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a b s t r a c t

A finite-difference scheme based on fourth-order rational approximants to the matrix–
exponential term in a two-time level recurrence relation is proposed for the numerical
solution of the modified Burgers equation. The resulting nonlinear system, which is
analyzed for stability, is solved using an already known modified predictor–corrector
scheme. The results arising from the experiments are compared with the corresponding
ones known from the available literature.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Burgers [1,2], using earlier studies in Bateman [3], introduced an equation to capture some of the features of turbulent
fluid in a channel caused by the interaction of the opposite effects of convection and diffusion. This equation, which includes
nonlinearity and dissipation together in the simplest possible way and may be thought of as a nonlinear version of the heat
equation, has in general the form

ut + u ux − ν uxx = 0; L0 ≤ x ≤ L1, t > t0, (1.1)

where u = u (x, t) is a sufficiently often differentiable function of the space and the time variables, respectively, and ν is a
constant which can be interpreted as the viscosity, controlling the balance between convection and diffusion.When ν = 0 it
becomes the inviscid Burgers equation,which is a prototype for equations that develop shockwaves,with important applica-
tions in physics [4]. The Burgers equation, which is a fundamental equation in fluidmechanics, is used as amodel in fields as
wide apart as acoustics, continuous stochastic processes, dispersive water waves, gas dynamics, heat conduction, longitudi-
nal elasticwaves in an isotropic solid, number theory, shockwaves, turbulence and so forth [5]. SinceHopf’s [6] and Cole’s [7]
independent proof that Eq. (1.1) can be reduced to the linear heat equation by a proper nonlinear transformation, numerous
studies have approached its solution [8–18]. Formal generalizations of the Burgers equation are the Burgers–Huxley [19–23],
Fisher [24–26], Korteweg–de Vries–Burgers [27–29] and Kuramoto–Sivashinsky [30–32] equations.
The modified Burgers equation (MBE), which is examined here, has the form

ut + uµ ux − ν uxx = 0; L0 ≤ x ≤ L1, t > t0, (1.2)

where µ is a positive integer with µ ≥ 2. The cases to be examined where µ = 2 and µ = 3 will be denoted from now on
as MBE2 andMBE3 respectively. The MBE equation, which has the strong nonlinear aspects of the governing equation (1.1),
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is used in many practical transport problems such as those of nonlinear waves in a medium with low-frequency pumping
or absorption, ion reflection at quasi-perpendicular shocks, turbulence transport, wave processes in thermoelastic media,
transport and dispersion of pollutants in rivers and sediment transport, etc. Theoretical solutions of the MBE equation
are found in, among other references, Harris [33], Sachdev and Rao [34], Sachdev et al. [35], Inan and Ugurlu [36], while
numerical solutions are found in Ramadan and El-Danaf [37] using the collocation method with quintic splines, Ramadan
et al. [38] with finite elements with amethod based on the collocation of septic B-splines, Dağ et al. [39] with finite elements
with a method based on the collocation of cubic B-splines, Dağ et al. [40] using both quadratic and cubic B-spline Galerkin
finite-element methods, Saka and Dağ [41] with the use of a quartic B-spline collocation method, Saka and Dağ [42] with
the use of a quintic B-spline collocation method, Irk [43] with the sextic B-spline collocation method, Temsah [44] using the
El-Gendi method, Duan et al. [45] using a lattice Boltzmann model, etc.
The initial condition associated with Eq. (1.2) will be

u (x, t0) = f (x); L0 ≤ x ≤ L1, (1.3)

while the boundary conditions are

ux|x=Li = 0; i = 0, 1; t > t0. (1.4)

2. The numerical method

2.1. Development of the method

To obtain numerical solutions, the region R = {(x, t) ∈ [L0 < x < L1]× ]t0, T ]} with its boundary ∂R consisting of the
lines x = L0, x = L1 and t = t0 is covered with a rectangular mesh of points, G, with coordinates (x, t) = (xm, tn) =
(L0 +mh, t0 + n`) with m = 0, 1, . . . ,N + 1 and n = 1, 2, . . . . The theoretical solution of Eq. (1.2) at the typical mesh
point (xm, tn)will be denoted by unm and that relevant to an approximating difference scheme by U

n
m.

