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SUMMARY

Epigenetic alterations, particularly in DNA methyl-
ation, are ubiquitous in cancer, yet the molecular
origins and the consequences of these alterations
are poorly understood. CTCF, a DNA-binding protein
that regulates higher-order chromatin organization,
is frequently altered by hemizygous deletion ormuta-
tion in human cancer. To date, a causal role for
CTCF in cancer has not been established. Here, we
show that Ctcf hemizygous knockout mice are mark-
edly susceptible to spontaneous, radiation-, and
chemically induced cancer in a broad range of tis-
sues. Ctcf+/� tumors are characterized by increased
aggressiveness, including invasion, metastatic
dissemination, and mixed epithelial/mesenchymal
differentiation. Molecular analysis of Ctcf+/� tumors
indicates that Ctcf is haploinsufficient for tumor sup-
pression. Tissues with hemizygous loss of CTCF
exhibit increased variability in CpG methylation
genome wide. These findings establish CTCF as a
prominent tumor-suppressor gene and point to
CTCF-mediated epigenetic stability as a major bar-
rier to neoplastic progression.

INTRODUCTION

CTCF (CCCTC-binding factor) is a highly conserved 11 Zn finger,

DNA-binding protein that utilizes different combinations of its

Zn fingers to bind a large number of highly divergent target

sequences throughout the genome (Kim et al., 2007; Nakahashi

et al., 2013). CTCF establishes chromatin boundaries and medi-

ates long-range chromatin interactions (Phillips and Corces,

2009). Numerous epigenetic phenomena regulated by CTCF

include X chromosome inactivation, imprinting, noncoding tran-

scription, and RNA processing (Filippova, 2008; Ong and Cor-

ces, 2014). Further, CTCF binds to target DNA sequences in a
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DNA-methylation-dependent manner and regulates spreading

of DNA methylation (Mukhopadhyay et al., 2004; Wang et al.,

2012; Zampieri et al., 2012).

Chromosomal deletion at 16q22.1 is well documented in

several human cancers and is one of the most common genetic

events in breast cancer, with frequencies ranging from 28% to

90%, depending on the study and molecular subtype (Filippova

et al., 1998; Rakha et al., 2006). Extensive genetic and molecular

analyses have implicated the involvement of several candidate

tumor-suppressor genes within 16q22.1; however, with the

exception of CDH1 (Berx et al., 1996), inactivating ‘‘second hit’’

mutations in other genes are rare, thus hampering efforts to

confirm additional candidates. As CTCF maps to 16q22.1, we

hypothesized that it might be a haploinsufficient tumor-suppres-

sor gene in which inactivation of just one allele would increase

cancer risk (Payne and Kemp, 2005). To directly address this

possibility, we examined the tumor predisposition of Ctcf hemi-

zygous knockout mice.

RESULTS

Ctcf Is a Tumor-Suppressor Gene
Ctcf nullizygous embryos failed to thrive due to cell death by

apoptosis, demonstrating that CTCF is indispensable for devel-

opment (Moore et al., 2012). C57BL6/129 (B6/129) F1 Ctcf +/�

mice were born at the expected Mendelian frequency and dis-

played no overt developmental defects, excepting a slight

reduction in mature B cells (data not shown). However, Ctcf

heterozygous knockout mice were markedly predisposed to

spontaneous tumor development in a broad range of tissues.

By 100 weeks of age, 80% of Ctcf +/� mice succumbed to

cancer, compared to only 40% of wild-type littermates (Fig-

ure 1A). Ctcf +/� mice were also three times more likely to

develop multiple tumors per mouse (Table S1). The tumor spec-

trum associated withCtcf deficiency included benign and malig-

nant uterine tumors, histiocytic sarcomas that presented as

aggressive, metastatic disease, and diploid T cell and T cell-

infiltrating B cell lymphomas (Figures 1B, 1C, S1, and S2). The

latter findings indicate a role for CTCF in lymphocyte maturation
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Figure 1. Ctcf +/� Mice Are Susceptible to Tumor Development

(A) Kaplan-Meier analysis of tumor-free survival of Ctcf +/� (n = 42) and Ctcf +/+ (n = 29) mice, p < 0.0001.

