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Abstract

Our aim is to construct a factor analysis method that can resist the effect of outliers. For this

we start with a highly robust initial covariance estimator, after which the factors can be

obtained from maximum likelihood or from principal factor analysis (PFA). We find that PFA

based on the minimum covariance determinant scatter matrix works well. We also derive the

influence function of the PFA method based on either the classical scatter matrix or a robust

matrix. These results are applied to the construction of a new type of empirical influence

function (EIF), which is very effective for detecting influential data. To facilitate the

interpretation, we compute a cutoff value for this EIF. Our findings are illustrated with several

real data examples.
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1. Introduction

Factor analysis is a popular multivariate technique. Its goal is to approximate the
p original variables of a data set by linear combinations of a smaller number k of
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latent variables, called factors. This must be done in such a way that the covariance
matrix (or the correlation matrix) of the p original variables is fitted well. The factor
analysis model contains many parameters, including the specific variances of the
error components.
The assumptions underlying the factor analysis model are rather strong compared

to its applications. Therefore many authors have investigated whether these
assumptions are necessary. It was already shown that the classical estimates have
good asymptotic properties under some weaker assumptions (see, e.g., [3,20]).
The classical technique starts by computing the usual sample covariance matrix

or the sample correlation matrix, followed by a second step which decomposes
this matrix according to the model. This approach is not robust to outliers in
the data, since they already have a large effect on the first step. In Section 2
we therefore construct a robust factor analysis method, which in the first step
computes a highly resistant scatter matrix such as the minimum covariance
determinant (MCD) estimator [22]. In the context of structural equation models,
Yuan and Bentler [29,30] used M-estimators [19] and S-estimators [8,23] and
minimized the resulting Wishart likelihood function. For the second step several
methods are available, such as maximum likelihood estimation and the principal
factor analysis method (PFA). The simulations in Section 3 yield a slight preference
for the latter.
In order to study the robustness of the PFA method we compute its influence

function (the complete derivation can be found in the appendix). The influence
function depends, among other things, on the scatter matrix estimator of the first
step. Section 4 plots the influence function of PFA based on the classical covariance
matrix and compares it with that based on the MCD. The latter influence function is
bounded. We also study the influence function of PFA applied to the robust
correlation matrix derived from the MCD, and find that the influence of a far outlier
becomes exactly zero.
Not all outliers have a large influence on the factor analysis. In order to detect

influential data points we construct an empirical influence function (EIF) in Section
4.2. We argue that the most informative version is the EIF of the classical PFA, but
evaluated in the distribution characterized by the robust estimates of location and
scatter. Moreover, we compute a cutoff value for the EIF to tell us when a data point
is truly influential. Section 5 illustrate the robust approach on two real data
examples.

2. The factor analysis model

Classical factor analysis tries to describe the correlation matrix q or the covariance
matrix R between the original variables X1;X2;y;Xp by a small number kpp of new

variables F1;y;Fk called factors. These factors are unobservable. In particular, the
orthogonal factor analysis model says that

X � l ¼ KU þ e; ð2:1Þ
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where X ¼ ðX1;y;XpÞt; l ¼ ðm1;y; mpÞ
t is the mean vector, KARp�k is the matrix

of factor loadings, U ¼ ðF1;y;FkÞt; and the error term is e ¼ ðe1;y; epÞt: Note that

the matrix K is only determined up to right multiplication by an orthogonal matrix
U : We assume that the random vectors U and e are independent, EðUÞ ¼ 0;
CovðUÞ ¼ I ; EðeÞ ¼ 0; and CovðeÞ ¼ diagðWÞ with W ¼ ðc1;y;cpÞARp: Under

these assumptions we obtain

R ¼ KKt þ diagðWÞ: ð2:2Þ

Because of the number of parameters in this model, for a given p the largest possible
k is

½p þ 0:5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p þ 0:25

p
�

(see, e.g., [15, p. 538]), where ½y� stands for the integer part of a real number. For
instance, for a 5-variate X we can estimate up to 2 factors.
In practice, we have a data set with n objects in p dimensions. The classical factor

analysis method computes the sample mean vector Tc
n to estimate l and the sample

covariance matrix Sc
n to estimate R: (Throughout, the superscript c stands for

classical, i.e., based on Gaussian distributions.) Afterwards a decomposition like
(2.2) is carried out to obtain an estimate Ln for K and an estimate Pn for W; thereby
yielding an estimate Fn for U: Many methods have been proposed for this
decomposition, of which the maximum likelihood estimator (MLE) and the principal
factor analysis (PFA) algorithms are the most frequently used (see, e.g., [2]). The
MLE method minimizes the log-likelihood function

LðK;WÞ ¼ c½�lnjKKt þ diagðWÞj þ tr½ #SðKKt þ diagðWÞÞ�1�

with c some constant (see [16]). For #S we can use Sc
n in the classical case and Sr

n in the

robust method. The principal factor analysis is based on eigenvalue/eigenvector
analysis of the reduced covariance matrix, so here again we use Sc

n in the classical

case and Sr
n in the robust method.

Since these methods cannot resist the effect of outliers, we propose to start from a
more robust location vector and scatter matrix. It is convenient to use the minimum
covariance determinant estimator (MCD) of Rousseeuw [21,22]. The MCD looks for
that h-subset of the data with the smallest determinant of its covariance matrix.
Typically, hE3n=4: The MCD location Tr

n is then the average of the h points in that

subset, and the MCD scatter estimate Sr
n is a multiple of their covariance matrix.

