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Abstract In this paper, we applied Differential Transformation Method (DTM) to study microp-

olar fluid flow and heat transfer through a channel with permeable walls. In order to verify the accu-

racy and validity of the application of this method to this problem, comparison with numerical

method (NUM) is taken into account. Results reveal that DTM is an appropriate method for

approximating solutions of the problem while it is smooth and straightforward to implement.

The effect of significant parameters such as the Reynolds number, micro rotation/angular velocity

and the Peclet number on the stream function, temperature distribution and concentration charac-

teristics of the fluid, is discussed.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Micropolar fluids are fluids with microstructure. Micropolar
fluids consist of rigid, randomly oriented particles with their
own and spins and microrotations, suspended in a viscous
medium. In micropolar fluids, rigid particles contained in a

small element can rotate about the center of the volume ele-
ment described by a micro rotation vector. Beside this type
of fluid, an interesting phenomenon is nanofluid, that is appli-

cable on heat transfer enhancement, thus attracts many
researchers [1–6]. The theory of a micropolar fluid derives from
the need to model the flow of fluids that contain rotating micro

constituents. A micropolar fluid is a fluid with internal struc-
tures which is coupling between the spin of each particle and
the macroscopic velocity field is taken into account. It is a

hydro dynamical framework suitable for granular systems
which consist of particles with macroscopic size. An interesting
feature of this class of fluid is the sustenance of couple stress.

Some anisotropic fluids, animal blood, and liquid crystals are
the examples of micropolar fluids. The micropolar fluid theory
is applicable to certain polymer solutions, lubricant fluids, col-

loidal expansions, and complex biological structures. Eringen
[7] was the first pioneer of formulating the theory of micropo-
lar fluids. His theory introduced new material parameters, an
additional independent vector field – the microrotation – and

new constitutive equations which must be solved simultane-
ously with the usual equations for Newtonian fluid flow. The
microrotation vector is a feature of this type of fluid that

makes it applicable in the literature of modeling blood flow
in an artery. Although the field of micropolar fluids is rich in
literature, some gaps can be observed and need more study
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Nomenclature

C species concentration (mol/m3)

k1 thermal conductivity (W/m k)
g dimensionless microrotation
DTM Differential Transformation Method
(u, v) Cartesian velocity components (m/s)

N1;2;3 dimensionless parameters
Sh Sherwood number
p pressure (Pa)

Pe Peclet number
T fluid temperature (k)
(x, y) Cartesian coordinate components parallel and

normal to channel axis, respectively

Greek symbols
g similarity variable
l dynamic viscosity (Pa s)

q Fluid density (kg/m3)

w stream function (m2/s)
D* molecular diffusivity (m2/s)
f dimensionless stream function
h half of channel width (m)

j micro-inertia density (m2)
N
!

microrotation/angular velocity (m/s)
Nu Nusselt number

Sc Schmidt number
Pr Prandtl number
Re Reynolds number

s microrotation boundary condition
h dimensionless temperature
j coupling coefficient (Pa s)
ts microrotation/spin-gradient viscosity (N s)

Figure 1 The geometry of the problem.
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in this field. For instance, Gorla [8], Rees and Bassom [9]
investigated the flow of a micropolar fluid over a flat plate.
Also, Kelson and Desseaux [10] studied the flow of micropolar

fluids on stretching surfaces. Heat and mass transfer have an
important role in many industrial and technological processes
such as manufacturing and metallurgical processes in which

heat and mass transfer occur simultaneously. The influence
of a chemical reaction and thermal radiation on the heat and
mass transfer in MHD micropolar flow over a vertical moving
plate in a porous medium with heat generation was studied by

Mohamed and Abo-Dahab [11]. Recently effect of using
micropolar fluid, nanofluid, etc. on flow and heat transfer
has been studied by several authors [12–23].