(B) Hematoxylin and eosin (H&E) staining of spontaneous primary histiocytic sarcoma and corresponding lung metastasis from a Ctcf +/� mouse. The scale bars

represent 100 mm.

(C) Frequency of hematopoietic neoplasms by Ctcf genotype, ****p < 0.0001.

(D) Kaplan-Meier analysis of tumor-free survival of irradiated Ctcf +/� (n = 52) and Ctcf +/+ (n = 24) mice, p < 0.0001.

(E) H&E staining of DMBA-induced tumors from Ctcf+/� mice. Left, uterine endometrial adenocarcinoma with epithelial and mesenchymal components. Right,

mammary gland adenocarcinoma with areas of spindle cell differentiation (t) and invasion of adjacent skeletal muscle (m); magnification of boxed region (bottom)

reveals nuclear atypia (arrowhead). The scale bars represent 100 mm.

(F) Frequency of endometrial lesions (left) and mammary gland histopathology (right) from DMBA-treated mice. Spindle indicates prominent neoplastic spindle

cells intermixed within the tumor, **p < 0.01, *p < 0.05.

(G) Kaplan-Meier analysis of tumor-free survival in urethane-treated Ctcf +/� (n = 39) and Ctcf +/+ (n = 40) mice, p < 0.0001.

(H) H&E staining of urethane-induced lung tumors. The scale bars represent 1 mm (top) and 50 mm (bottom).

(I) Distribution of lung adenomas/adenocarcinomas in each genotype, **p = 0.002. See also Figure S1.
and lymphomagenesis, consistent with the reported block in

T cell development after conditional deletion of Ctcf (Heath

et al., 2008) and DNA-methylation-profiling studies of B cell lym-

phomas (De et al., 2013).

To determine if CTCF functions to suppress ionizing radia-

tion (IR)-induced carcinogenesis, we subjected a second cohort

of mice to 4 Gy IR at 2 weeks of age. Irradiated Ctcf +/�

mice developed tumors earlier than their wild-type littermates
C

(Figure 1D) and displayed a broader range of neoplasms,

including thymic and splenic lymphomas, and benign;

malignant; and metastatic tumors of the lung, liver, pituitary,

ovary, gastrointestinal tract, bone, adrenal cortex, harderian

gland, mammary gland, and thyroid gland (Table S2;

Figure S1).

Ctcf +/� mice were also predisposed to chemically induced

cancers, particularly of the uterus. Approximately 80% of
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Figure 2. Ctcf Is Haploinsufficient for Tumor Suppression

(A) Southern blot analysis of lung tumors from Ctcf +/+ (lanes 1–3) and Ctcf +/� (lanes 4–7) mice. WT, wild-type allele.

(B) qPCR analysis of genomic DNA from normal lung (N) and lung tumors (T) from each genotype.

(C) Immunoblot analysis of CTCF protein in lung tumors from Ctcf +/+ (lanes 1–3) and Ctcf +/� (lanes 4–7) mice. a-tubulin served as loading control.

(legend continued on next page)
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7,12-dimethylbenz[a]anthracene (DMBA)-treatedCtcf +/� female

mice developed uterine lesions, ranging from cystic endometrial

hyperplasias (CEH) to leiomyomas/sarcomas and highly aggres-

sive endometrial adenocarcinomas, as compared to only a 5%

incidence of CEH in wild-type mice (Figures 1E, 1F, and S1).

DMBA-treated female mice also developed mammary gland

tumors that, on a wild-type background, were typically adeno-

or adenosquamous carcinomas. In contrast, Ctcf+/� mice ex-

hibited a broader histopathological spectrum, ranging from

adenosquamous carcinomas to more-primitive-appearing

tumors with mixed luminal epithelial and mesenchymal compo-

nents. Importantly, tumor cells also exhibited a pleomorphic

spindle morphology consistent with myoepithelial derivation

and/or epithelial-mesenchymal transition (EMT). Cells with

spindle morphology showed reduced E-cadherin and increased

vimentin staining, suggesting that Ctcf hemizygosity affects

transdifferentiation of these tumors (Figures 1E, 1F, and S1).