Let the solution vector at time t = tn be

Un = U (tn) =
[
Un0 ,U

n
1 , . . . ,U

n
N+1

]>
. (2.1)

If Eq. (1.4) is used in the second-order approximation, it gives to second order Un
−1 = U

n
1 and U

n
N+2 = U

n
N . Then we apply Eq.

(1.2) at each point of the grid G at time level t = t0+n`with n = 1, 2, . . . using for the first-order space derivative the usual
central-difference approximant at each point of (L0, L1) and the forward one at x = L0, L1; while for the second-order space
derivative, the second-order central-difference approximant leads to a first-order initial-value problem, which is written in
a matrix–vector form as

DU(t) = −∆ AU(t)+ ν BU(t); t > t0 (2.2)
U0 = U (t0) = [f (x0) , f (x1) , . . . , f (xN+1)]> = f

in which D = {d/dt},

∆ = ∆n = ∆(t) = diag
{(
Unm
)µ}
; m = 0, 1, . . . ,N + 1 (2.3)

are diagonal matrices,

A =
1
2h


−2 2
−1 0 1

· · ·

−1 0 1
2 −2

 , B =
1
h2


−2 2
1 −2 1

· · ·

1 −2 1
2 −2

 (2.4)

and tridiagonal matrices, and f is the vector of the initial condition, all of order N + 2.
Relation (2.2) gives

D = −∆ A+ ν B, (2.5)

so

D2 = (∆ A)2 − ν (∆ A B+ B∆A)+ ν2 B2 (2.6)

matrices of order N + 2, which are easily obtained from (2.3)–(2.4).
Numerical methods will be developed by replacing the matrix–exponential term in the recurrence relation

U (t + `) = exp (`D)U (t) ; t = t0, t0 + `, . . . (2.7)

where DU(t) is given by (2.2), by rational replacements, which are also known as the (p, q) Padé approximants of order
p+ q to exp (`D) [46], of the form

exp (`D) ≈
(
I + a1`D+ b1`2D2

)−1 (
I + c1`D+ d1`2D2

)
(2.8)



A.G. Bratsos / Computers and Mathematics with Applications 60 (2010) 1393–1400 1395

Table 1
Parameters of the (p, q) Padé approximants to the exponential function.

Method (p, q) Padé a1 b1 c1 d1 Principal error term

I (0,2) 0 0 1 1/2 `3 D3/6
II (2,2) −1/2 1/12 1/2 1/12 `5 D5/720

Table 2
Expression of Eq. (2.9) arising from the parameters in Table 1.

Method Expression

I U (t + `) =
(
I + 1

2 `
2D2

)
U (t)

II
(
I − 1

2 `D+
1
12 `

2D2
)
U (t + `) =

(
I + 1

2 `D+
1
12 `

2D2
)
U (t)

in which a1, b1, c1, d1 are real parameters having appropriate values for each type of the approximants given in Table 1.
Eq. (2.7), using Eq. (2.8), is written as(

I + a1`D+ b1`2D2
)
U (t + `) =

(
I + c1`D+ d1`2D2

)
U (t) ; t = t0, t0 + `, . . . . (2.9)

The expression for Eq. (2.9) arising from the use of these parameters for the methods to be examined in this paper is given
in Table 2.