(Throughout, the superscript r stands for robust.) The MCD is highly robust and
converges at a faster rate than the previously popular minimum volume ellipsoid
(MVE) estimator. Moreover, the MCD can now be computed very quickly with the
new algorithm of Rousseeuw and Van Driessen [25].
The resulting robust loadings Lr

n and specific variances Pr
n will be different from

the classical Lc
n and Pc

n: Because the classical scatter matrix Sc
n is influenced by

outlying data points, this is also the case for the resulting loadings Lc
n; the specific

variances Pc
n and the factor scores Fc

n: On the other hand, the MCD scatter matrix is
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Fig. 1. Biplots of (a) classical and (b) robust factor analysis on the aircraft data set. The two outlying

planes (14 and 22) are underlined.
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robust to outliers, so it allows us to obtain robust factors Fr
n which describe the

correlation or covariance between the uncontaminated data. Let us look at a first
example to illustrate this.

Example 1. The aircraft data set [13] consists of n ¼ 23 single-engine aircraft
built in the years 1947–1979. The p ¼ 5 variables are the aspect ratio, lift-
to-drag ratio, weight of the plane, maximal thrust, and cost. Applying the MCD
to these data indicates that cases 14 and 22 are outliers. Plane 22 was the F-111
aircraft. It was built to suit the needs of the Army, the Navy, and the Air Force
simultaneously. At that time, it was the most sophisticated, fastest, heaviest, and
most costly single-engine jet plane ever built. Nevertheless it had many technical
problems. Plane 14 was the F-104A ‘‘Starfighter’’, which had a huge lift-to-drag
ratio.
Let us now estimate k ¼ 2 factors. Applying the principal factor (PFA) method to

the classical correlation matrix yields the biplot in Fig. 1a. The biplot in Fig. 1b was
obtained by applying PFA to the MCD-based robust correlation matrix Rr

n

computed as

Rr
n ¼ DSr

nD with D ¼ diagðððSr
nÞ11Þ

�1=2;y; ððSr
nÞppÞ

�1=2Þ: ð2:3Þ

In the biplot [11] the arrows indicate the positions of the variables by plotting
ðLj1;Lj2Þ for j ¼ 1;y; p: The observations ðFi1;Fi2Þ are also added on the plot.

The main idea is that the biplot represents the general interaction structure
between the variables and the observations. More details on biplots can be found
in [12].
The main difference between the two methods is that in classical factor analysis the

two outliers highly influence Sc
n; Lc

n; and Fc
n: So the classical biplot was also

influenced by these outliers. The robust factor analysis downweights these outliers,
and gives a more reliable picture of the majority of the data. In this case the robust
biplot represents the structure of the good observations and therefore this biplot
resembles the usual biplot based on the clean data. Let us compare the loadings of
the classical and the robust factor analysis in Table 1. In the classical case, factor 1

Table 1

Loadings of classical and robust factor analysis on the aircraft data set

Loadings of classical FA Loadings of robust FA

Variable Factor 1 Factor 2 Factor 1 Factor 2

X1: aspect ratio �0.710 0.000 �0.165 �0.898
X2: lift-to-drag 0.157 0.672 0.981 0.110

X3: weight 0.932 0.306 0.849 0.513

X4: thrust 0.807 0.485 0.783 0.523

X5: cost 0.818 0.244 0.580 0.679
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was mainly a combination of variables 1 (with negative coefficient), 3, 4, and 5, and
factor 2 was mostly determined by variable 2. In the robust factor analysis, factor 1 is
a positive combination of variables 2, 3, and 4, whereas factor 2 essentially combines
variables 1 and 5 (with different signs). We also see that the second picture in Fig. 1
is not simply a rotation of the first. In this example, the two methods give a quite
different result.

3. Empirical study

In this section we carry out empirical studies with outliers, to investigate their
effect on classical and robust factor analysis. First we carry out a sensitivity analysis,
and then a Monte Carlo experiment.

3.1. Sensitivity analysis

We investigate the sensitivity of factor analysis to outliers and small errors.
We will compare the sensitivity of classical maximum likelihood estimation
(CLAS.MLE), principal factor analysis (CLAS.PFA), and their MCD-based
versions on the stock price data set of [15], with n ¼ 100 observations and p ¼ 5

variables. The stock price data set X ð0Þ contains the weekly returns of five stocks
listed on the New York Stock Exchange. The data are standardized by subtracting
the average of each variable and dividing by its standard deviation.
We first estimate k ¼ 2 factors based on the classical and robust correlation

matrices, yielding the loadings Lð0Þ
n AR5�2 and unique variances Pð0Þ

n ¼
ðPð0Þ

1 ;y;P
ð0Þ
5 Þ: For the sensitivity analysis we add a noise matrix ðerrðsÞÞ and a

matrix ðxoutðsÞÞ which causes nout data points to become outliers. The elements of the

noise matrix are distributed according to Nð0; ð0:05Þ2Þ: The outlier matrix xoutðsÞ is
mainly zero, except for nout elements. We generate only one outlying entry per

outlying object. For this we randomly choose nout different rows in xoutðsÞ; and for
each such row we choose a random entry. In these nout entries of xout we put values

generated from the normal distribution Nð10; ð0:05Þ2Þ:
The disturbed data sets X ðsÞ are thus generated as

X ðsÞ ¼ X ð0Þ þ errðsÞ þ xoutðsÞ

for s ¼ 1;y;m: Fitting this model yields estimates LðsÞ
n and PðsÞ

n for m ¼ 1000

simulated samples. The method for estimating the factor model was, of course, the
same for the contaminated data as for the original data.
The estimates from the disturbed and the original data are compared in the

following way. Since the loadings matrix is only determined up to an orthogonal

matrix, we consider the p � p matrix AðsÞ
n ¼ LðsÞ

n ðLðsÞ
n Þt instead. More precisely, we

compare the elements a
ðsÞ
ij of AðsÞ

n with the undisturbed entries a
ð0Þ
ij of the matrix
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Að0Þ
n ¼ Lð0Þ

n ðLð0Þ
n Þt: For this we compute the mean squared error (MSE), bias (BIAS),

and variance (VAR) of the estimates as

MSEðaijÞ ¼
1

m

Xm

s¼1
ðaðsÞ

ij � a
ð0Þ
ij Þ2;