There are numerous amounts of publications about the
application of semi-analytical methods on different phenom-
ena. Such semi-analytical methods include Homotopy Analysis

Method (HAM), Optimal Homotopy Asymptotic Method
(OHAM), Adomian Decomposition Method (ADM), Homo-
topy Perturbation Method (HPM) and Differential Transfor-

mation Method (DTM) that are popular because of their
high accuracy and simplicity in obtaining the solution. DTM
has some advantages in comparison with other semi-
analytical methods. HAM needs to calculate auxiliary param-

eter �h, through h-curves and initial guesses [24,25], but DTM
does not need any auxiliary parameter and initial guess.
DTM does not need any auxiliary function like H(p) that is

used in OHAM [26,27]. This method does not need to obtain
Adomian polynomial that is difficult to access for highly non-
linear terms in ADM [28,29]. Also, DTM does not need any

small parameter like ‘‘p” in (HPM) for discretization, pertur-
bation or linearization [30–32]. Differential Transformation
Method (DTM) is a powerful analytical method which is well

known as a high accurate technique for solving the differential
equations while it is straightforward and easy to implement.
This approach constructs an analytical solution in the form
of a polynomial and formulizes the Taylor series in a totally

different manner. Zhou [33] first introduced this method for
solving linear and nonlinear initial value problems. He used
this method to obtain semi-analytical solution for the electrical
circuit analysis. A considerable research revealed that this
approach is appropriate for various problems [34–40]. For
instance, Sheikholeslami et al. [39] used DTM to the governing

equations for the MHD fluid flow, heat and mass transfer
between two horizontal parallel plates to count in the effects
of Brownian motion and thermophoresis in the nanofluid

model.
With the above discussion in mind, in this study, we

employed DTM to the governing coupled differential equa-
tions of micropolar fluid flow and heat transfer in a permeable

channel. After that, we present a comparison with a numerical
method to verify the accuracy and validity of this powerful
method. As the Reynolds number (Re), Peclet number (Pe)

and micro rotation/angular velocity play an important role
in this problem, we focused on the effects of these parameters
on the flow, heat transfer and concentration characteristics.

2. Problem description and governing equations

We considered the steady laminar flow of a micropolar fluid

along a two-dimensional channel with porous walls through
which fluid is uniformly injected or removed with speed v0.
The lower channel wall has a solute concentration C1 and tem-

perature T1 while upper wall has solute concentration C2 and
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temperature T2 as shown in Fig. 1. Using Cartesian coordi-
nates, the channel walls are parallel to the x-axis and located
at y ¼ �h where 2h is the channel width. The relevant

equations governing the flow in invariant form are [7,21] as
follows:

@q
@t

þr:ðqV!Þ ¼ 0; ð1Þ

q
DV
!
Dt

¼ �rpþ ðlþ jÞr2V
!þ ðjÞrN; ð2Þ

qj
DN

Dt
¼ �jð2Nþr� V

!Þ þ tsr2N; ð3Þ

qCpðV!:rTÞ ¼ k1r2T; ð4Þ

V
!
:rC ¼ D�r2C: ð5Þ
As the flow is 2-dimensional, the above equations in com-

ponent form are as follows [41]:

@u

@x
þ @v

@y
¼ 0; ð6Þ

q u
@u

@x
þ v

@u

@y

� �
¼ � @p

@x
þ ðlþ jÞ @2u

@x2
þ @2u

@y2

� �
þ j

@N

@y
; ð7Þ

q u
@v

@x
þ v

@v

@y

� �
¼ � @p

@y
þ ðlþ jÞ @2v

@x2
þ @2v

@y2

� �
� j

@N

@x
; ð8Þ

q u
@N

@x
þ v

@N

@y

� �
¼ � j

j
2Nþ @u

@y
� @v

@x

� �
þ ts

j

@2N

@x2
þ @2N

@y2

� �
;

ð9Þ

q u
@T

@x
þ v

@T

@y

� �
¼ k1

cp

@2T

@y2
; ð10Þ

u
@C

@x
þ v

@C

@y
¼ D� @

2C

@y2
: ð11Þ

where u and v are velocity components along the x- and y-axes,
respectively, q is the fluid density, l is the dynamic viscosity, N

is the angular or micro rotation velocity, N is the component
of micro rotation velocity, p is the fluid pressure, T and cp
are the fluid temperature and specific heat at constant pressure,
respectively, C is the species concentration, k1 and D� are the

thermal conductivity and molecular diffusivity, respectively, j
is the micro-inertia density, k is a material parameter and

ts ¼ lþ k
2

� �
j is the micro rotation viscosity.

