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Abstract In this paper, numerical solutions of singular initial value problems are obtained by the

Haar wavelet collocation method (HWCM). The HWCM is a numerical method for solving integral

equations, ordinary and partial differential equations. To show the efficiency of the HWCM, some

examples are presented. This method provides a fast convergent series of easily computable

components. The errors of HWCM are also computed. Through this analysis, the solution is found

on the coarse grid points and then converging toward higher accuracy by increasing the level of the

Haar wavelet. Comparisons with exact and existing numerical methods (adomian decomposition

method (ADM) & variational iteration method (VIM)) solutions show that the HWCM is a

powerful numerical method for the solution of the linear and non-linear singular initial value

problems. The Haar wavelet adaptive grid method (HWAGM) based solutions show the excellent

performance for the proposed problems.
� 2015 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, the studies of singular initial value problems in
the second order ordinary differential equations (ODEs) have

attracted the attention of many mathematicians and physicists.
Many methods including numerical and perturbation methods
have been used to solve such type of problems. The approxi-
mate solutions for these problems were presented by many
researchers for example Wazwaz [1–3] using the ADM and

Yildirim and Ozis [4] using the VIM.
In numerical analysis, classical discretization methods, such

as finite differences, finite elements and spectral elements are
powerful tools for solving differential equations. However, sin-

gularities and step changes often emerge in many phenomena,
such as stress concentration, elastoplasticity, shock wave and
crack. Since small-scale features only exist in a small percent-

age of the solution domain, if one chooses a uniform numerical
grid fine enough to resolve the small-scale characteristics, then
the solution to the equations will be over-resolved in the

majority of the domain. One would like ideally, to have a
dense grid where small-scale structure exists and a sparse grid
where the solution is only composed of large-scale features
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[5–7]. It demands for the usage of non-uniform grids and adap-
tive grids or moving elements to dynamically adapt to the
changes in the solution [8]. That is where wavelets play a role.

Wavelet is called ‘‘numerical microscope’’ in signal and
image processing. It has been 31 years since Morlet proposed
the concept of wavelet analysis to automatically reach the best

trade-off between time and frequency resolution [9]. Later, this
proposition was considered as a generalization of ideas pro-
moted by Haar (1910), Gabor (1946) [10]. Wavelet was in

the air in the numerical analysis community in the early
1990s [11]. Generally, wavelet is used to describe a function
that features compact support; i.e. it is nonzero only on a finite
interval. The representation of a set of time-dependent data on

a wavelet basis leads to a unique structure of information that
is localized simultaneously in the frequency and time domains.
This does not occur in a Fourier representation, where specific

frequencies cannot be associated with a particular time inter-
val, since the basis functions have constant resolution on the
entire domain. A wavelet basis representation originates a set

of wavelet coefficients structured over different levels of reso-
lution. Each coefficient is associated with a resolution level
and a point in the time domain. The coefficients involved in

the lowest-resolution level describe the low-frequency features
of the data spanning over broad time intervals. At the highest
level, the coefficients are associated with highly localized high-
frequency features [12,13]. These desirable advantages draw

sight of researchers to apply wavelets in the resolution of dif-
ferential equations [14–16].

One of the popular families of wavelets is Haar wavelet. Due

to its simplicity, Haar wavelet has become an effective tool for
solving differential equations. The previous work in system
analysis via Haar wavelet was led by Chen and Hsiao [17],

who first derived a Haar operational matrix for the integrals
of the Haar function vector and put the applications for the
Haar analysis into the dynamic systems. Lepik [18–20] applied

the Haar wavelet collocation method for the solution of differ-
ential and integral equations. Bujurke et al. [21–23] presented
the Haar wavelet method to establish the solution of nonlinear
oscillator equations, Stiff systems, regular Sturm–Liouville

problems, etc. Chang and Piau [24], designed the numerical
solution of ordinary differential equations using Haar wavelet
matrices. Islam et al. [25] obtained the numerical solution of

second-order boundary-value problems using the Haar wavelet
collocation method for the different boundary conditions.