2.2. The proposed method

The method arises from Method II in Table 2, which, using the notation of (2.3) and (2.5)–(2.6), leads to the following
nonlinear system:

U(t + `)−
1
2
`[−∆n+1A+ ν B]U(t + `)+

1
12
`2[(∆n+1A)2 + ν2B2 − ν(∆n+1A B+ B∆n+1A)]U(t + `)

= U(t)+
1
2
`[−∆n A+ ν B]U(t)+

1
12
`2[(∆nA)2 + ν2B2 − ν(∆nA B+ B∆nA)]U(t). (2.10)

Let r1 = `ν/2h2, r2 = `/4h, r3 = `2/48h2, r4 = `2ν/24h3 and r5 = `2ν2/12h4. Eq. (2.10), when applied to the general mesh
point of the grid G, gives

Un+1m − r1
(
Un+1m−1 − 2U

n+1
m + Un+1m+1

)
− r2

(
Un+1m−1 − U

n+1
m+1

) (
Un+1m

)µ
+ r3

{(
Un+1m−1

)µ (
Un+1m

)µ
Un+1m−2 −

[(
Un+1m−1

)µ
+
(
Un+1m+1

)µ] (
Un+1m

)µ
Un+1m

+
(
Un+1m

)µ (
Un+1m+1

)µ
Un+1m+2

}
− r4

{
4
(
Un+1m

)µ
Un+1m−1 −

[(
Un+1m−1

)µ
+
(
Un+1m

)µ]
Un+1m−2

− 4
(
Un+1m

)µ
Un+1m+1 +

[(
Un+1m−1

)µ
−
(
Un+1m+1

)µ]
Un+1m

+

[(
Un+1m

)µ
+
(
Un+1m+1

)µ]
Un+1m+2

}
+ r5

(
Un+1m−2 − 4U

n+1
m−1 + 6U

n+1
m − 4Un+1m+1 + U

n+1
m+2

)
= Unm + r1

(
Unm−1 − 2U

n
m + U

n
m+1

)
+ r2

(
Unm−1 − U

n
m+1

) (
Unm
)µ

+ r3
{(
Unm−1

)µ (Unm)µ Unm−2 − [(Unm−1)µ + (Unm+1)µ] (Unm)µ Unm + (Unm)µ (Unm+1)µ Unm+2}
+ r4

{
4
(
Unm
)µ Unm−1 − [(Unm−1)µ + (Unm)µ]Unm−2 − 4 (Unm)µ Unm+1

+
[(
Unm−1

)µ
−
(
Unm+1

)µ]Unm + [(Unm)µ + (Unm+1)µ]Unm+2}
+ r5

(
Unm−2 − 4U

n
m−1 + 6U

n
m − 4U

n
m+1 + U

n
m+2

)
; m = 0, 1, . . . ,N + 1. (2.11)

2.2.1. Stability analysis
Following the Fourier method of analyzing the stability [46, p. 142], if ξ = eα` is the amplification factor and Ũnm the

numerical value of Unm actually obtained, an error of the form U
n
m − Ũ

n
m = ξ

n eimβh, i =
√
−1, with α a complex number and

β real is considered. Then Eq. (2.11) leads to the following stability equation:{
1+ 4r1 sin2 ω − 4r3 (U0)2µ sin2 2ω + 16r5 sin4 ω + i [2r2 (U0)µ sin 2ω − 4r4 (U0)µ (−2 sin 2ω + sin 4ω)]

}
ξ

= 1− 4r1 sin2 ω − 4r3 (U0)2µ sin2 2ω + 16r5 sin4 ω

+ i [−2r2 (U0)µ sin 2ω + 4r4 (U0)µ (−2 sin 2ω + sin 4ω)] (2.12)
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in which U0 is a typical value of Unm; U
n+1
m , m = 0, 1, . . . ,N + 1, is used for the linearization of the nonlinear terms and

ω = β h/2. Eq. (2.12) is of the form

Ă ξ = B̆; Ă, B̆ ∈ C, (2.13)

where Ă 6= 0 andC is the set of the complex numbers. The von Neumann necessary criterion for stability |ξ | ≤ 1will always
be satisfied when

∣∣∣B̆∣∣∣ ≤ ∣∣∣Ă∣∣∣; otherwise, if 4 r3 (U0)2µ + 16 r5 ≤ 1, this leads to
` ≤ 2

√
3h2

[
16 ν2 + h2 (U0)2µ

]−1/2
. (2.14)

Expanding the right-hand side of inequality (2.14) after using Maclaurin’s expansion gives

√
3 h2

[
16 ν2 + h2 (U0)2µ

]−1/2
=

√
3h2

2ν
+ O

(
h4
)
.