DMBA-treated Ctcf +/� female mice also developed tumors of

the lung, gastrointestinal tract, skin, and ovary (Table S3).

Thus, hemizygous deletion of Ctcf sensitizes a broad spectrum

of cell lineages and tissues to spontaneous, radiation-, and

chemically induced cancers, establishing CTCF as a pan-tissue

tumor suppressor.

CTCF Suppresses Kras-Driven Lung Cancer
To address the interaction between an epigenetic regulator and

a genetic driver of cancer, we next asked if reduction of Ctcf

cooperates with mutated Kras in a model of urethane-induced

non-small cell lung carcinoma (NSCLC). These tumors closely

resemble human NSCLC in morphologic and molecular charac-

teristics, and over 80% harbor activating mutations in the Kras

oncogene (Gurley et al., 2014). Urethane-treated Ctcf +/� mice

developed more lung tumors that were significantly larger

compared to wild-type mice (Figure S1). This enhanced lung

tumor burden led to earlier mortality (Figure 1G). The majority

of lung tumors from wild-type mice were benign adenomas

(17/22; 77%) with low mitotic activity, uniform small nuclei, and

well-defined boundaries. In contrast, 69% (22/32) of Ctcf +/�

lung tumors were classified as malignant adenocarcinomas

with abundant mitotic activity, large and irregularly shaped

nuclei, disorganized growth patterns, and frequent invasion

into local parenchyma and airways (Figures 1H and 1I). Lung

tumors from Ctcf +/� mice exhibited increased proliferation as

measured by bromodeoxyuridine (BrdU) labeling (Figure S1),

whereas apoptosis was negligible in both genotypes (not

shown). Thus, reduction of Ctcf accelerated the development

of Kras-driven cancer, arguing that epigenetic events regulated

by CTCF play a significant role in suppressing RAS-mediated

tumorigenesis.
(D) Gel shift analysis of nuclear extracts fromCtcf +/� lung tumors showCTCF bind

DNA complexes with 11ZF CTCF DNA-binding domain (11ZF) or full-length CTC

CTCF-DNA complexes.

(E) qRT-PCR analysis of Ctcf mRNA in Ctcf +/+ (n = 3) and Ctcf +/� (n = 4) MEFs,

(F) Proliferation of Ctcf +/+ and Ctcf +/� MEFs. Assays performed in triplicate for

(G) Foci formation in MEFs cultured from Ctcf +/� compared to Ctcf +/+ mice.

(H) Relative MEF foci formation (# foci/10 cm plate) from Ctcf +/+ (n = 3) and Ctc

mean ± SEM relative to the mean wild-type value; *p < 0.05, **p < 0.01.

C

Ctcf Is Haploinsufficient for Tumor Suppression
Some tumor-suppressor genes are recessive and require a

second ‘‘hit’’ for abrogation of function (Payne and Kemp,

2005). However, complete loss of Ctcf leads to apoptotic cell

death (Moore et al., 2012) and therefore is unlikely to provide a

selective advantage. Southern blot analysis and quantitative

PCR (qPCR) showed retention of the wild-type Ctcf allele in

100% (4/4) of Ctcf+/� lung tumors (Figures 2A and 2B). RT-

PCR and immunoblot analysis showed full-length Ctcf mRNA

transcript and CTCF protein were maintained in both tumors

and normal tissue (Figure 2C; not shown). Sequencing of Ctcf

cDNA from 19 representative tumors from spontaneous, irradi-

ated, and urethane-treated Ctcf +/� mice revealed no mutations

throughout the entire coding region (Table S4). No mutations or

deletions in Ctcf were observed in five tumors from Ctcf wild-

typemice. Gel mobility shift analysis of CTCFDNA-binding activ-

ity in nuclear extracts confirmed retention of functional CTCF in

6/6 (100%) of Ctcf +/� tumors (Figure 2D).

As ectopic expression of CTCF inhibits cell growth (Rasko

et al., 2001), we next asked if Ctcf had a gene-dosage-depen-

dent effect on cell proliferation. Mouse-embryo-derived fibro-

blasts (MEFs) from wild-type mice stopped proliferating at

confluence, forming a uniform monolayer with a flattened

morphology. In contrast, Ctcf +/� MEFs that showed a 50%

reduction in Ctcf mRNA transcript levels (Figure 2E) continued

to proliferate after reaching confluence, piling up and forming

foci indicating loss of contact inhibition (Figures 2F–2H).