BIASðaijÞ ¼
1

m

Xm

s¼1
ðaðsÞ

ij � a
ð0Þ
ij Þ;

VARðaijÞ ¼
1

m

Xm

s¼1
a
ðsÞ
ij � 1

m

Xm

t¼1
a
ðtÞ
ij

 !2

for i; j ¼ 1;y; p; and we define the average MSE as MSEðAÞ ¼
1
p2

Pp
i¼1

Pp
j¼1 MSEðaijÞ: Similarly, for the square root of the unique variances Pj

we compute

MSEðPjÞ :¼
1

m

Xm

s¼1
ð
ffiffiffiffiffiffiffiffi
P
ðsÞ
j

q
�

ffiffiffiffiffiffiffiffi
P
ð0Þ
j

q
Þ2;

BIASðPjÞ :¼
1

m

Xm

s¼1
ð
ffiffiffiffiffiffiffiffi
P
ðsÞ
j

q
�

ffiffiffiffiffiffiffiffi
P
ð0Þ
j

q
Þ;

VARðPjÞ :¼
1

m

Xm

s¼1

ffiffiffiffiffiffiffiffi
P
ðsÞ
j

q
� 1

m

Xm

t¼1

ffiffiffiffiffiffiffiffi
P
ðtÞ
j

q !2

;

where j ¼ 1;y; p and the average MSE is given by MSEðPÞ ¼ 1
p

Pp
j¼1 MSEðPjÞ:

However, it is well known that the MLE and PFA methods may sometimes produce

a negative estimate P
ðsÞ
j : This is the so-called Heywood case (see [17,28]). In our

simulation such a negative P
ðsÞ
j occurred only a few times, with small values of jPðsÞ

j j;
so we have set these negative P

ðsÞ
j equal to zero.

For the stock price data, Fig. 2 shows the average MSE versus the fraction of
outliers (here, 0–20%). We can see that the MSEs of factor analysis based on the
classical correlation matrix are much higher than those based on the robust
correlation matrix using the MCD method. The fact that using a classical correlation
matrix yields a higher MSE than using a more robust scatter matrix confirms the
simulation of Kosfeld [18] who inserted M-estimators of covariance. In Fig. 2,
MCD50 stands for the MCD estimator with hE0:5n; and MCD75 corresponds to
hE0:75n: Comparing MCD50 and MCD75, we find that a factor analysis using
MCD75 systematically yielded a lower MSE than the corresponding method based
on MCD50. For other data sets, real and generated, we found similar results.
Because MCD75 also has a higher efficiency than MCD50, we will work with
MCD75 from now on.
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3.2. Monte Carlo study

Here we do not start from a given data set but from fixed parameter values, i.e., an
n � k matrix K and a p � p diagonal matrix diagðWÞ: (The entries of K were

generated from Nð0; 19Þ and those of diagðWÞ from the uniform distribution on the

interval ½0; 1�:) Then we construct data sets X ðsÞ according to the factor analysis
model (2.1); i.e.,

X ðsÞ ¼ KUðsÞ þ eðsÞ þ OutðsÞ:
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Fig. 2. Sensitivity of factor analysis on the stock price data: (a) MSEðAÞ versus the fraction of outliers; (b)
MSEðPÞ versus the fraction of outliers.
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For each s we generated the k � p matrix of factor scores UðsÞ from Nð0; 1Þ; and the
entries eðsÞij of the noise term eðsÞ are distributed according to Nð0;cjÞ: The outlying
term OutðsÞ was generated as in the previous subsection.

Fitting the factor analysis model to the generated data X ðsÞ gives the estimates LðsÞ
n

and PðsÞ
n for s ¼ 1;y;m ¼ 1000 simulated samples. These estimates are compared to

the true K and W by computing the MSE, BIAS, and VAR.
For the simulations in Fig. 3 we took n ¼ 100; p ¼ 5; and k ¼ 2: We see that the

robust factor analysis based on MCD75 and the principal factor method gave the
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Fig. 3. Simulation study: (a) MSEðAÞ versus the fraction of outliers; (b) MSEðPÞ versus the fraction of
outliers.
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smallest mean squared error. Maximum likelihood estimation gave larger errors in
all our simulations (also for other n and p). This parallels the results in Fig. 2.
Therefore, from now on we will focus on the MCD75.PFA technique.

4. The influence function of PFA

4.1. The theoretical influence function

We now derive the theoretical influence function of the principal factor
analysis method. The influence function (see [14] 1986) of a functional Q at a
distribution H measures the effect on Q of adding a small mass at x: If we denote the
point mass at x byWx and write Ht ¼ ð1� tÞH þ tWx then the influence function is
given by

IFðx;Q;HÞ ¼ @

@t
QðHtÞjt¼0:

In order to apply this we need the functional form of the PFA estimator.
Let H be an arbitrary distribution on Rp with location estimate TðHÞARp

and scatter estimate SðHÞARp�p: We will denote the PFA functional as
ðAðHÞ;PðHÞÞ where AðHÞARp�p is a positive semidefinite matrix with rank at
most k; and PðHÞ is a vector in Rp with nonnegative components. The fitted scatter
matrix is then

AðHÞ þ diagðPðHÞÞ:

The PFA functional is defined as the pair ðAðHÞ;PðHÞÞ that gives the closest fit to
the observed SðHÞ: Formally,

ðAðHÞ;PðHÞÞ ¼ arg min
ðA;PÞ

Xp

i¼1

Xp

j¼1
ððSðHÞÞij � ðA þ diagðPÞÞijÞ

2

¼ arg min
ðA;PÞ

traceððSðHÞ � A � diagðPÞÞðSðHÞ � A � diagðPÞÞtÞ:

ð4:1Þ

So we use a least squares criterion to measure the closeness between SðHÞ and
A þ diagðPÞ: Alternatively, one could use weighted least squares or a likelihood
criterium here. Such an approach would of course yield an estimator different from
the PFA-solution.
The spectral decomposition of AðHÞ yields