Then assuming that h� 1 inequality (2.14), finally, leads to the following restriction for the time step:

` ≤

√
3h2

2ν
. (2.15)

2.3. The predictor–corrector scheme

To avoid the necessity of solving the nonlinear system (2.11), the following predictor–corrector scheme is proposed.

2.3.1. The predictor
The value Û (t + `) is evaluated from Method I in Table 2, using again the notation (2.3) and subject to (2.4)–(2.5), as

follows:

Û (t + `) = U (t)+ `
(
−∆nA+ ν B

)
U (t)+

1
2
`2
[(
∆nA

)2
+ ν2 B2 − ν

(
∆nA B+ B∆nA

)]
U (t) . (2.16)

Let p1 = ` ν/h2, p2 = `/2 h, p3 = `2/8 h2, p4 = `2 ν/4 h3 and p5 = `2ν2/2 h4. Eq. (2.16), when applied to the general
mesh point of the grid G, gives

Ûn+1m = Unm + p1
(
Unm−1 − 2U

n
m + U

n
m+1

)
+ p2

(
Unm−1 − U

n
m+1

) (
Unm
)µ

+ p3
{
Unm−2

(
Unm−1

)µ
− Unm

[(
Unm−1

)µ
+
(
Unm+1

)µ]
+ Unm+2

(
Unm+1

)µ} (Unm)µ
+ p4

{
−4Unm−1

(
Unm
)µ
+ Unm−2

[(
Unm−1

)µ
+
(
Unm
)µ]
+ 4

(
Unm
)µ Unm+1

+ Unm
[
−
(
Unm−1

)µ
+
(
Unm+1

)µ]
− Unm+2

[(
Unm
)µ
+
(
Unm+1

)µ]}
+ p5

(
Unm−2 − 4U

n
m−1 + 6U

n
m − 4U

n
m+1 + U

n
m+2

)
; m = 0, 1, . . . ,N + 1. (2.17)

2.3.1.1. Stability analysis. Following again the Fouriermethod of analyzing stability, Eq. (2.17) leads to the following stability
equation:

ξ = 1− 4 p1 sin2 ω − 4 p3U
2µ
0 sin

2 2ω + 16p5 sin4 ω + iU
µ

0 [−2 p2 sin 2ω + p4 (8 sin 2ω − 4 sin 4ω)]

= K(ω)+ iΛ(ω). (2.18)

Then the von Neumann necessary criterion for stability |ξ | ≤ 1 leads to√
K 2(ω)+Λ2(ω) ≤ 1. (2.19)

If ω = 0, inequality (2.19) is always satisfied, while when ω = π/2, it leads to the following restriction:∣∣∣∣1− 4 ` νh2 + 8 `2ν2h4

∣∣∣∣ ≤ 1. (2.20)

Inequality (2.20) will always be satisfied when−4 ` ν/h2 + 8 `2ν2/h4 ≤ 0, which leads to the following restriction for the
time step:

l ≤
h2

2 ν
. (2.21)

Since inequality (2.21) is more restrictive than inequality (2.15), it will be used for the experiments.
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2.3.2. The corrector
The corrector arises from Method II in Table 2 as follows:

U(t + `) =
(
1
2
`D−

1
12
`2D2

)
Û (t + `)+

(
I +
1
2
`D+

1
12
`2D2

)
U (t) . (2.22)

Instead of the classical substitution ofU (t + `) in the right-hand side of (2.22) by Û (t + `), themodified predictor–corrector
method (MPC) already known in the literature [47–50] was applied. The MPC method, which is applied once, consists of
considering (2.22) componentwise and using an updated component in the corrector vector as soon as it becomes available.
Hence in computing Un+1m the corrected values Un+1m−1 instead of the predicted value Û

n+1
m−1 are used. The stability analysis of

the corrector is given in Section 2.2.1.