The purpose of this paper is to introduce the HWCM as an

alternative to existing methods for solving singular initial value
problems. With this method, the given differential equation
and its related initial conditions are transformed into a recur-
rence equation that finally leads to the solution of a system of

algebraic equations as coefficients of a Haar series solution.
This method is useful to obtain the approximate solutions of
linear and nonlinear singular initial value problems, no need

to linearization or discretization and large computational
work. It has been used to solve effectively, easily and accu-
rately a large class of linear and nonlinear problems with

approximations.
The present work is organized as follows. In Section 2,

Haar wavelet and operational matrix of integration are given.

Method of solution of HWCM is presented in Section 3. In
Section 4 numerical results and error analysis of the test prob-
lems are obtained. Finally conclusion of the proposed work is
discussed in Section 5.
2. Haar wavelet and operational matrix of integration

The scaling function h1ðtÞ for the family of the Haar wavelet is
defined as

h1ðtÞ ¼
1 for t 2 ½0; 1Þ
0 otherwise

�
ð2:1Þ

The Haar wavelet family for t 2 ½0; 1Þ is defined as

hiðtÞ ¼
1 for t 2 k

m
; kþ0:5

m

� �
�1 for t 2 kþ0:5

m
; kþ1

m

� �
0 otherwise

8><
>: ð2:2Þ

where m ¼ 2l; l ¼ 0; 1; . . . ; J; J is the level of resolution; and
k ¼ 0; 1; . . . ;m� 1 is the translation parameter. Maximum

level of resolution is J. The index i in Eq. (2.2) is calculated
using i ¼ mþ kþ 1. In case of minimal values m ¼ 1; k ¼ 0

then i ¼ 2. The maximal value of i is N ¼ 2Jþ1.

Let us define the collocation points tj ¼ j�0:5
N
; j ¼ 1; 2; . . . ;

N, Haar coefficient matrix H i; jð Þ ¼ hiðtjÞ which has the dimen-

sion N�N. For instance, J ¼ 3 ) N ¼ 16, then we have

Hð16;16Þ

¼

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1

1 1 1 1 �1 �1 �1 �1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 �1 �1 �1 �1

1 1 �1 �1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 �1 �1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 �1 �1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 �1 �1

1 �1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 �1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 �1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 �1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 �1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 �1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 �1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 �1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

We establish an operational matrix for integration via Haar
wavelet. The operational matrix of integration is obtained by

integrating (2.2) is as,

Phi ¼
Z t

0

hiðtÞdt ð2:3Þ

and

Qhi ¼
Z t

0

PhiðtÞdt ð2:4Þ

These integrals can be evaluated by using Eq. (2.2) and they

are given by

PhiðtÞ ¼
t� k

m
for t 2 k

m
; kþ0:5

m

� �
kþ1
m
� t for t 2 kþ0:5

m
; kþ1

m

� �
0 otherwise

8><
>: ð2:5Þ



Haar wavelet collocation method 665
QhiðtÞ ¼

1
2
t� k

m

� �2
for t 2 k

m
; kþ0:5

m

� �
1

4m2 � 1
2

kþ1
m
� t

� �2
for t 2 kþ0:5

m
; kþ1

m

� �
1

4m2 for t 2 kþ1
m
; 1

� �
0 Otherwise

8>>>><
>>>>:

ð2:6Þ

For instance, J ¼ 3 ) N ¼ 16, from (2.5) then we have

Phð16;16Þ¼ 1

32

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

1 3 5 7 9 11 13 15 15 13 11 9 7 5 3 1

1 3 5 7 7 5 3 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 3 5 7 7 5 3 1

1 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 3 3 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 3 3 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 3 3 1