AðHÞ ¼
Xk

j¼1
ljðHÞvjðHÞvjðHÞt ð4:2Þ

G. Pison et al. / Journal of Multivariate Analysis 84 (2003) 145–172154



with eigenvalues ljðHÞ40 and orthonormal eigenvectors vjðHÞ for j ¼ 1;y; k:

Minimizing (4.1) yields two first-order equations:

ðSðHÞ � diagðPðHÞÞÞvjðHÞ ¼ ljðHÞvjðHÞ; ð4:3Þ

PjðHÞ ¼ SjjðHÞ �
Xk

l¼1
llðHÞv2ljðHÞ: ð4:4Þ

Any solution ðAðHÞ;PðHÞÞ of the above equations yields as value for the objective
function of (4.1) the sum of the ðp � kÞ eigenvalues of SðHÞ � diagðPðHÞÞ different
from l1ðHÞ;y; lkðHÞ: At the global minimum this value reduces to the sum of the
smallest ðp � kÞ eigenvalues of SðHÞ � diagðPðHÞÞ:
Let us consider an elliptically symmetric distribution G on Rp with parameters R

and l and density

fl;RðxÞ ¼
gððx � lÞt

R�1ðx � lÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðRÞ

p ;

where the function g has a strictly negative derivative g0: Assume that the factor
model (2.2) holds and the functionals T and S are Fisher consistent, i.e., TðGÞ ¼ l

and SðGÞ ¼ R: Then the eigenvalues ½l1;y; lk� of AðGÞ ¼ LðGÞLtðGÞ are Fisher
consistent for the eigenvalues ½Z1;y; Zk� of KKt; the matrix AðGÞ is Fisher consistent
for KKt; and PðGÞ is Fisher consistent for W:

To obtain the influence functions IFðx;P;GÞ and IFðx;LLt;GÞ; we will first
compute the influence functions IFðx; lj;GÞ and IFðx; vj;GÞ: For the scatter

estimators S we are interested in, IFðx;S;GÞ is known.
Since ðl1ðGÞ; v1ðGÞÞ;y; ðlkðGÞ; vkðGÞÞ are eigenvalue/eigenvector pairs of the

symmetric matrix SðHÞ � diagðPðHÞÞ; it is possible to apply Lemma 2.1 of Sibson
[26]. We use the reformulation of this lemma by Croux and Haesbroeck [7, Lemma 3]
yielding

IFðx; lj;GÞ ¼ vt
jðGÞ½IFðx;S;GÞ � diagðIFðx;P;GÞÞ�vjðGÞ; ð4:5Þ

IFðx; vj;GÞ

¼
Xk

l¼1
laj

1

llðGÞ � ljðGÞ fvt
lðGÞ½�IFðx;S;GÞ þ diagðIFðx;P;GÞÞ�vjðGÞgvlðGÞ

þ
Xp

l¼kþ1

1

llðGÞ � ljðGÞfat
lðGÞ½diagðIFðx;P;GÞÞ � IFðx;S;GÞ�vjðGÞgalðGÞ

¼
Xk

l¼1
laj

1

llðGÞ � ljðGÞ fvt
lðGÞ½�IFðx;S;GÞ þ diagðIFðx;P;GÞÞ�vjðGÞgvlðGÞ

þ
Xp

l¼kþ1

�1
ljðGÞ fat

lðGÞ½diagðIFðx;P;GÞÞ � IFðx;S;GÞ�vjðGÞgalðGÞ: ð4:6Þ
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The vectors akþ1ðGÞ;y; apðGÞ are eigenvectors associated with the ðp � kÞ zero

eigenvalues of SðGÞ � diagðPðGÞÞ and form an orthonormal basis of the orthogonal
complement of v1ðGÞ;y; vkðGÞ in Rp: From Eq. (4.4) we find the expression of
IFðx;P;GÞ:

IFðx;Pj;GÞ ¼ IFðx;Sjj ;GÞ �
Xk

l¼1
IFðx; ll ;GÞv2ljðGÞ

�
Xk

l¼1
2llðGÞvljðGÞIFðx; vlj ;GÞ: ð4:7Þ

This expression contains the influence functions of ll and vlj ; so we substitute (4.5)

and (4.6) into (4.7). This yields p linear equations with the unknowns IFðx;Pj ;GÞ for
j ¼ 1;y; p: This system of linear equations can be written as

ðIp � BÞIFðx;P;GÞ ¼ bðxÞ ð4:8Þ

in which B does not depend on x and bðxÞ depends on x through IFðx;S;GÞ:
Expressions for B and bðxÞ are derived in the appendix.
Once we have solved (4.8) for the IFðx;Pj;GÞ we can easily compute IFðx; lj ;GÞ

and IFðx; vj ;GÞ from (4.5) and (4.6). By (4.2) this also yields

IFðx;LLt;GÞ ¼ IFðx;A;GÞ ¼ IF x;
Xk

j¼1
ljvjv

t
j ;G

 !
ð4:9Þ

¼
Xk

j¼1
fIFðx; lj;GÞvjðGÞvt

jðGÞ þ ljðGÞIFðx; vj;GÞvt
jðGÞ

þ ljðGÞvjðGÞIFðx; vj ;GÞtg: ð4:10Þ

Let us now compare the influence functions of the classical principal factor
analysis and the robust principal factor analysis. The difference is due to the
IFðx;S;GÞ of the estimator S being used. The influence function of the classical
covariance matrix is

IFðx;Sc;GÞ ¼ ðx � mÞðx � mÞt � R: ð4:11Þ

The influence function of the MCD scatter matrix was derived in [6] for a
distribution G0 with l ¼ 0 and R ¼ Ip:When working with general ðl;RÞ we use the
affine equivariance of Sr; yielding