3. Numerical results

For the linearization, U0 = maxm=0,1,...,N+1
{
ut0m
}
was given. Let enm =

∣∣unm − Unm∣∣,m = 0, 1, . . . ,N + 1. Then the error at
time level t = t0 + n`, n = 1, 2, . . ., is e(t) = L∞ = maxm=0,1,...,N+1 enm and the corresponding error L2 =

√
h
∑N+1
m=0

(
enm
)2.

It is known from calculus that:

Theorem 3.1. Consider the series
∑
+∞

k=0 |uk(x, t)| with uk(x, t) 6= 0, k = 0, 1, . . . . If ρk+1 = |uk+1(x, t)/uk(x, t)|, k =
0, 1, . . ., with limk→+∞ ρk+1 = θ , then the series converges only if θ < 1.

On the basis of the conclusion of Theorem 3.1, to examine the speed of the convergence of the method from time level
t = t1 to t = t2 the ratio

ρ = ρ t1, t2 =
e (t2)
e (t1)

(3.1)

is used. Obviously when ρ � 1 the convergence is fast.

3.1. MBE2 equation

Following [33] the MBE2 equation has the analytic solution

u(x, t) =
x
t

[
1+

√
t
t0
exp

(
x2

4 ν t

)]−1
, 0 ≤ x ≤ 1; t ≥ 1 (3.2)

with t0 ∈ (0, 1). In the numerical solution the case with t0 = 0.5 was considered. The initial condition u(x, 1) was given
from Eq. (3.2). For reasons of comparison with the corresponding work in [37,38,42–44] the values

- Un0 = 0 and U
N
N+1 = u(1, t)with u(1, t) given by Eq. (3.2), and

- ν = 0.01, 0.001 and 0.005

were used.
Experiments proved that the most accurate results are obtained for h ≥ 0.001 and ` = 10−5. From the results given in

Table 3 it is deduced that the method introduced gives more accurate results for all time levels used than the corresponding
results in [37,38]—finally, better than [42] and of equivalent accuracy to those in [43,44]. In Fig. 1 the curves of U and u for
ν = 0.005, 0.001 at various time levels are shown. It is seen that as the time increases there is no visible difference between
the curves.
Results using other values of the viscosity parameter ν at analogous time levels and the corresponding values of the ratio

ρ = ρ2,10 are given in Table 4. The following are deduced:

- the accuracy depends on the viscosity parameter ν increasing when ν is smaller,
- ρ � 1 for all ν examined,
- for ν > 0.001 the convergence becomes faster.

3.2. MBE3 equation

The MBE3 equation [35] using as initial condition

u(x, 0) = A sin
(πx
d

)
(3.3)
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a b

Fig. 1. MBE2 equation: in (a) the dashed curves show the theoretical solution u at t = 1 (initial condition—higher curve), the full curves the numerical
solution U at t = 2, 4, 6 and 10 (lowest curve) and the dotted curves the corresponding theoretical solution u when ν = 0.005, while (b) shows the
corresponding curves when ν = 0.01.

Table 3
MBE2 equation. Comparisons for the proposed method (h = 0.001 and ` = 10−5).