Collectively, the increased tumor predisposition of Ctcf +/�

mice; the retention of the wild-type Ctcf allele, mRNA, and

protein expression in tumors; and the cell autonomous loss of

contact inhibition of Ctcf +/� cells establish this gene as a

haploinsufficient tumor suppressor, where loss of a single allele

significantly increases cancer risk.

Ctcf Hemizygosity Causes DNA Methylation Instability
In Vivo
CTCF can affect cytosine methylation both locally, through

binding to chromatin boundaries, and distally, through its long-

range effects on 3D chromatin architecture (Zampieri et al.,

2012; Wang et al., 2012). Aberrant methylation at CTCF-binding

sites in several tumor-suppressor genes and imprinted loci has

been reported in human cancer (Filippova, 2008). To determine

if hemizygous loss of Ctcf affects DNA methylation in vivo, we

examined the methylation status of known CTCF-binding sites

at the promoters of three tumor-suppressor genes (p16Ink4a,

p19Arf, and Mlh1), as well as at the imprinting control regions

(ICRs) of three imprinted loci (Igf2/H19, KvDMR1, and Rasgrf1).

Bisulfite conversion and sequencing analysis of wild-type and

Ctcf+/� MEFs, as well as paired normal lung and lung tumor
ing at both the H19/Igf2 ICR and b-globin insulator FII loci. Positions of protein-

F protein (CTCF) are indicated. a-CTCF antibody (a) was used to supershift

mean ± SEM.

two clones, each genotype; mean ± SD.

f +/� (n = 4) mice. Each dot represents an independent experiment plotted as
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(legend on next page)
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tissue samples from three wild-type and four Ctcf+/� mice re-

vealed that, of the six loci examined, one, the Igf2/H19 ICR,

showed differences in DNAmethylation. Thematernally inherited

Igf2/H19 ICR allele is normally unmethylated and bound by

CTCF, whereas the paternal ICR is methylated and does not

bind CTCF (Bell and Felsenfeld, 2000). Both normal lung and

MEFs from wild-type mice showed the expected pattern of

50% methylated CpGs at two CTCF-binding sites analyzed

within the Igf2/H19 ICR. In contrast, Ctcf +/� lung tissue and

MEFs exhibited between 80% and 90% CpG methylation at

these sites (Figure S3).

To explore the effect of hemizygous deletion of Ctcf on DNA

methylation genome wide, we profiled noncancerous murine

lung tissue. We examined 1.75 M CpGs by enhanced reduced

representation bisulfite sequencing (ERRBS), a method based

on bisulfite conversion of DNA followed by deep sequencing of

MspI fragments with size-based enrichment for genes and regu-

latory regions (Akalin et al., 2012). We first performed an unsu-

pervised analysis based on the CpGs with the greatest degree

of divergence among the 15 lung samples examined (n = 1,694

CpGs; interquartile range > 25%) (Figure 3A; Table S5). This

unbiased analysis yielded twomain clusters, corresponding pre-

cisely to the seven and eight samples from Ctcf +/+ and Ctcf +/�

mice, respectively (Figures 3B, 3C, and S3C). This suggests that

the most-prominent differences in DNA methylation between

these tissues are directly attributed to Ctcf hemizygosity.

Outside of these divergent CpGs, the overall CpG methylation

patterns were remarkably stable and consistent between geno-

types (Figure S3D), implying that CTCF regulation of DNA

methylation occurs primarily at specific loci. The divergent

CpGs were nonrandomly distributed in the genome with prefer-

ential localization within introns, exons, and intergenic regions

and depletion from promoter regions (Figure 3D).