IFðx;Sr;GÞ ¼ ðSrÞ1=2IF ½ðSrÞ�1=2ðx � TÞ;Sr;G0�ðSrÞ1=2:

The MCD functional Sr depends on the value 0pap0:5; where 1� aDh=n is the
coverage percentage. As in the previous section, we set a ¼ 0:25 to obtain a good
compromise between efficiency and robustness.
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Example 2. Let the trivariate data distribution G be elliptically symmetric with
location vector l ¼ 0 and scatter matrix

R ¼
2 1 1

1 2 1

1 1 2

0
B@

1
CA:

Since p ¼ 3 we can determine only one factor (k ¼ 1). The loadings matrix K is

½1; 1; 1�t and the specific variances are given by W ¼ ½1; 1; 1�: The influence functions
(4.8) and (4.9) can now be computed. Fig. 4 shows plots of the classical and robust
influence functions. The graphs are made for x ¼ ðx1; x2; 0Þ in order to represent
them in a three-dimensional plot. (Plots of IFðx1; x2; cÞ for ca0 look quite similar.)
The influence function IFðx;Pc

1;GÞ in Fig. 4a is unbounded, and shows that an

outlying x can have an arbitrarily large effect on Pc; confirming the findings of
Tanaka and Odaka [27]. On the other hand, the influence function of our robust
counterpart in Fig. 4b is bounded. Inside the elliptical central region of the x-
distribution (corresponding to the MCD) the IF looks like that of the classical PFA
in Fig. 4a, and outside that region it is constant. Figs. 4c and d plot the influence

Fig. 4. Influence function IFðx;P1;GÞ based on (a) the classical covariance matrix and (b) the MCD75

scatter matrix; plot of IFðx; ðLLtÞ33;GÞ based on (c) the classical covariance matrix and (d) the MCD75

scatter matrix.

G. Pison et al. / Journal of Multivariate Analysis 84 (2003) 145–172 157



function of ðLLtÞ33 for the classical and the robust PFA methods, with the same

relation between them. This shows that any outlier x has only a bounded effect on
the robust PFA results, no matter how far x is away from G:
In order to obtain smooth influence functions, it suffices to replace the MCD

scatter matrix by an S-estimator of multivariate location and scatter (see [23]). These
estimators currently need more computation time than the MCD, especially for large
n; but their influence function is smooth as can be seen in [6]. We then have to insert
the latter influence function into (4.5)–(4.7), yielding smooth versions of the plots in
Fig. 4.
Until now we considered the IF of PFA based on a covariance matrix. Another

possibility is to work with a correlation matrix q: As in (2.3), this q is obtained by the

formula R
�1=2
D RR

�1=2
D where RD consists of the diagonal of R and zeroes elsewhere.

Then the loadings matrix KARp�k and the specific variances WARp satisfy q ¼
KKt þ diagðWÞ:We find analogous equations for IFðx;P;GÞ and IFðx;LLt;GÞ; with
the only difference that SðGÞ is replaced by RðGÞ and therefore vj and lj change. The

formula for differentiating a product of three matrices yields

IFðx;R;GÞ ¼ R
�1=2
D IFðx;S;GÞR�1=2

D � 1
2 R�1

D IFðx;SD;GÞq � 1
2 qR�1

D IFðx;SD;GÞ:
ð4:12Þ

In the bivariate situation, Devlin et al. [9] gave the influence function of the classical
correlation and plotted its contours.

Example 3. We carry out a factor analysis based on the correlation matrix, at the
distribution G of the previous example. The population correlation matrix is

q ¼
1 1

2
1
2

1
2

1 1
2

1
2

1
2

1

0
B@

1
CA:

The number of factors remains k ¼ 1; and now K ¼ ½ 1ffiffi
2

p ; 1ffiffi
2

p ; 1ffiffi
2

p �t with W ¼ ½1
2
; 1
2
; 1
2
�:

Fig. 5 shows the influence function of the classical and the robust PFA. The
differences between them can be interpreted in roughly the same way as in Fig. 4.
However, there is an important difference: the constant part in Figs. 5b and d is zero,
whereas that in Figs. 4b and d is not.
When G0 is such that l ¼ 0 and R ¼ Ip the influence function (4.11) of the classical

covariance matrix is

IFðx;Sc;G0Þ ¼ xxt � Ip;

whereas that of the MCD scatter matrix equals

IFðx;Sr;G0Þ ¼ cxxtIðjjxjjpqaÞ þ wðjjxjjÞIp; ð4:13Þ

where w is a certain real-valued function, qa ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
w2p;1�a

q
and c is a constant which

depends on a and p; as shown by Croux and Haesbroeck [6]. Therefore, the influence
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functions of Sc and Sr look similar for jjxjjpqa whereas for jjxjj4qa that of Sr only
depends on jjxjj:
The influence function of the diagonal elements of the correlation matrix (always

ones) is zero. For the off-diagonal elements we only have to consider the first part of
the right-hand side of expression (4.13). Together with expression (4.12) we obtain

IFðx;Rr;G0Þ ¼ cIFðx;Rc;G0ÞIðjjxjjpqaÞ:

For general l and R the result follows from equivariance,

IFðx;Rr;GÞ ¼ hðxÞIFðx;Rc;GÞ;

with hðxÞ ¼ cIðjjR�1=2ðx � lÞjjpqaÞ: From (4.5) to (4.7) it follows that

IFðx;Pr;GÞ ¼ hðxÞIFðx;Pc;GÞ;

IFðx; lrj ;GÞ ¼ hðxÞIFðx; lcj ;GÞ;

IFðx; vrj ;GÞ ¼ hðxÞIFðx; vcj ;GÞ;

IFðx; ðLLtÞr;GÞ ¼ hðxÞIFðx; ðLLtÞc;GÞ:

Fig. 5. Influence function IFðx;P2;GÞ based on (a) the classical correlation matrix and (b) the MCD75

correlation matrix; plot of IFðx; ðLLtÞ13;GÞ based on (c) the classical correlation matrix and (d) the

MCD75 correlation matrix.
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Hence, for factor analysis based on correlations the robust influence functions are
‘‘skipped’’ versions of the classical influence functions.