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

and from (2.6) we get

Qhð16;16Þ

¼ 1

2048

1 9 25 49 81 121 169 225 289 361 441 529 625 729 841 961

1 9 25 49 81 121 169 225 287 343 391 431 463 487 503 511

1 9 25 49 79 103 119 127 128 128 128 128 128 128 128 128

0 0 0 0 0 0 0 0 1 9 25 49 79 103 119 127

1 9 23 31 32 32 32 32 32 32 32 32 32 32 32 32

0 0 0 0 1 9 23 31 32 32 32 32 32 32 32 32

0 0 0 0 0 0 0 0 1 9 23 31 32 32 32 32

0 0 0 0 0 0 0 0 0 0 0 0 1 9 23 31

1 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8

0 0 1 7 8 8 8 8 8 8 8 8 8 8 8 8

0 0 0 0 1 7 8 8 8 8 8 8 8 8 8 8

0 0 0 0 0 0 1 7 8 8 8 8 8 8 8 8

0 0 0 0 0 0 0 0 1 7 8 8 8 8 8 8

0 0 0 0 0 0 0 0 0 0 1 7 8 8 8 8

0 0 0 0 0 0 0 0 0 0 0 0 1 7 8 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
3. Method of solution

Consider the singular initial value problem of the form

u00ðtÞ þ c

t
u0ðtÞ þ f uðtÞð Þ ¼ 0 ð3:1Þ

Subject to the initial condition

uð0Þ ¼ a; u0ð0Þ ¼ b ð3:2Þ

where c; a & b are real constants and f uðtÞð Þ is a real valued
function.

Let us assume that

u00ðtÞ ¼
XN
i¼1

aihiðtÞ ð3:3Þ

where ai’s, i ¼ 1; 2; . . . ;N are Haar coefficients to be deter-
mined. Integrating Eq. (3.3) from 0 to t and hence the solution
uðtÞ is expressed in terms of the Haar functions and their
integrals.
Integrating Eq. (3.3) and using the given initial condition
(3.2) we get,

u0ðtÞ ¼ bþ
XN
i¼1

aiPhiðtÞ ð3:4Þ

Again integrating (3.4) and substituting the initial condition

then we have

uðtÞ ¼ aþ btþ
XN
i¼1

aiQhiðtÞ ð3:5Þ

Substituting (3.3)–(3.5) in (3.1), we get

XN
i¼1

aihiðtÞþ
a

t
bþ

XN
i¼1

aiPhiðtÞ
 !

þ f aþbtþ
XN
i¼1

aiQhiðtÞ
 !

¼ 0

ð3:6Þ

Solving (3.6) by using the Inexact Newton’s method [26], we

get the Haar wavelet coefficients ai’s and then substituting
these values in (3.5), we obtain the Haar wavelet collocation
method (HWCM) based numerical solution of the given prob-

lem (3.1).

4. Numerical examples

In this section, we are implementing the HWCM as discussed
in Section 3 to some of the linear and non-linear singular initial
value problems.

Test Problem 1. First consider the homogeneous singular
value problem [2,4],

u00 þ 2

t
u0 � ð4t2 þ 6Þu ¼ 0; 0 < t 6 1 ð4:1Þ

Subjected to

uð0Þ ¼ 1; u0ð0Þ ¼ 0 ð4:2Þ

Let us assume that

u00ðtÞ ¼
XN
i¼1

aihiðtÞ ð4:3Þ

Integrating (4.3) twice using (4.2), we have

u0ðtÞ ¼
XN
i¼1

aiPhiðtÞ ð4:4Þ

and

uðtÞ ¼ 1þ
XN
i¼1

aiQhiðtÞ ð4:5Þ

Substituting (4.3)–(4.5) in (4.1), we get

XN
i¼1

aihiðtÞ þ
2

t

XN
i¼1

aiPhiðtÞ � 2 2t2 þ 3
� �

1þ
XN
i¼1

aiQhiðtÞ
 !

¼ 0

ð4:6Þ

Solving (4.6) by using Inexact Newton’s method [26], we get

the Haar coefficients ai’s = [5.42,�2.86,�0.44,�2.90,
�0.10,�0.36,�0.88,�2.16,�0.02,�0.07,�0.14,�0.22,�0.35,
�0.54,�0.85,�1.34]. Substituting these coefficients in (4.5), we
get the HWCM solution of (4.1). The obtained numerical

solution of (4.1) is presented in comparison with the ADM,

VIM and exact solution yðtÞ ¼ expð�t2Þ in Table 1 for



Table 2 Error analysis of the Test Problem 1.