The appropriate boundary conditions are [42] as follows:

y ¼ �h : v ¼ �v0; u ¼ 0; N ¼ �s
@u

@y y¼�hj
ð12aÞ

y ¼ þh : v ¼ v0; u ¼ 0; N ¼ �s
@u

@y y¼þhj
ð12bÞ

where v0 > 0 corresponds to suction, v0 < 0 to injection and s

is a boundary parameter and indicates the degree to which the
microelements are free to rotate near the channel walls. The
case s ¼ 0 represents concentrated particle flows in which
microelements close to the wall are unable to rotate. Other
interesting particular cases that have been considered in the lit-

erature include s ¼ 0:5 which represents weak concentrations
and the vanishing of the antisymmetric part of the stress tensor
and s ¼ 1 which represents turbulent flow. We introduce the

following dimensionless variables [19]:

g ¼ y

h
; w ¼ �v0x fðgÞ; N ¼ v0x

h2
gðgÞ; ð13Þ

hðgÞ ¼ T� T2

T1 � T2

; /ðgÞ ¼ C� C2

C1 � C2

where T2 ¼ T1 � Ax, C2 ¼ C1 � Bx with A and B as constants.
The stream function is defined in the usual way:

u ¼ @w
@y

; v ¼ � @w
@x

: ð14Þ

Eqs. (6)–(12b) reduce to the coupled system of nonlinear
differential equations:

ð1þN1ÞfIV �N1g� Reðff000 � f0f00Þ ¼ 0; ð15Þ

N2g
00 þN1ðf00 � 2gÞ �N3Reðfg0 � f0gÞ ¼ 0; ð16Þ

h00 þ Pehf
0h� Pehfh

0 ¼ 0; ð17Þ

/00 þ Pemf
0/� Pemf/

0 ¼ 0; ð18Þ
subject to the boundary conditions:

g ¼ �1 : f ¼ �1; f0 ¼ g ¼ 0; h ¼ / ¼ 1;

g ¼ þ1 : h ¼ / ¼ f0 ¼ g ¼ 0; f ¼ 1:
ð19Þ

The parameters of primary interest are the buoyancy ratio
N, the Peclet numbers for the diffusion of heat Peh and mass

Pem respectively, the Reynolds number Re where for suction
Re > 0 and for injection Re < 0 and Grashof number Gr given
by

N1 ¼ j
l ; N2 ¼ ts

lh2
; N3 ¼ j

h2
; Re ¼ v0

m h; Pr ¼ mqcp
k1

;

Sc ¼ m
D� ; Gr ¼ gBTAh

4

m2 ; Peh ¼ PrRe; Pem ¼ Sc Re;

ð20Þ
where Pr is the Prandtl number, Sc is the generalized Schmidt
number, N1 is the coupling parameter and N2 is the spin-
gradient viscosity parameter. In technological processes, the

parameters of particular interest are the local Nusselt and
Sherwood numbers. These are defined as follows:

Nux ¼
q00y¼�hx

ðT1 � T2Þk1 ¼ �h0ð�1Þ; ð21Þ

Shx ¼
m00

y¼�hx

ðC1 � C2Þk1 ¼ �/0ð�1Þ; ð22Þ

where q00 and m00 are local heat flux and mass flux, respectively.

And the shear stress on the wall and the local skin friction can
be written as [21] follows:

sw ¼ ðlþ jÞ@u
@y y¼�hj

þ jN y¼�hj ; ð23Þ

Cfx ¼
2sw
qu2

ð24Þ



Table 1 The fundamental operations of the differential

transformation method [43].

Original function Transformed function

xðtÞ XðkÞ ¼ aFðkÞ � bGðkÞ
xðtÞ ¼ dmfðtÞ

dtm XðkÞ ¼ ðkþmÞ!FðkþmÞ
k!

xðtÞ ¼ fðtÞgðtÞ XðkÞ ¼ Pk
l¼0FðlÞGðk� lÞ

xðtÞ ¼ tm
XðkÞ ¼ dðk�mÞ ¼ 1; if k ¼ m

0; if k – m



xðtÞ ¼ expðtÞ XðkÞ ¼ 1

k!