4.2. The empirical influence function

Until now we computed the influence functions in the population case, where we
know the true underlying distribution G: In the empirical setting we only have a
sample XnARn�p without knowing G: However, the unknown G depends only on the
parameters l and R; which we can replace by estimates TðXnÞ and SðXnÞ in the
formula of the influence function. The resulting empirical influence function (EIF) is
then evaluated in a data point xi to measure its effect on the principal factor analysis.
Our aim is to detect the most influential observations xi by comparing the EIFðxiÞ
for i ¼ 1;y; n:
We can construct the EIF of the classical PFA (e.g., of Pc

n) and of the robust

PFA (e.g. of Pr
n). For TðXnÞ and SðXnÞ we can take the classical estimates ðTc

n;Sc
nÞ

or the robust estimates ðTr
n;Sr

nÞ: This yields four ways to define the EIF:

* Tanaka and Odaka [27] computed EIFðxi;Pc
n;Tc

n;Sc
nÞ: This approach is the

simplest, but often masks outliers when there is more than one, because Tc
n and Sc

n

breakdown.
* Masking also occurs with EIFðxi;Pr

n;Tc
n;Sc

nÞ for the same reason. We will not

consider this possibility further.
* Substituting the robust Tr

n and Sr
n in the robust IF yields EIFðxi;Pr

n;Tr
n;Sr

nÞ: This
function illustrates the fact that an outlying xi has only a small effect on Pr

n; which
is natural because we constructed Pr

n for this purpose.
* Substituting the robust Tr

n and Sr
n in the classical IF yields EIFðxi;P

c
n;Tr

n;Sr
nÞ:

This is the most useful, because Tr
n and Sr

n are not affected by outliers. Therefore,

we prefer this approach to reveal influential points (i.e., points that would
strongly affect the classical PFA). Ideally, we would like to have EIFðxi;Pc

n; l;RÞ
for the true l and R of the parent distribution, but in the presence of outliers the
Tr

n and Sr
n are good approximations to these parameters.

In practice, to detect the most influential data points xi we therefore recommend to
compute the EIFðxi;Pc

n;Tr
n;Sr

nÞ:

Example 4. Let us illustrate these approaches on the aircraft data set of Example 1.
We compute the empirical influence functions EIFðxi;PjÞ and an overall value

jjEIFðxi;PÞjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEIFðxi;P1Þj2 þ?þ jEIFðxi;P5Þj2

q
in the 23 observations xi for

the different versions of the EIF considered above. Fig. 6 plots jjEIFðxi;PÞjj versus
the case number i:
We see that the outlying cases 14 and 22 have a relatively small

jjEIFðxi;Pc
n;Tc

n;Sc
nÞjj: This is because Tc

n and Sc
n try to fit all the data points, so

Sc
n becomes too large (see also [24]). Second, using the robust estimates Pr

n; Tr
n and Sr

n

leads to jjEIFðxi;Pr
n;Tr

n;Sr
nÞjj ¼ 0 for cases 14 and 22. This illustrates the robustness
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of Pr
n but does not help to detect the influential points. The only function that clearly

shows the influential points is jjEIFðxi;Pc
n;Tr

n;Sr
nÞjj; which takes on huge values for

cases 14 and 22.

5. Examples

To illustrate robust factor analysis we consider two real data examples. The vole
data set [1] consists of 45 Microtus ochrogaster species. The variables are the age in
days ðX1Þ; the condylo-incisive length ðX2Þ; the length of the incisive foramen ðX3Þ;
the alveolar length of the upper molar tooth row ðX4Þ; and the interorbital width
ðX5Þ:
First, we compute the Mahalanobis distances and the robust distances. The robust

distances [23] are given by

RDðxiÞ ¼ dðxi;Tr
n;Sr

nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � Tr

nÞ
tðSr

nÞ
�1ðxi � Tr

nÞ
q

; ð5:1Þ

whereas the Mahalanobis distances MDðxiÞ equal dðxi;Tc
n;Sc

nÞ: As proposed by

Rousseeuw and Van Driessen [25], Fig. 7 plots the RDðxiÞ versus MDðxiÞ with cutoff
value

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w25;0:975

q
E3:58 on both axes. The robust distances detect eight outliers (cases

 Aircraft data: case number i
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Fig. 6. The empirical influence functions jjEIFðxi ;PÞjj evaluated in 23 aircraft.
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3, 4, 8, 9, 23, 39, 40, 41) while the MDðxiÞ do not flag any. Let us compute the
empirical influence function EIFðxi;Pc

n;Tr
n;Sr

nÞ for a principal factor analysis with
k ¼ 2: To see which observations are unusually influential, we need a cutoff value.
This value will depend on the data set, because factor analysis is not affine
equivariant. (If we transform the data linearly, we cannot simply derive the new
loadings and specific variances from the old ones.)

To compute the cutoff value we generate data sets X ðsÞ for s ¼ 1;y;m with the
same dimensions, according to the factor analysis model

X ðsÞ ¼ KUðsÞ þ eðsÞ;

where K is set equal to the robust estimate Lr
n of the original data, the entries of UðsÞ

are generated from Nð0; 1Þ; and the entries eðsÞij are generated from Nð0; ðPr
nÞjÞ: Next,

we compute the value jjEIFðxi;Pc
n;Tr

n;Sr
nÞjj for each case xi in each data set X ðsÞ: The

cutoff is then obtained as the 95% quantile of all these values. For the vole data we
found the cutoff value 23.5. In Fig. 8 we see that cases 8, 9, 39, 40, and 41 have an
exceptionally high jjEIFðxi;P

c
n;Tr

n;Sr
nÞjj; hence these cases are highly influential.