N L1 (ADM) L1 (VIM) HWCM HWAGM [8]

L1 L1

8 6.3098e�04 7.3037e�04 3.7226e�04 1.1798e�04
16 9.4542e�04 1.0927e�03 1.1858e�04 3.2938e�05
32 1.1519e�03 1.3304e�03 3.1412e�05 7.9978e�06
64 1.2701e�03 1.4664e�03 7.9072e�06 1.9995e�06

128 1.3334e�03 1.5391e�03 1.9978e�06 5.0090e�07
256 1.3661e�03 1.5767e�03 4.9990e�07 1.0098e�07

Table 3 Comparison of ADM and HWCM solutions with

Exact solution for N = 16 of the Test Problem 2.

tð¼ 1=32Þ ADM HWCM Exact

1 0 �0.000048 �0.000029
3 0 �0.000640 �0.000746
5 0 �0.003104 �0.003218
7 0 �0.008034 �0.008177
9 0 �0.015832 �0.015990

11 0 �0.026497 �0.026656
13 0 �0.039660 �0.039809
15 0 �0.054590 �0.054717
17 0 �0.070188 �0.070281
19 0 �0.084990 �0.085036
21 0 �0.097163 �0.097151
23 0 �0.104511 �0.104430
25 0 �0.104470 �0.104308
27 0 �0.094110 �0.093855
29 0 �0.070136 �0.069777
31 �0.028411 �0.028885 �0.028410

Table 1 Comparison of ADM, VIM and HWCM solutions

with Exact solution for N = 16 of the Test Problem 1.

tð¼ 1=32Þ ADM VIM HWCM Exact

1 1.000977 1.000977 1.000978 1.000977

3 1.008827 1.008827 1.008826 1.008827

5 1.024714 1.024714 1.024708 1.024714

7 1.049014 1.049014 1.049001 1.049014

9 1.082314 1.082314 1.082290 1.082314

11 1.125428 1.125428 1.125393 1.125428

13 1.179439 1.179439 1.179390 1.179439

15 1.245735 1.245735 1.245672 1.245736

17 1.326078 1.326078 1.326000 1.326079

19 1.422672 1.422672 1.422581 1.422675

21 1.538270 1.538269 1.538171 1.538278

23 1.676296 1.676292 1.676204 1.676321

25 1.841011 1.840999 1.840959 1.841078

27 2.037715 2.037687 2.037779 2.037888

29 2.273012 2.272946 2.273349 2.273428

31 2.555138 2.554991 2.556063 2.556084
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N= 16 and Fig. 1 for N = 32. The error analysis for higher
values of N is given in Table 2.

Test Problem 2. Next consider the nonhomogeneous

singular value problem [2,4],

u00 þ 8

t
u0 þ tu ¼ t5 � t4 þ 44t2 � 30t; 0 < t 6 1 ð4:7Þ

with respect to

uð0Þ ¼ 0; u0ð0Þ ¼ 0 ð4:8Þ

Applying the method discussed in Section 3 for the problem
(4.7), we get the Haar coefficients ai’s = [0.99,�1.50,0.01,
�1.50,0.19,�0.19,�0.56,�0.94,0.21,0.06,�0.05,�0.14,�0.23,
�0.33,�0.42,�0.52]. The obtained numerical solution of (4.7)
is presented in comparison with the ADM and exact solution

yðtÞ ¼ t4 � t3 in Table 3 for N= 16 and Fig. 2 for N = 32.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1
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1.6

1.8

2

2.2

2.4

2.6

2.8

t

u

HWCM

Exact

ADM

VIM

Figure 1 Comparison of ADM, VIM & HWCM solutions with

exact solution for N = 32 of Test Problem 1.
The error analysis for higher values of N is given in
Table 4.