xðtÞ ¼ sinðxtþ aÞ XðkÞ ¼ xk

k! sin k p
2 þ a

� �
xðtÞ ¼ cosðxtþ aÞ XðkÞ ¼ xk

k! cos k p
2 þ a

� �

Table 3 Absolute error of the case N1 ¼ N2 ¼ N3 ¼ 0:1,

Pem ¼ Peh ¼ 0:1, and Re = 0.1.

g f g h /
Abs. Error Abs. Error Abs. Error Abs. Error

�1.0 0 0 0 0

�0.8 0.000704 0.002633 0.010778 0.010778

�0.6 0.001863 0.001747 0.020275 0.020275

�0.4 0.002630 0.000191 0.027652 0.027652

�0.2 0.002746 0.001042 0.032314 0.032314

0.0 0.002351 0.001843 0.033907 0.033907

0.2 0.002746 0.002526 0.031315 0.031315

0.4 0.002630 0.003354 0.027555 0.027555

0.6 0.001863 0.004219 0.020281 0.020281

0.8 0.000704 0.004072 0.010788 0.010788

1.0 0 0 0 0

2186 A. Mirzaaghaian, D.D. Ganji
3. Description of differential transformation method

In this section, we represent the basic idea of DTM. Let fðtÞ be
analytic in the time domain T, then it will be differentiated
continuously with respect to time t,

uðt; kÞ ¼ dkfðtÞ
dtk

; 8t 2 T: ð25Þ

For t ¼ ti, then uðt; kÞ ¼ uðti; kÞ, where k belongs to the set
of non-negative integers, denoted as the K-domain. Therefore,
Eq. (25) can be rewritten as

FðkÞ ¼ uðti; kÞ ¼ dkfðtÞ
dtk

� �
t¼tij

; 8t 2 K; ð26Þ

where FðkÞ is called the spectrum of fðtÞ at t ¼ ti in the K-
domain. If fðtÞ can be represented by the Taylor series, then

it can be represented as

fðtÞ ¼
X1
k¼0

½ðt� tiÞk=k!�FðkÞ: ð27Þ

Eq. (27) is called the inverse transform of FðkÞ. Therefore,
the Maclaurin series of fðtÞ can be obtained by taking ti ¼ 0 in
the above equation as follows:

fðtÞ ¼
X1
k¼0

tk

k!

dkfðtÞ
dtk

� �
t¼0j

; 8t 2 T: ð28Þ
Table 2 Comparison between DTM and numerical method when N

g f g

Num DTM Num DTM

�1.0 �1 �1 0 2.0E�1

�0.8 �0.943889 �0.944593 0.125175 0.1225

�0.6 �0.791757 �0.793620 0.161985 0.1602

�0.4 �0.567738 �0.570368 0.138757 0.1385

�0.2 �0.295835 �0.298581 0.078279 0.0793

0.0 0 �0.002315 0 0.0018

0.2 0.295835 0.294229 �0.078289 �0.075

0.4 0.567738 0.566842 �0.138757 �0.135

0.6 0.791757 0.791387 �0.161985 �0.157

0.8 0.943889 0.943804 �0.125175 �0.121

1.0 1 1 0 �2.0E�
As explained in [34], the differential transformation of the
function fðtÞ is defined as follows:

FðkÞ ¼
X1
k¼0

Hk

k!

dkfðtÞ
dtk

� �
t¼0j

ð29Þ

The differential spectrum of FðkÞ is confined within the
interval t 2 ½0;H� where H is defined as a constant value. After
that, the differential inverse transform of FðkÞ is expressed as

follows:

fðtÞ ¼
X1
k¼0

t

H

� 	k

FðkÞ ð30Þ

The function FðkÞ at values of argument k is referred to a
discrete issue which means Fð0Þ is known as the zero discrete,
Fð1Þ as the first discrete and so on. The more the discrete is
available and more precise and so it is possible to restore the

unknown function. By choosing the right amount of H, it is
observed the larger values of argument k, the less discrete of
spectrum. The function fðtÞ is expressed by a finite series and

therefore Eq. (30) can be rewritten as

fðtÞ ¼
Xn

k¼0

t

H

� 	k

FðkÞ ð31Þ

Some fundamental operations of the differential transfor-
mation method are listed in Table 1.
1 ¼ N2 ¼ N3 ¼ 0:1, Pem ¼ Peh ¼ 0:1, and Re = 0.1.

