢..l l.»:,

X——X'

are commutative.
We shall denote by L(8) the category of o.L.s. and 6-applications.
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Proposition 1. (a) If A is a 0.v.L.a., then the oidered Stone space T(A) with the
family of maps (¢, | @ € J) given in Lemma 1 15 an ordered 0-valued Lukasiewiecz
space.

(b) If f:A— A’ is a homomorphism of 6.v.L.a., then the map T(f): T(A")—
T(A) (given in Theorem 1(c)) is a 8-application.

Proof. (a) Follows easily from Theorem 1 and Lemma 1.
(b) We shall prove that for every a € J the diagram

T(A)—/L—T(A)

¢,_| ].».,

T(A')—=—T(A)

T

is commutative; we have:

(&, °T())Ng) = b, (T(f)2)) = balgof) = (g°f) o,
=go(fow,) =go(@°f) =(8°@,)°f
=T()(DL(8) = (T(f)odL)g)-

Proposition 2. (a) If =(X, T, <,{d,}acs) is an o.L.s., then the lattice L(Z)
associated with the ordered Stone space (X,T,<) with the family of maps

(¢ ¢, | €J) given by @ (Y)=¢2'(Y), ¢.(Y)=X\¢;'(Y) for every acl is a
6.v.L.a.

b) UZ =(X,T, <, {d}eacs) T =(X", T, <',{d.}acs) are o.L.s. and f: X — X'
is a O-application, then L(f):L(¥X')—L(¥) (given in Theorem 1(d)) is a
homomorphism of 6.v.L.a.

Proof. 'a) The maps ¢.. ¢, are well defined (conditions 2 and 3, Definition 2).
We shalil prcve that the conditions of the definition of 6.v.L.a. are verified:

¢(YUZ)=¢(YUZ)=0¢(YIUP.(Z)= ¢, (Y)U . (Z),
¢(YNZ)=¢ (Y NZ)=¢(YI)N$(Z) = (V)N e (D),
for every aeJ and Y, Ze L(Z).
CGa)=' P =0, . (X)=¢(X)=X
for every e € J.
¢(Y)UE(Y)=0,(V)U[X\¢ '(V)]=X,
¢ (Y)N & (V)= (Y)N[X\&. (Y)]=9,
for everv a€J and Ye L(%).
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If <, then ¢ (Y)2¢5'(Y) or @, (Y)2¢s(Y) for every Y e L(%).
(Ca @ (Y) =@, (05" (V) =2 (05" (V) =(ds° b ) (Y) =5 {(Y) = a(Y)

for every a, B€J and Ye L(%Z).

If ¢ (Y)=¢,(Z) for every aeJ, then ¢, (Y)=¢;(Z) for every a€lJ, or
Y=2Z

(b) L(f) is a homomorphism of lattices; we prove that for every aeJ the
diagram

L&) —2— L%

L&) L&)

L(f)

Is commutative:

(@ °LINY) = @ (LIN(Y)) = 0o (f () =3 (F(Y))
=(fod,) (V) =(dLo ) (Y)=f"(d2'(Y))
=N oY) =(L(foel)Y).

Lemma 2. (a) For every 6.v.L.a. A, the isomorphism of distributive lattices given by
Theorem 1(a),

F,:A—L(T(A))

is an isomorphism of 9.v.L.a.
(b) For every o.Ls. Z=(X,T,<,{d,}ucs), the isomorphism of ordered Stone
spaces given by Theorem 1(b),

Gy - T(L(Z))

is an isomorphism of o.L.s.

Proof. (a) We prove that for every a €J, the diagram
A—"—L(T(A))

a l L(Tig,) =¥

A L(T(A))

Fa

is commutative; we have:
(@%F ) a)=¢X(Fs(a)) =, (Fala) = {fe T(A)|fla)=1},
(Fa°@,)(@)=Faipa(a)) ={fe T(A) | fle.(a)) =1},

fed H{fe T(A)/f(a) =1} ¢, (f)a)=1&(fop,)(a)=1
Sfl(e.(a)) =1 felFaoq,)a).
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(b) We prove that for every a € J, the diagram

X—=—T(L(Z))
¢,l l T(L(b,) =6
% ——T(L&))

is commutative; we have:
(@¥.Ge)(x),  (Ggod,)x):L(Z)—{0,1},
(%Gr)(x)NY) = dH(Gx(x)NY) = (Ge(x) @ )(Y) = G(x) (@, (Y))
= Ge(x) (&' (Y))
_{ 1 if xed ' (Y)
“lo ifx¢d(Y)
{1 if g (x)eY,
0 if ¢, (x)¢Y,

(Gr o6, )NV =(Ge(d, NV = . ﬁiiii v

Theorem 2. The dual of the caterory Luk (8) iz equitalent with the category L(0).

Proof. If we consider the functors
T:Luk (8)— L(9), L:L(6)—Luk(®)

it follows from Lemma 2 and Theorem 1(c) that we have the functorial
isomorphisms

F:ldy o= LeT.  G:Id; g ToL.
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