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We will give a sufficient condition that A invariants of real quadratic fields vanish.
We will also give some examples.  © 1986 Academic Press, Inc.

0. INTRODUCTION

Let k be a finite totally real extension of @, p an odd prime number, and
k=k0Ck1C:k2C e C:knc e Ckoo

the cyclotomic Z,-extension of k. In [3], Greenberg posed a question con-
cerning Iwasawa invariants p,(k) and A1,(k). He made a detailed
investigation in real quadratic case and proved that p,(k) and 4,(k) both
vanish in certain cases.

The purpose of this paper is to give some examples of u (k)= 4,(k)=0
when k is a real quadratic field and p splits in £/Q. Our main theorem is

THEOREM. Let k be a real quadratic field and p an odd prime number
which splits in k/Q. Let & be the fundamental unit of k and E,, the unit group
of k,. Let m be the positive integer such that ¢~ '=1 (mod p™Z,) and
e?~' £ 1 (mod pm*+'Z,). Assume that the class number of k is prime 1o p.
Then, 4,(k)=0if Ny 4(E,_1)=E,.
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1. PROOF OF THEOREM

For a finite algebraic number field K, we denote by g, Cg, and Ey the
class number of K, the ideal class group of K, and the unit group of K,
respectively. We denote also by |X]| the cardinality of a finite set X.

In the following, we assume that & is a real quadratic field and ¢ denotes
the fundamental unit of k. For the cyclotomic Z -extension

k=kyck ck,c - ck,c- ck,,

let A, be the p-primary part of the ideal class group of &,,, B, the subgroup
of A, consisting of ideal classes which is invariant under the action of
Gal(k,/k), and D, the subgroup of A, consisting of ideal classes which con-
tain a product of ideals lying over p. Let E, be the unit group of k,. For
m=2nz20, N, , denote the norm maps. Greenberg’s theorem which we use
essentially is

THEOREM A (cf. [3]). Let k be a finite totally real extension of Q, and p
be a prime number which splits completely in k/Q. Assume that Leopold!’s
conjecture is valid for k. Then the following two statements are equivalent:

(1) B, =D, for sufficiently large n.
2) pylk)=Ayk) =0.

We note that p,(k) is always zero by Ferrero-Washington [2] and
Leopoldt’s conjecture is valid by Brumer [1] when k is abelian over Q.

For convenience, we refer fundamental results of algebraic number
theory (cf. [4]). Let F be a finite extension of Q, K a finite cyclic extension
of F, G the Galoia group of K/F and ¢ a generator of G. For a place P of
F, we denote by e(B) the ramification index of P with respect to K/F. Let

Ci={ceCklc"=c}
and

Cx= {ceC{|c contains an ideal A such that 4°=4}.

The following lemma is well known:

LemMA 1.

[1ge(*B)
(K:F)Er: Exn Ny (K))

[CE| = hpx
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and

[Ty e(*B)
(K:F)E: NK/F(EK))‘

|Cxl = hpx

Here B runs over all places of F and N, is the norm mapping.

Now, we calculate the group index (E,: Eqn N, o(k,,)).

LEMMA 2. Let k be a real quadratic field and ¢ the fundamental unit of k.
Let p be an odd prime number which splits in k/Q. We assume that e7 ' =1
(mod p”Z,) and that ¢”~' # 1 (mod p™*'Z,). If n is an integer such that
nzm-=1, then (Ey: Eon N, o(k,))=p" "+

Proof. Let B be a prime ideal of k which lies above p. Then we have
ky=Q,. Now, we put ¢”~'=1+ p™x, where x is an invertible element of
Z,. Then we have

(‘g/’ffl)p"""H = 1 (mod pn+lzp)
and
(e~ ") """ # 1 (mod p"*3Z,).