Test Problem 3. Thirdly, consider the singular value prob-
lem of the form [3]

u00 þ 2

t
u0 þ un ¼ 0; 0 < t 6 1 ð4:9Þ

Subjected to

uð0Þ ¼ 1; u0ð0Þ ¼ 0; ð4:10Þ

Case (i) when n ¼ 1 Eq. (4.9) becomes linear equation,

u00 þ 2

t
u0 þ u ¼ 0; 0 < t 6 1 ð4:11Þ

Let us assume that

u00ðtÞ ¼
XN
i¼1

aihiðtÞ ð4:12Þ

Integrating (4.12) twice with respect to the condition, we have

u0ðtÞ ¼
XN
i¼1

aiPhiðtÞ ð4:13Þ

and

uðtÞ ¼ 1þ
XN
i¼1

aiQhiðtÞ ð4:14Þ
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Figure 2 Comparison of ADM & HWCM solutions with exact

solution for N= 32 of Test Problem 2.

Table 4 Error analysis of the Test Problem 2.

N ADM HWCM HWAGM [8]

L1 L1 L1

8 1.0154e�01 1.6292e�03 4.0839e�04
16 1.0443e�01 4.7476e�04 1.0293e�04
32 1.0520e�01 1.2686e�04 3.0278e�05
64 1.0540e�01 3.2718e�05 8.0095e�06
128 1.0545e�01 8.3037e�06 2.0090e�06
256 1.0546e�01 2.0904e�06 9.0098e�07

Table 5 Comparison of ADM and HWCM solutions with

Exact solution for N = 16 of the Test Problem 3(i).

tð¼ 1=32Þ ADM HWCM Exact

1 0.999837 0.999837 0.999837

3 0.998536 0.998535 0.998535

5 0.995940 0.995935 0.995935

7 0.992062 0.992043 0.992043

9 0.986920 0.986868 0.986868

11 0.980538 0.980421 0.980422

13 0.972946 0.972718 0.972719

15 0.964181 0.963777 0.963779

17 0.954285 0.953620 0.953621

19 0.943306 0.942268 0.942270

21 0.931298 0.929750 0.929752

23 0.918320 0.916093 0.916096

25 0.904438 0.901331 0.901334

27 0.889723 0.885496 0.885500

29 0.874250 0.868626 0.868630

31 0.858102 0.850759 0.850764

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

t

u

HWCM

Exact

ADM

Figure 3 Comparison of ADM & HWCM solutions with exact

solution for N = 32 of Test Problem 3(i).

Table 6 Error analysis of the Test Problem 3(i).

N ADM HWCM HWAGM [8]

L1 L1 L1

8 6.4356e�03 1.8562e�05 5.0856e�06
16 7.3373e�03 5.0012e�06 1.0012e�06
32 7.8221e�03 1.2932e�06 3.0938e�07
64 8.0733e�03 3.2854e�07 9.1857e�08
128 8.2012e�03 8.2781e�08 3.7787e�08
256 8.2657e�03 2.0776e�08 9.8235e�09
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Substituting (4.12)–(4.14) in (4.11), we get

XN
i¼1

aihiðtÞ þ
2

t

XN
i¼1

aiPhiðtÞ þ 1þ
XN
i¼1

aiQhiðtÞ
 !

¼ 0 ð4:15Þ

Solving (4.15) using Inexact Newton’s method, we get the
Haar coefficients ai’s [�0.30,�0.02,�0.01,�0.02,�0.00,
�0.00,�0.01,�0.01,�0.00,�0.00,�0.00,�0.00,�0.00,�0.00,
�0.00,�0.01]. The obtained numerical solution of (4.11) is
presented in comparison with the ADM and exact solution

uðtÞ ¼ sin t
t

in Table 5 for N = 16 and Fig. 3 for N= 32. The

error analysis for higher values of N is given in Table 6.
Case (ii) When n ¼ 5 Eq. (4.9) takes the nonlinear form,