L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2×103

ν = 0.01 t = 2 t = 2 t = 4 t = 4 t = 6 t = 6 t = 10 t = 10

MPC 0.81669 0.37920 0.60556 0.31548 0.46499 0.27314 0.30183 0.19337
[37] 1.21698 0.52308 0.93136 0.51625 0.72249 0.49023 1.28124 0.64007
[38] 1.70309 0.79043 0.99645 0.55767 0.76105 0.51672 1.80329 0.80026
[42] 0.81680 0.37932 0.60537 0.31724 0.52579 0.32602 1.28125 0.54701
[43] 0.81502 0.41321 1.28127 0.55095
[44] 0.758 0.564 0.459 0.300

ν = 0.005

MPC 0.58027 0.22653 0.42949 0.18819 0.32993 0.16461 0.22874 0.13524
[37] 0.72264 0.25786 0.55445 0.25277 0.43082 0.22569 0.30006 0.18735
[42] 0.57998 0.22651 0.42940 0.18816 0.32897 0.16460 0.22885 0.13959
[43] 0.58424 0.23397 0.22626 0.13871

ν = 0.001

MPC 0.26109 0.06817 0.19289 0.05652 0.14809 0.04942 0.10263 0.04067
[37] 0.27967 0.06703 0.21856 0.06670 0.17176 0.06046 0.12129 0.05010
[38] 0.81852 0.18355 0.35635 0.11441 0.21348 0.08142 0.13943 0.05512
[42] 0.26094 0.06811 0.19288 0.05652 0.14810 0.04942 0.10264 0.04067
[43] 0.25975 0.07220 0.09872 0.03871
[44] 0.273 0.157 0.139 0.0936

Table 4
MBE2 equation. Results with h = 0.001, ` = 10−5 and ρ = ρ2,10 .

L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 ρ

ν t = 2 t = 2 t = 4 t = 4 t = 6 t = 6 t = 10 t = 10

0.0004 0.16550 0.03437 0.12217 0.02847 0.09377 0.02488 0.06496 0.02048 0.39
0.007 0.68523 0.29096 0.50749 0.24188 0.38993 0.21154 0.26934 0.16960 0.39
0.001 0.26109 0.06817 0.19289 0.05652 0.14809 0.04942 0.10263 0.04067 0.39
0.02 1.14826 0.63313 0.83628 0.49074 0.52278 0.31136 0.14668 0.08999 0.13
0.05 1.62900 1.94553 0.43890 0.25466 0.35248 0.23769 0.18987 0.13375 0.12

with d = π , A = 1 subject to

Un0 = u (x0, t) = u(0, t) = 0

UnN+1 = u (xN+1, t) = u(d, t) = 0 (3.4)

has an asymptotic solution of the form

u(x, t) = e−kt f0(x, t)+ e−4kt f1(x, t)+ e−7kt f2(x, t)+ · · · , (3.5)

where

f0(x, t) = A1 sin
(πx
d

)
,
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Fig. 2. MBE3 equation: the dotted curves show the theoretical solution u and the full curves the numerical solution U at t = 100 (higher curve), 150, 200,
250, 300, 350, 400 and 450 (lowest curve) when ν = 0.005.

Table 5
MBE3 equation. Comparisons for the proposed method (h = 0.005, ` = 10−5 and ν = 0.005).