Fig. 9 shows the biplots of the classical analysis and the robust analysis. As before,
the classical factor analysis has the disadvantage that the estimates for l and the
correlation matrix q are affected by the outliers. Therefore, the factors and loadings
do not give the structure of the correlation matrix of the good objects, since they are
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also influenced by the outliers. The two biplots are clearly different, due to the
differences between Rc

n and Rr
n: (For instance, the classical correlation between the

variables X3 and X4 is 0.45 and the robust correlation is 0.12. For the correlation
between X2 and X5 we have 0:09 for the classical and �0:35 for the robust
correlation.) Also note that cases 36 and 40 have a different position in the two
biplots.
Looking at the classical results in Table 2, we see that the variables X2; X3; and

X4 load highly on factor 1, and the variables X1 and X2 dominate factor 2. For
robust PFA the variables X1; X2; and X5 load highly on factor 1 and the variables
X2; and X3 load highly on factor 2. This again illustrates that the robust FA finds a
different structure, which in fact corresponds to the data set without the outliers.
The Swiss bank notes data [10] describe 100 forged bank notes of 1000 francs. The

variables are the length of the bill ðX1Þ; the height of the bill measured on the left
ðX2Þ; the height of the bill measured on the right ðX3Þ; the distance of the inner
frame to the lower border ðX4Þ; the distance of the inner frame to the upper border
ðX5Þ and the length of the diagonal (X6). In the distance–distance plot (Fig. 10) the
robust distances RDi detect 19 outliers.
For the factor analysis with k ¼ 2 the empirical influence function

EIFðxi;Pc
n;Tr

n;Sr
nÞ is shown in Fig. 11, with the cutoff value 5.99 obtained through

simulation. The points with high influence are cases 11, 38, 48, 60–62, 67, 68, 71, 80,
82, 87, 92 and 94. All of these are also x-outliers, as we can see in Fig. 10. However,

Vole data: case number i
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one of the far x-outliers (case 16) in Fig. 10 has only a small influence on the factor
analysis (Fig. 11). This situation is similar to a bivariate scatterplot, where a point
may be far from the data cloud without influencing the regression line. Think of a
point lying on the linear trend of the bulk of the data. In regression analysis, this is
called a ‘‘good leverage point’’ [24]. We could detect such points in factor analysis by
plotting jjEIFðxi;Pc

n;Tr
n;Sr

nÞÞjj versus RDðxiÞ; together with their cutoff values. This
would be a useful diagnostic plot.
Let us compare the biplots (Fig. 12) and the loadings (Table 3) of the two factor

analyses. Variable X6 has a different position in the two biplots. This has to do with
the fact that the classical correlation between X1 and X6 is only 0:05; whereas their
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Table 2

Loadings of both factor analyses on the vole data

Loadings of classical FA Loadings of robust FA

Variable Factor 1 Factor 2 Factor 1 Factor 2

X1 0.000 0.750 0.657 0.102

X2 0.791 0.568 0.742 0.477

X3 0.671 0.188 0.147 0.666

X4 0.646 0.210 0.344 0.137

X5 0.126 0.000 �0.426 0.000
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robust correlation is 0:36: The classical and robust loadings in Table 3 also differ
substantially.

6. Discussion

A referee asked to show that our method can also resist outliers in factor space, in
the following way. Let us again consider Table 1. The loading matrix based on

classical FA is denoted by K1AR5�2; and the one based on the robust FA is denoted
as K2: We now generate 95 data points xi from the first factor model

xi ¼ K1Ui þ ei ð6:1Þ

with UiBN2ð0; IÞ and eiBN5ð0; IÞ: We then add five additional points to this data
set generated from another factor model

xi ¼ K2Ui þ ei ð6:2Þ

with Ui and ei generated as before. We also checked that the Mahalanobis distances

xiðK1K
t
1 þ IÞ�1xt

i of these five additional points were larger than the cutoff value

w25ð0:975Þ so that these five observations deviate from the factor model (6.1).

The empirical influence function jjEIFðxi;Pr
n;Tr

n;Sr
nÞjj is plotted in Fig. 13. From

this plot we can clearly see that the robust method has indeed downweighted these
five points.

Bank notes data : case number i
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Fig. 12. Biplots of the bank notes data: (a) classical and (b) robust.
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Standard errors for the loading estimates based on the MCD scatter matrix can be
computed as follows. Since the MCD is asymptotically normal, see [4,6], it follows

that under the model the loading matrix L ¼ ½
ffiffiffiffiffi
l1

p
v1;y;

ffiffiffiffiffi
lk

p
vk� which follows the

model satisfiesffiffiffi
n

p
ðLj � KjÞp-Npð0;ASVðLjÞÞ;

where ASVðLjÞ ¼ EG½IFðx;Lj ;GÞIFðx;Lj;GÞt�: Using expressions (4.5) and (4.6) for
IFðx; lj ;GÞ and IFðx; vj ;GÞ we can obtain the influence function for the vector of

loadings Lj as

IFðx;Lj;GÞ ¼ 1

2
ffiffiffiffi
lj

p IFðx; lj;GÞbvj þ IFðx; vj ;GÞ
ffiffiffiffi
lj

p
:

0 20 40 60 80 100

0
20

40
60

80
10

0
12

0

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

••

•
•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

••

•

•

•

•

•
•

•

•

•

•

•

•

••

•

•
•
•

•
•

•

•

•

•

•

•

•

•

•
••

•

••

•

•

•

•

•

•••••

|| EIF(x ;P ;T ,S ) ||i n
r r r

n n

Fig. 13. The empirical influence function jjEIFðxi;P
r
n;T

r
n;Sr

nÞjj evaluated of 100 generated points.