Let L be the cyclotomic Z -extension of @, and K, a cyclic extension of Q,
of degree p” such that L = K,,. By local class field theory, we can show that
there exists an element 5 of K, such that NK”/QP(q)z(s”")”"f'"“. Any
place which does not lic above p is unramified in k,/k. Hence, Hasse’s
norm theorem yields that there exists an element f of k, such that
N,o(B)=¢” D7 """ Since the index (E,:E,n N,o(k,)) divides p", we
can show (E,: Egn N, o(k,))=pr— "+

By Lemmas 1 and 2, we have

PrROPOSITION 1. Let k, ¢, p, and m be as in the Lemma?2. If n is an
integer such that n>m— 1, then |B,| =p™ ', where c is the integer such
that p* divides h, exactly.

Now, we can prove our theorem.

Proof of Theorem. We note that D,=C)_follows from p|h,. Hence,
from Lemma | and Theorem A, to prove this theorem, it is sufficient that
we show Eqn N, o(k,)=N,o(E,) for n=2m. From the assumption, there
exists an element § of E, _, such that N, _,4(B)=¢ Hence, we have
N,o(E,)> (e”™""> for n=m. Hence Lemma 2 and Proposition 1 yield
that Nn.O(En) = EO N Nn.O(kn)-
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2. EXAMPLES
As a sufficient condition for the assumption of theorem, we have

LEmMmA 4. Let k, ¢, and p be as in the theorem, and h, =t, where t is an
integer prime to p. Let B, B’ be the prime ideals of k lying above p and
B’ = (a) for some aek. If

e’ '=1(mod p*Z,), e?~' # 1 (mod p°Z,),
o« '=1(mod pZ,), and  o?"' # 1(mod p*Z,).
thén, E0=N1‘0(E1).

Proof. Note that (B, :D)=(E;n Nyglk,): Nio(E\))=(Eo: Nio(E}))
and |B,| = p. Let B, be the prime of k, lying above p. Since D, is generated
by the class of 1, it suffices to prove that B! is not principal. Assume that
Pi=(a,) for some a,ek,. Then a= +N,4(x,) ¢ for some integer r. One
finds that N (a,) is P’-adic pth power by local class field theory, and ¢ is
also by assumption. But a is not P’-adic pth power. It is a contradiction
and P, is not principal.

We will give some examples k = Q(ﬁ) which satisfy the conditions of
Lemma 4. We give all m less than 1000 for p=3, 5, and 7. If p=23, then
m=43, 58, 82, 85, 109, 151, 181, 199, 202, 310, 322, 331, 337, 391, 406,
457, 502, 571, 667, 694, 751, 754, 802, 865, 871, 979, and 997. If p =5, then
m=39, 51, 69, 109, 114, 134, 161, 211, 214, 241, 271, 314, 326, 366, 426,
466, 489, 509, 519, 526, 541, 574, 581, 626, 629, 674, 719, 761, 789, 869,
874, and 966. If p =7, then m =149, 179, 214, 218, 219, 253, 267, 295, 303,
337, 403, 415, 470, 478, 494, 501, 505, 519, 583, 751, 758, 767, 771, and 989.

When the class number of k is divisible by p, we note the following
proposition which was essentially proved by Greenberg [3].

PROPOSITION 2. Let k be a real quadratic field and p an odd prime num-
ber which splits in k/Q. Let ¢ be the fundamental unit of k. Let h, = p°-t
where t is an integer prime to p. Let P be a prime ideal of k lying above p.
Assume that ¢?~' # 1 (mod p?), and the order of class of P' is p°. Then
A,(k)=0.

Proof. By Proposition 1, we have |8,| = p° for all n=0. Since By = D,,
it follows that B, =D, for all n>0.

As examples Q(\/—n—t) of Proposition 2, one finds that m = 142, 223, 229,
235, 346, 427, 469, 574, 697, 895, 898, 934, 985, 1090, 1171, 1342, 1345,
1489, 1495, 1522, 1567, 1627, 1639, 1735, 1765, 1771, 1957, and 1987 for
p=3 and m=401, 439, 499, 1126, 1226, 1429, 1486, 1766, 2031, 2081,
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2986, 3121, 3129, 3134, 3181, 3246, 3379, 3599, 3601, 3814, 3966, 4271,
4321, 4334, 4359, 4591, and 4889 for p =5 and m = 2251, 2599, 2913, 3595,
3679, 4139, 4229, and 4579 for p=1.
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