t 100 150 200 250

MPC L∞ 0.33976E−01 0.68400E−02 0.20416E−02 0.83351E−03
L2 0.32761E−01 0.61258E−02 0.22273E−02 0.91238E−03

[45] L∞ 5.172E−03 1.671E−03 1.400E−03
L2 3.227E−03 9.912E−04 5.031E−04

t 300 350 400 450

MPC L∞ 0.39559E−03 0.21860E−03 0.14160E−03 0.10361E−03
L2 0.41341E−03 0.23070E−03 0.16168E−03 0.12836E−03

[45] L∞ 1.452E−03 1.488E−03 1.513E−03 1.531E−03
L2 5.939E−04 6.940E−03 7.567E−04 7.990E−04

f1(x, t) = −
A41π
4d
t sin

(
2πx
d

)
+
A41d
96νπ

sin
(
4πx
d

)
= B1t sin

(
2πx
d

)
+ B2 sin

(
4πx
d

)
,

f2(x, t) = g3(t) sin
(πx
d

)
+ g4(t) sin

(
3πx
d

)
+ g5(t) sin

(
5πx
d

)
+ g6(t) sin

(
7πx
d

)
,

g3(t) = −
d2

6νπ2

[
D1t + E1 +

d2D1
6νπ2

]
, g4(t) =

d2

2νπ2

[
D2t + E2 −

d2D2
2νπ2

]
,

g5(t) =
d2

18νπ2

[
D3t + E3 −

d2D3
18νπ2

]
, g6(t) =

d2E4
42νπ2

, k =
νπ2

d2

D1 =
A31B1π
4d

, D2 = −
9A31B1π
8d

, D3 =
5A31B1π
8d

,

E1 = −
A31B2π
8d

, E2 =
9A31B2π
8d

, E3 = −
15A31B2π
8d

, E4 =
7A31B2π
8d

and old age constant A1 = 0.365366.
Since the ratio ρ = ρ100,150 ≈ 0.20 for h = 0.001 and h = 0.005, to avoid large vectors, the value h = 0.005 was

preferred for the experiments. From the comparison of the MPC method with the corresponding method in [45] given in
Table 5 the following are derived:

(i) for t ≥ 100 a convergence of the numerical solution to the analytical one appears,
(ii) for t ≥ 250 the MPC method has given results more accurate than the corresponding ones in [45],
(iii) from t = 300 instead of t = 450 in [35] no visible differences in the curves of u and U (see Fig. 2) appear.

4. Conclusions

An implicit finite-difference scheme based on fourth-order rational approximants to the matrix–exponential term was
proposed for the numerical solution of the modified Burgers equation. The resulting nonlinear scheme was solved using an
already known [47–50]MPCmethod inwhich the corrector, which is an explicit scheme, is applied once. The computational
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efficiency of the proposed method given in detail in Section 3 was tested by comparing the numerical results with the
corresponding ones in [37,38,42–45]. It was found that the method for the MBE2 equation gives more accurate results
than [37,38] and ones of equivalent accuracy to those of [42–44], while for the MBE3 one [45] more accurate results are
given at long time intervals.
Since the varying time step integrationmethods [51,52] could improve the accuracy of thenumerical schemes, the natural

next step of future work would be to investigate these methods with reference to the MPC scheme introduced.
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[26] M. Sari, G. Gürarslan, I. Daǧ, A compact finite-difference method for the solution of the generalized Burgers–Fisher equation, Numer. Methods Partial

Differential Equations 26 (2010) 125–134.
[27] C.H. Su, C.S. Gardner, Derivation of the Korteweg–de Vries and Burgers’ equation, J. Math. Phys. 10 (1969) 536–539.
[28] Haq Sirajul, Siraj-Ul-Islam, Uddin Marjan, A mesh-free method for the numerical solution of the KdV–Burgers equation, Appl. Math. Model. 33 (2009)

3442–3449.
[29] A. Bekir, On traveling wave solutions to combined KdV–mKdV equation and modified Burgers–KdV equation, Commun. Nonlinear Sci. Numer. Simul.

14 (2009) 1038–1042.
[30] G. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames, Acta Astron. 4 (1977) 1177–1206.
[31] Y. Kuramoto, Diffusion-induced chaos in reaction systems, Progr. Theoret. Phys. 64 (Supplement) (1978) 346–367.
[32] J. Gustafsson, B. Protas, Regularization of the backward-in-time Kuramoto–Sivashinsky equation, J. Comput. Appl. Math. 234 (2010) 398–406.
[33] S.E. Harris, Sonic shocks governed by the modified Burgers’ equation, Eur. J. Appl. Math. 7 (2) (1996) 201–222.
[34] P.L. Sachdev, Ch. Srinivasa Rao, N-wave solution of modified Burgers equation, Appl. Math. Lett. 13 (2000) 1–6.
[35] P.L. Sachdev, Ch. Srinivasa Rao, B.O. Enflo, Large-time asymptotics for periodic solutions of themodified Burgers equation, Stud. Appl.Math. 114 (2005)