h /

Num DTM Num DTM

1 1 1 1 1

42 0.909562 0.898784 0.909562 0.898784

38 0.818914 0.798639 0.818914 0.798639

66 0.726610 0.698958 0.726610 0.698958

21 0.631742 0.599428 0.631742 0.599428

43 0.533835 0.499928 0.533835 0.499928

763 0.432747 0.401432 0.432747 0.401432

403 0.328571 0.301016 0.328571 0.301016

766 0.221544 0.201263 0.221544 0.201263

103 0.111945 0.101157 0.111945 0.101157

11 0 4.6E�11 0 4.6E�11



Table 4 Comparison of DTM with HPM for the case of

N1 ¼ N2 ¼ N3 ¼ 0:1, Pem ¼ 0:5;Peh ¼ 0:2, and Re = 1.

g /

DTM HPM [19]

�1.0 1 1

�0.8 0.910345 0.919513

�0.6 0.819708 0.836043

�0.4 0.727148 0.747686

�0.2 0.635276 0.653564

0.0 0.536010 0.553641

0.2 0.435327 0.448552

0.4 0.333010 0.339347

0.6 0.227402 0.227374

0.8 0.117158 0.113923

1.0 �3.2E�11 0

Figure 2 Effect of the N1;N2;N3

Figure 3 Effect of N1;N2;N3
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4. Implementation of differential transformation method

In this method, at first, we apply differential transformation to
each differential equation based on the rule. By applying this

transformation to Eqs. (15)–(18), we have

ð1þN1Þðkþ 4Þðkþ 3Þðkþ 2Þðkþ 1ÞF½kþ 4� �N1G½k��

Re
Xk

l¼0

ðF½l�ðk� lþ 2Þðk� lþ 1ÞF½k� lþ 2�Þ
" #

þ

Re
Xk

l¼0

ððlþ 1ÞF½lþ 1�ðk� lþ 2Þðk� lþ 1ÞF½k� lþ 2�Þ
" #

¼ 0;

ð32Þ
and Re on the stream function.

and Re on microrotation.



Figure 4 Effect of various parameters on the temperature

distribution.

Figure 5 Effect of Peclet number on the concentration when

N1 ¼ N2 ¼ N3 ¼ Peh ¼ Re ¼ 1.

Figure 6 Effect of Reynolds number on the stream function

when N1 ¼ N2 ¼ N3 ¼ Peh ¼ Pem ¼ 1.

Figure 7 Effect of Reynolds number on micro rotation when

N1 ¼ N2 ¼ N3 ¼ Peh ¼ Pem ¼ 1.
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N2ðkþ 2Þðkþ 1ÞG½kþ 2� þN1ððkþ 2Þðkþ 1ÞF½kþ 2�

�2G½k�Þ �N3Re
Xk

l¼0

ðF½l�ðk� lþ 1ÞG½k� lþ 1�Þ
" #

þN3Re
Xk

l¼0

ððlþ 1ÞF½lþ 1�ðk� lÞG½k� l�Þ
" #

¼ 0;

ð33Þ
ðkþ2Þðkþ1ÞH½kþ2�þPeh
Xk

l¼0

ððlþ1ÞF½lþ1�ðk� lÞH½k� l�Þ
" #

�Peh
Xk

l¼0

ðF½l�ðk� lþ1ÞH½k� lþ1�Þ
" #

¼ 0;

ð34Þ
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ðkþ2Þðkþ1ÞU½kþ2�þPem
Xk

l¼0

ððlþ1ÞF½lþ1�ðk� lÞU½k� l�Þ
" #

�Pem
Xk

l¼0

ðF½l�ðk� lþ1ÞU½k� lþ1�Þ
" #

¼ 0:

ð35Þ
The boundary conditions can be written as

Fð0Þ ¼ a; Fð1Þ ¼ b; Fð2Þ ¼ c; Fð3Þ ¼ d;

Gð0Þ ¼ e; Gð1Þ ¼ r;

Hð0Þ ¼ s; Hð1Þ ¼ t; Uð0Þ ¼ w; Uð1Þ ¼ z:

ð36Þ

By solving the set of Eqs. (32)–(35) with the new form of the
boundary conditions, the transformed functions at any other

discrete number can be found. The unknown coefficients, a,
b, c, d, e, r, s, t, w, and z can be obtained after solving each
transformed function and doing the inverse operation and then

applying boundary conditions of the problem (Eq. (19)). For
instance, the results obtained by N1 ¼ N2 ¼ N3 ¼
0:1;Peh ¼ Pem ¼ 0:1 and Re = 0.1 when we do the procedure

until Fð7Þ, Gð5Þ, Hð5Þ and Uð5Þ are as follows:

fðgÞ ¼ �0:00231570þ 1:50221914gþ 0:00348994g2

� 0:50490663g3 � 0:00003279g4 þ 0:00315586g5

� 0:00114145g6 � 0:00046836g7 ð37Þ

gðgÞ ¼ 0:00184347� 0:40259190g� 0:00159986g2

þ 0:37070946g3 � 0:00024360g4 þ 0:03188243g5 ð38Þ

hðgÞ ¼ 0:49992793� 0:49748814gþ 0:00005760g2

� 4:45� 10�9g3 � 0:00001447g4 � 0:00251185g5 ð39Þ

hðgÞ ¼ 0:49992793� 0:49748814gþ 0:00005760g2

� 4:45� 10�9g3 � 0:00001447g4 � 0:00251185g5 ð40Þ
The relevant constant coefficients are

a ¼ �0:00231569; b ¼ 1:50221914; c ¼ 0:0034899457;

d ¼ �0:50490663; e ¼ 0:00184347; r ¼ �0:40259190;

s ¼ 0:49992793; t ¼ �0:49748814; w ¼ 0:49992793;

z ¼ �0:49748814:

ð41Þ
As seen in terms of the above equations, the convergence of

DTM is completely evident. In this study, we do the DTM pro-

cedure for four steps because the solution has a good agree-
ment with the numerical method (it obviously can be
inferred from Tables 2 and 3 in Section 5). Although it will

converge to a more accurate one by the increasing number
of steps, but it will take more time. Thus, we obtain the follow-
ing results by four steps for the matter of time and accuracy.

5. Results and discussion

In this section, we represent the results that obtained by imple-
menting DTM. In Tables 2 and 3, the validity and accuracy of

DTM in comparison with the numerical method are depicted.
The numerical method results were achieved by fourth order
Runge-Kutta procedure with Maple software package. The

results show that the DTM is a reliable approach for predict-
ing the solutions of this problem. In Table 4, a comparison
with HPM (that is done by Sheikholeslami et al.) is represented
that shows the closeness of these results. The behavior of

stream function, micro rotation, and temperature in the direc-
tion of the channel width ðgÞ, can be found from Figs. 2–4.
Fig. 2 shows that the value of stream function decreases with

increasing Reynolds number, but it increases with increase of
the N1, N2 and N3 values. It is worth mentioning that the Rey-
nolds number indicates the relative significance of the inertia

effect compared to the viscous effect. Thus the velocity bound-
ary layer thickness decreases as Re increases. It can be inferred
from Figs. 2 and 3 that Reynolds number has a significant
effect on the stream function and micro rotation. Fig. 4

demonstrates the outcome of different parameters on the tem-
perature and one can deduce that the effect of Peclet number is
higher than others, because of the presence of Prandtl number.

In Fig. 5, it can be concluded that species concentration value
increases with the increase of Peclet number in top half of the
channel and is the decreasing function of g. In Figs. 6 and 7 the

effect of Reynolds number on the stream function and micro
rotation is depicted and they show that with the increase of
Reynolds number, stream function value decreases but micro

rotation value increases.

6. Conclusion

In this investigation, micropolar fluid flow and heat transfer
through permeable walls are considered. The DTM is used
to obtain the solution of the governing equations. Compar-
isons between this method and numerical method reveal that

this approach has a good agreement with the numerical
method in this study. The effects of different parameters on
the fluid flow, heat transfer and concentration characteristics

are shown in detail. The results show that the Reynolds num-
ber has a little effect on the temperature and concentration
fields. Also, as seen, the Reynolds number has a significant

effect on the stream function value and stream function
increases with the decrease of Reynolds number.
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