The divergent CpGs exhibited intermediate methylation levels

(ranging from30% to 70%), contrastingwith the classical bimodal

distribution among the nonvariable CpGs (Figure 3E). This indi-

cates a high degree of intrasample heterogeneity among these

divergent CpGs, which might represent hot spots for epigenetic

hypervariability in lung tissue. Divergent CpGs from Ctcf+/� lungs

were significantly shifted toward cytosine hypermethylation (Fig-

ure 3E, middle panel) and showed increased variance in methyl-

ation (Figure 3F), further evidence thatCtcf hemizygosity destabi-

lized the regulationofDNAmethylation.WhereasDNAmethylation

changesbetweengenotypesoccurredprimarily at the set of diver-

gent CpGs, a modest overall gain in genome-wide DNA methyl-

ation was also observed in Ctcf+/� lung (Figure S3E).
Figure 3. Aberrant DNA Methylation in Noncancerous Lung Tissue fro

(A) Examples of nondivergent and divergent CpGs within 15 lung samples.

(B) Hierarchical clustering of divergent autosomal CpG methylation values.

(C) Principle component analysis plot for divergent autosomal CpG methylation

(D) Genomic distribution of divergent autosomal CpGs versus all represented Cp

(E) Density plots of median CpGmethylation values according toCtcf genotype; n

7.3 3 10�63). Divergent CpGs tend to have intermediate methylation values (bot

(F) Density plots of CpG methylation variance according to Ctcf genotype; n

p < 2.3 3 10�5).

(G) CpG methylation values within 1 kb intervals up- and downstream of diverge

relative to the median of all seven wild-type CpGmethylation values and associate

between genotypes, p < 1 3 10�25, ANOVA.

C

Although the methylation differences between Ctcf genotypes

were striking, these changes would unlikely have biological

relevance if they were limited to individual CpGs. Hence, to test

whether CTCF also affects regions surrounding the divergent

CpGs, the median methylation values within each lung sample,

relative to the average wild-type methylation values, were deter-

mined for all CpGs occurring within 1 kb windows extending up-

and downstream of the divergent CpGs.We found significant hy-

permethylation inCtcf+/� samples that extended to�2kb regions

surrounding divergent CpGs (Figure 3G). Interestingly, several

cancer-associated genes such as Trp53, Dnmt3A, RunX1, Alk,

Card11, Kit, Mpo, Pou2F2, Spen, ZfhX3, and Arid1A, including

Ctcf itself, contain divergent CpGs either within or in close prox-

imity to the gene. Ctcf+/� lung cytosine methylation patterns

therefore reflect discrete regional increases in methylation diver-

sity, with a significant tendency of these regions to shift toward

a hypermethylated state, suggesting a role for CTCF in maintain-

ing stability of cytosine methylation patterning in the genome.

CTCF Mutation and Copy Number Variation in Human
Breast and Endometrial Cancer
The functions of tumor-suppressor genes are typically well

conserved between mice and humans. Our mouse model re-

sults, together with the frequent 16q22.1 deletions reported in

breast and other cancers (Rakha et al., 2006), predict that

CTCF is a tumor suppressor in human cancer. Indeed, analysis

of The Cancer Genome Atlas (TCGA) data revealed reduced

gene copy number of CTCF in 276/484 (57%) of breast tumors

(Figure 4A). Tumors with reduced CTCF DNA copy number

showed significantly reduced levels of CTCF mRNA (Figure 4C).

In addition, point mutations in CTCF were identified in 21 out of

772 tumors with 17 of these mapping to the protein sequence

(Figure 4E). CTCF mutations predominantly occurred in the es-

trogen-receptor-positive luminal A subtype, where the frequency

was 4% (Cancer Genome Atlas Network, 2012). Although com-

plete loss of CTCF function is incompatible with cell survival,

seven breast tumors showed evidence of both CTCF copy num-

ber reduction and mutation (Figure 4A; Table S6). One had a

truncating ‘‘loss of function’’ mutation (E21X), possibly indicating

two separate subclonal events. The other six mutations were

either silent or missense mutations and clustered in the CTCF

Zn finger (ZF) DNA-binding domain, particularly in ZF1 (Figures

4E, 4G, and S4). Previous analysis of similar mutations (R283C

and H284N/P/Y) that disrupt either DNA sequence recognition

or zinc coordination showed that these mutations selectively

impaired CTCF binding to some, but not all, DNA target sites,
m Ctcf +/� Mice

values.