307–323.
[36] I. Inan, Y. Ugurlu, Exp-functionmethod for the exact solutions of fifth order KdV equation andmodified Burgers equation, Appl. Math. Comput. (2009)

(in press), doi:10.1016/j.amc.2009.07.009.
[37] M.A. Ramadan, T.S. El-Danaf, Numerical treatment for the modified Burgers equation, Math. Comput. Simul. 70 (2005) 90–98.
[38] M.A. Ramadan, T.S. El-Danaf, F. Alaal, A numerical solution of the Burgers’ equation using septic B-splines, Chaos Solitons Fractals 26 (2005) 795–804.
[39] I. Dağ, D. Irk, B. Saka, A numerical solution of the Burgers’ equation using cubic B-splines, Appl. Math. Comput. 163 (2005) 199–211.
[40] I. Dağ, B. Saka, A. Boz, B-spline Galerkin methods for numerical solutions of the Burgers’ equation, Appl. Math. Comput. 166 (2005) 506–522.
[41] B. Saka, I. Dağ, Quartic B-spline collocationmethods to the numerical solutions of the Burgers’ equation, Chaos Solitons Fractals 32 (2007) 1125–1137.
[42] B. Saka, I. Dağ, A numerical study of the Burgers’ equation, J. Franklin Inst. 345 (2008) 328–348.
[43] D. Irk, Sextic B-spline collocation method for the modified Burgers equation, Kybernetes 38 (9) (2009) 1599–1620.
[44] R.S. Temsah, Numerical solutions for convection–diffusion equation using El-Gendi method, Commun. Nonlinear Sci. Numer. Simul. 14 (2009)

760–769.
[45] Y. Duan, R. Liu, Y. Jiang, Lattice Boltzmann model for the modified Burgers’ equation, Appl. Math. Comput. 202 (2008) 489–497.
[46] E.H. Twizell, Computational Methods for Partial Differential Equations, Ellis Horwood Limited, England, 1984.
[47] A.G. Bratsos, A third order numerical scheme for the two-dimensional sine–Gordon equation, Math. Comput. Simul. 76 (2007) 271–282.
[48] A.G. Bratsos, A modified predictor–corrector scheme for the two-dimensional sine–Gordon equation, Numer. Algorithms 43 (4) (2006) 295–308.
[49] A.G. Bratsos, A second order numerical scheme for the solution of the one-dimensional Boussinesq equation, Numer. Algorithms 46 (2007) 45–58.
[50] A.G. Bratsos, A numerical method for the one-dimensional sine–Gordon equation, Numer. Methods Partial Differential Equations 24 (2008) 833–844.
[51] A. Younes, P. Ackerer, Solving the advection–diffusion equation with the Eulerian–Lagrangian localized adjoint method on unstructured meshes and

non uniform time stepping, J. Comput. Phys. 208 (2005) 384–402.
[52] L. Liu, X. Li, F.Q. Hu, Nonuniform time-step Runge–Kutta discontinuous Galerkin method for computational aeroacoustics, J. Comput. Phys. (2010)

(in press), doi:10.1016/j.jcp.2010.05.028.

http://dx.doi.org/doi:10.1016/j.amc.2009.07.009
http://dx.doi.org/doi:10.1016/j.jcp.2010.05.028

	A fourth-order numerical scheme for solving the modified Burgers equation
	Introduction
	The numerical method
	Development of the method
	The proposed method
	Stability analysis

	The predictor--corrector scheme
	The predictor
	The corrector


	Numerical results
	MBE2 equation
	MBE3 equation

	Conclusions
	Acknowledgements
	References