u00 þ 2

t
u0 þ u5 ¼ 0; 0 < t 6 1 ð4:16Þ

Substituting (4.12)–(4.14) in (4.16), we get

XN
i¼1

aihiðtÞ þ
2

t

XN
i¼1

aiPhiðtÞ þ 1þ
XN
i¼1

aiQhiðtÞ
 !5

¼ 0 ð4:17Þ

Solving (4.17) using Inexact Newton’s method, we get the
Haar coefficients ai’s = [�0.22,�0.08,�0.03,�0.04,�0.01,
�0.02,�0.02,�0.02,�0.00,�0.01,�0.01,�0.01,�0.01,�0.01,
�0.01,�0.01]. The obtained numerical solution of (4.16) is
presented in comparison with the ADM and exact solution

uðtÞ ¼ ð1þ t2

3
Þ�1=2 in Table 7 for N= 16 and Fig. 4 for

N= 32. The error analysis for higher values of N is given in
Table 8.
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Figure 4 Comparison of ADM & HWCM solutions with exact

solution for N = 32 of Test Problem 3(ii).

Table 8 Error analysis of the Test Problem 3(ii).

N ADM HWCM HWAGM [8]

L1 L1 L1

8 3.0591e�02 9.2374e�05 2.2745e�05
16 3.4652e�02 2.4231e�05 6.4165e�06
32 3.6814e�02 6.2101e�06 1.0121e�06
64 3.7929e�02 1.5723e�06 3.5372e�07
128 3.8495e�02 3.9558e�07 9.5951e�08
256 3.8780e�02 9.9210e�08 2.2190e�08

Table 7 Comparison of ADM and HWCM solutions with

Exact solution for N = 16 of the Test Problem 3(ii).

tð¼ 1=32Þ ADM HWCM Exact

1 0.999837 0.999837 0.999837

3 0.998541 0.998538 0.998538

5 0.995980 0.995955 0.995955

7 0.992214 0.992117 0.992118

9 0.987332 0.987069 0.987071

11 0.981450 0.980866 0.980869

13 0.974711 0.973574 0.973578

15 0.967279 0.965269 0.965275

17 0.959339 0.956032 0.956040

19 0.951093 0.945952 0.945962

21 0.942754 0.935117 0.935129

23 0.934543 0.923618 0.923632

25 0.926687 0.911544 0.911561

27 0.919406 0.898985 0.899004

29 0.912916 0.886023 0.886044

31 0.907415 0.872739 0.872763

668 S.C. Shiralashetti et al.
Test Problem 4. Fourthly, consider the nonlinear singular
initial value problem [2],

u00 þ 6

t
u0 þ 14uþ 4u log u ¼ 0; 0 < t 6 1 ð4:18Þ

with respect to

uð0Þ ¼ 1; u0ð0Þ ¼ 0 ð4:19Þ

As in the previous examples, applying the method discussed in

Section 3 to (4.18), we get the Haar coefficients
ai’s = [�0.74,�0.82,�0.32,�0.39,�0.09,�0.22,�0.23,�0.15,
�0.02,�0.07,�0.10,�0.12,�0.12,�0.11,�0.09,�0.06]. The

obtained numerical solution of (4.18) is presented in compar-

ison with the ADM and exact solution yðtÞ ¼ exp �t2ð Þ in

Table 9 for N = 16 and Fig. 5 for N = 32. The error analysis
for higher values of N is given in Table 10.
Table 9 Comparison of ADM and HWCM solutions with

Exact solution for N = 16 of the Test Problem 4.

tð¼ 1=32Þ ADM HWCM Exact

1 0.999023 0.999024 0.999023

3 0.991249 0.991244 0.991249

5 0.975881 0.975866 0.975881

7 0.953275 0.953244 0.953275

9 0.923946 0.923895 0.923946

11 0.888550 0.888476 0.888550

13 0.847860 0.847761 0.847860

15 0.802738 0.802612 0.802738

17 0.754102 0.753949 0.754102

19 0.702898 0.702721 0.702901

21 0.650068 0.649873 0.650077

23 0.596519 0.596318 0.596544

25 0.543093 0.542915 0.543159

27 0.490540 0.490445 0.490704

29 0.439483 0.439595 0.439864

31 0.390388 0.390949 0.391223
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Figure 5 Comparison of ADM & HWCM solutions with exact

solution for N = 32 of Test Problem 4.



Table 10 Error analysis of the Test Problem 4.