Gs.

ondivergent autosomal CpGs (top) and divergent autosomal CpGs (middle), p <

tom).

ondivergent autosomal CpGs (left) and divergent autosomal CpGs (right),

nt CpGs. The differences of median CpG methylation values for each sample

d p values are plotted. Shaded area indicates region with significant difference
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Figure 4. CTCF Hemizygous Deletion and

Mutation in Human Breast and Endometrial

Cancer

(A and B) Size plots for breast invasive carcinoma

(A) and uterine corpus endometrioid carcinoma

(B), indicating the total number of samples with

either copy number change or mutation (yellow) or

samples diploid for CTCF (blue). Copy number

values are presented in discrete increments of 0.5.

(C andD) Relative CTCFmRNA levels in breast (n =

856; p < 103 10�16) (C) and endometrial (n = 362;

p < 7.153 10�12) (D) tumors are plotted according

to CTCF DNA copy number.

(E and F) Somatic mutations within the CTCF

protein coding sequence are plotted based on

amino acid position (Uniprot Identifier P49711) for

breast carcinoma (E) and endometrioid carcinoma

(F). Synonymous (green), missense (blue), frame-

shift InDels (gold), and nonsense (red) mutations

are shown. Blue rectangles indicate 11 Zn finger

domains.

(G) Rendition of a typical C2-H2 type zinc finger

(ZF) showing composite of missense mutations

from endometrial and breast cancers. Amino acids

at positions �1, 2, 3, and 6 that contact DNA

directly and histidine (H) and cysteine (C) residues

that coordinate Zn are indicated.
consistent with the multivalent nature of this 11 Zn finger protein

(Filippova et al., 2002; Nakahashi et al., 2013).

Hemizygous deletions of CTCF were also observed in uterine

endometrial cancer (45/185; 24%), which again correlated with

significantly reduced levels of CTCF mRNA (Figures 4B and

4D). Point mutations were also frequent (53/248; 21%), primarily

in the type 1 endometrioid subtype (Kandoth et al., 2013). Of

these tumor-specific mutations, 48/53 mapped to the CTCF

protein sequence and included missense mutations localized

to the ZF domain and predicted to alter DNA sequence recogni-

tion, as well as truncating and frameshift mutations predicted to

delete some or all of the ZFs (Figures 4F, 4G, and S4). Only one

tumor with a missense mutation (R377C in the ZF domain)

showed evidence of both copy number loss and mutation (Table

S6). Overall, CTCF is ranked as the 4th- and 16th-most signifi-

cantly mutated gene in endometrial and breast cancer, respec-

tively, comparable to well-known cancer genes such as PTEN,

TP53, PIK3CA, and FBXW7 (Figure S4).
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CTCF Mutational Status Correlates
with Whole-Genome Methylation
Patterns in Human Tumors
As our mouse model demonstrated that a

50% reduction in Ctcf gene dosage

altered DNA methylation patterns

genome wide, we next asked if DNA

methylation was altered in human tumors

with CTCF hemizygous deletions or mu-

tations. We analyzed Illumina Infinium

DNA methylation data generated by the

TCGA, a platform which assays methyl-

ation status of 27,000 CpGs (Kandoth
et al., 2013). Endometrial adenocarcinomas with CTCF copy

number aberrations (CNA) or point mutations exhibited signifi-

cantly distinct methylation patterns, with a subset of CpGs

showing either an increase or decrease inmethylation compared

to CTCF diploid tumors (Figures 5A and 5B; Table S7). CTCF

CNA tumors tended to have a greater number of CpG methyl-

ation differences as compared to tumors with CTCF point muta-

tions. This could reflect a broader destabilization associated with

loss of additional genes on chromosome 16q in the CNA tumors,

as, for example, seen for CpGs located on chromosome 16 itself

and/or a more restrictive phenotype associated with individual

CTCF point mutations. In either case, these hyper- and hypome-

thylated CpGs were distributed across the genome. Interest-

ingly, of the 16 CpGs assayed at theH19 locus, 12 showed a sig-

nificant increase in methylation in CTCF CNA tumors (Table S7),

a finding that is consistent with the increasedmethylation seen at

the Igf2/H19 ICR in murine Ctcf +/� tissues (Figure S3B). Like-

wise, in luminal A breast cancer, a subset of CpGs showed



Figure 5. CTCF Status Correlates with Genome-wide DNA Methylation Patterns and Patient Survival in Endometrial Cancer

(A) Chromosomal plot of significantly differentially methylated CpGs between CTCF CNA (n = 45) versus CTCF diploid (n = 114) endometrial tumors, p < 0.001.