Table 3

Loadings of both factor analyses on the bank notes data

Loadings of classical FA Loadings of robust FA

Variable Factor 1 Factor 2 Factor 1 Factor 2

X1 �0.143 0.403 0.182 0.517

X2 0.000 0.807 �0.202 0.787

X3 0.109 0.744 0.000 0.732

X4 0.974 �0.199 �0.974 0.000

X5 �0.664 0.000 0.879 0.000

X6 0.302 0.000 0.167 0.557
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The covariance matrix of Lj can then be obtained by COVðLjÞ ¼
1
n2

Pn
i¼1 IFðx;Lj; F̂nÞIFðx;Lj ; F̂nÞt; where F̂n is the empirical distribution. The

standard errors can now be obtained as stdðlijÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
COVðLjÞii

p
: Croux and Dehon

[5] used the same approach to obtain standard errors for robust canonical
correlations.
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Appendix

We will derive system (4.8) of linear equations. Substituting (4.5) into the right-
hand side of (4.7) gives

IFðx;Pj;GÞ ¼ IFðx;Sjj ;GÞ �
Xk

l¼1
v2ljðGÞ½vt

lðGÞIFðx;S;GÞvlðGÞ�

þ
Xk

l¼1
v2ljðGÞvt

lðGÞ diag½IFðx;P;GÞ�vlðGÞ

� 2
Xk

l¼1
llðGÞvljðGÞIFðx; vlj;GÞ: ðA:1Þ

Since IFðx;S;GÞ is known, (A.1) relates the influence functions IFðx; vj;GÞ and
IFðx;Pj;GÞ to each other. Simplifying,

IFðx;Pj;GÞ ¼ IFðx;Sjj ;GÞ �
Xk

l¼1
v2ljðGÞ½vt

lðGÞIFðx;S;GÞvlðGÞ�

þ
Xk

l¼1
v2ljðGÞ

Xp

s¼1
v2lsIFðx;Ps;GÞ

( )
� 2

Xk

l¼1
llðGÞvljðGÞIFðx; vlj ;GÞ:

Let us define the constants

c
ð1Þ
j ¼ IFðx;Sjj ;GÞ �

Xk

l¼1
v2ljðGÞ½vt

lðGÞIFðx;S;GÞvlðGÞ� and

c
ð2Þ
sj ¼

Xk

l¼1
v2ljv

2
ls
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yielding

IFðx;Pj;GÞ ¼ c
ð1Þ
j þ

Xp

s¼1
c
ð2Þ
sj IFðx;Ps;GÞ � 2

Xk

l¼1
llðGÞvljðGÞIFðx; vlj ;GÞ: ðA:2Þ

We now consider Eq. (4.6) and define the constant vector

c
ð3Þ
l ¼

Xk

q¼1
qal

1

ðlqðGÞ � llðGÞÞ vt
qðGÞ½�IFðx;S;GÞ�vlðGÞvqðGÞ

þ
Xp

q¼kþ1

�1
llðGÞ at

qðGÞ½�IFðx;S;GÞ�vlðGÞaqðGÞ:

This yields

IFðx; vlj ;GÞ

¼ c
ð3Þ
lj þ

Xk

q¼1
qal

1

ðlqðGÞ � llðGÞÞ
Xp

i¼1
vqiðGÞIFðx;Pi;GÞvliðGÞ

( )
vqjðGÞ

þ
Xp

q¼kþ1

�1
llðGÞ

Xp

i¼1
aqiðGÞIFðx;Pi;GÞvliðGÞ

( )
aqjðGÞ:

By means of the constant matrix cð4ÞARp�p�p given by

c
ð4Þ
lji ¼

Xk

q¼1
qal

1

ðlqðGÞ � llðGÞÞ vqiðGÞvliðGÞvqjðGÞ

þ
Xp

q¼kþ1

�1
llðGÞ aqiðGÞvliðGÞaqjðGÞ;

we obtain the simple formula

IFðx; vlj;GÞ ¼ c
ð3Þ
lj þ

Xp

i¼1
c
ð4Þ
lji IFðx;Pi;GÞ: ðA:3Þ

We can now substitute (A.3) into (A.2), yielding

IFðx;Pj;GÞ ¼ c
ð1Þ
j þ

Xp

s¼1
c
ð2Þ
sj IFðx;Ps;GÞ � 2

Xk

l¼1
llðGÞvljðGÞcð3Þlj

� 2
Xp

i¼1

Xk

l¼1
llðGÞvljðGÞcð4Þlji

( )
IFðx;Pi;GÞ:

Defining the constants

bjðxÞ ¼ c
ð1Þ
j � 2

Xk

l¼1
llðGÞvljðGÞcð3Þlj and c

ð5Þ
ji ¼ �2

Xk

l¼1
llðGÞvljðGÞcð4Þlji
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for i; j ¼ 1;y; p we can write

IFðx;Pj;GÞ ¼ bjðxÞ þ
Xp

s¼1
c
ð2Þ
sj IFðx;Ps;GÞ þ

Xp

s¼1
c
ð5Þ
js IFðx;Ps;GÞ:

With the notation Bjs ¼ c
ð2Þ
sj þ c

ð5Þ
js we find

IFðx;Pj;GÞ ¼ bjðxÞ þ
Xp

s¼1
BjsIFðx;Ps;GÞ

or in matrix notation

ðIp � BÞIFðx;P;GÞ ¼ bðxÞ: ðA:4Þ
This system of p linear equations with the unknowns IFðx;Ps;GÞ for s ¼ 1;y; p can
be solved numerically. The matrix B is given by

Bjs ¼
Xk

l¼1
v2ljðGÞv2lsðGÞ þ llðGÞvljðGÞ

Xk

q¼1
qal

2

ðllðGÞ � lqðGÞÞ vqsðGÞvlsðGÞvqjðGÞ

0
BB@

2
664

þ
Xp

q¼kþ1

2

llðGÞ aqsðGÞvlsðGÞaqjðGÞ

1
CCA
3
775:

Note that B does not depend on x; whereas bðxÞ depends on x through IFðx;S;GÞ:
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