N ADM HWCM HWAGM [8]

L1 L1 L1

8 5.6787e�04 1.1014e�03 2.7158e�04
16 8.3516e�04 2.7389e�04 6.4087e�05
32 1.0079e�03 6.8407e�05 1.0979e�05
64 1.1060e�03 1.7099e�05 4.0426e�06
128 1.1582e�03 4.2747e�06 1.0785e�06
256 1.1852e�03 1.0687e�06 4.0256e�07

Table 11 Comparison of ADM, VIM and HWCM solutions

with Exact solution for N = 16 of the Test Problem 5.

tð¼ 1=32Þ ADM VIM HWCM Exact

1 �0.001952 �0.001952 �0.001949 �0.001952
3 �0.017501 �0.017501 �0.017504 �0.017501
5 �0.048241 �0.048241 �0.048255 �0.048241
7 �0.093483 �0.093483 �0.093513 �0.093483
9 �0.152257 �0.152256 �0.152309 �0.152257
11 �0.223376 �0.223378 �0.223454 �0.223376
13 �0.305508 �0.305466 �0.305619 �0.305509
15 �0.397247 �0.397080 �0.397399 �0.397253
17 �0.497163 �0.496615 �0.497381 �0.497196
19 �0.603819 �0.602281 �0.604194 �0.603967
21 �0.715706 �0.711907 �0.716548 �0.716277
23 �0.831008 �0.822627 �0.833257 �0.832944
25 �0.947015 �0.930367 �0.953261 �0.952905
27 �1.058866 �1.029114 �1.075621 �1.075224
29 �1.157061 �1.109891 �1.199524 �1.199089
31 �1.222860 �1.159399 �1.324275 �1.323804

Table 12 Error analysis of the Test Problem 5.

N L1 (ADM) L1 (VIM) HWCM HWAGM [8]

L1 L1

8 6.5646e�02 1.2178e�01 1.8368e�03 4.5110e�04
16 1.0094e�01 1.6440e�01 4.7083e�04 1.0863e�04
32 1.2448e�01 1.9026e�01 1.1945e�04 3.0001e�05
64 1.3804e�01 2.0448e�01 3.0098e�05 7.1538e�06
128 1.4532e�01 2.1193e�01 7.5548e�06 1.2981e�06
256 1.4910e�01 2.1575e�01 1.8926e�06 4.3423e�07
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Figure 6 Comparison of ADM, VIM & HWCM solutions with

exact solution for N = 32 of Test Problem 5.

Haar wavelet collocation method 669
Test Problem 5. Finally consider another nonlinear singular

value problem [2],

u00 þ 2

t
u0 þ 4 2eu þ eu=2

� �
¼ 0; 0 < t 6 1 ð4:20Þ
with respect to

uð0Þ ¼ 0; u0ð0Þ ¼ 0 ð4:21Þ

As in the previous examples, we get the Haar coefficients

ai’s = [�2.00,�1.20,�0.57,�0.48,�0.17,�0.36,�0.30,�0.18,
�0.05,�0.13,�0.17,�0.18,�0.17,�0.14,�0.10,�0.07]. The
obtained numerical solution of (4.20) is presented in compar-
ison with the ADM, VIM and exact solution

yðtÞ ¼ �2 logð1þ t2Þ in Table 11 for N = 16 and Fig. 6 for
N = 32. The error analysis for higher values of N is given

in Table 12.

5. Conclusions

In this study, Haar wavelet collocation method is successfully
applied to obtain numerical solutions of linear and nonlinear
singular initial value problems. A symbolic calculation soft-

ware package, MATLAB is used for all calculations. The work
emphasized our belief that the method is a reliable technique to
handle these types of problems. Also, it provides the solutions

in terms of convergent Haar series with easily computable
components in a direct way without using linearization, dis-
cretization or restrictive assumptions. The HWCM offers great

advantages of straight forward applicability, computational
efficiency and high accuracy. The Haar wavelet adaptive grid
method (HWAGM) [8] based solutions show the excellent per-
formance for the proposed problems.
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