Positive and negative differences indicate methylation probes with increased or decreased methylation in the CTCF CNA tumors, respectively. The H19 locus is

indicated with a red arrow. Right, volcano plot of permutation-based significance (blue, p < 0.001) as a function of differences in average DNA methylation

between CTCF CNA versus wild-type endometrial tumors (beta value differentials).

(legend continued on next page)
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significantly altered methylation in CTCF CNA or mutant tumors

compared to CTCF wild-type tumors (Figure S5; Tables S7).

The accelerated cancer-associated mortality and increased

aggressiveness of tumors in Ctcf+/� mice prompted us to ask if

CTCF copy number in human tumors was associated with

survival. In the TCGA breast cancer cohort, which included all

subtypes, we observed no significant association with overall

survival (not shown), whereas in endometrial cancer, reduction

of CTCF copy number was associated with poor survival (Fig-

ure 5C). Although a careful analysis of different tumor subtypes

with and without CTCF mutation or copy number variation will

be required, these data suggest that, in addition to a distinct

epigenetic profile, CTCF hemizygous loss in human tumors

might also correlate with a distinct clinical outcome.

DISCUSSION

Here, we have shown that the chromatin organizer CTCF is a

haploinsufficient tumor suppressor in vivo, where loss of just

one allele enhances both tumor formation and malignant

progression. Ctcf +/� mice were predisposed to spontaneous,

ionizing radiation and chemically induced tumors of epithelial,

mesenchymal, and hematopoietic origin, indicating a broad

role for CTCF in tumor suppression. Furthermore, tumors from

Ctcf hemizygous mice weremore aggressive, with frequent local

invasion, metastatic dissemination, features of EMT, and mixed

lineage differentiation indicating reduction of Ctcf enhances

malignant progression.

Our functional studies in mice, when viewed together with

frequent CTCF hemizygous deletions or point mutations found

in human tumors, implicate CTCF as a major tumor-suppressor

gene in human cancer. Indeed, analysis of 4,742 tumors across

21 cancer types revealed that CTCF was one of the most signif-

icantly mutated genes (Lawrence et al., 2014).

Estrogen signaling is a significant risk factor for both

estrogen-receptor-positive luminal A breast cancer and type 1

endometrial cancer. The particularly high frequency of CTCF

aberrations in these tumors, together with the susceptibility of

Ctcf +/� mice to endometrial tumors and pleomorphic breast

tumors, suggests a prominent role for CTCF in hormone-driven

cancers. Given that CTCF is a negative regulator of FOXA1-

chromatin interactions that are required for estrogen receptor

activity (Hurtado et al., 2011), it is possible that CTCF disruption

contributes to tumor development by enhancing the promoting

effects of estrogen.

Our study also has implications for understanding the origins

of DNA methylation alterations in cancer. That hemizygous loss

of Ctcf destabilized DNA methylation at epigenetically variable

CpGs in normal tissue and enhanced cancer progression

suggests that epigenetic instability may both precede and

accelerate the evolution of cancer. Indeed, human endometrial

and breast tumors with genetic disruption of CTCF exhibited a

distinct pattern of DNA methylation relative to CTCF intact
(B) Chromosomal plot of significantly differentially methylated CpGs (p < 0.018) be

Note, COL14A1 at chr8 with a differential methylation value of 0.25 was deleted f

(blue, p < 0.018) as a function of differences in average DNA methylation betwee

(C) Kaplan Meier survival plot of patients with endometrial cancer (n = 492) strati
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tumors. Whether these methylation changes are a direct conse-

quence of CTCF disruption remains unclear; however, the

impact of Ctcf hemizygosity on DNA methylation profiles that

we observed in mice suggests this as a strong possibility. Over-

all, our data support a model wherein CTCF hemizygous

deletion or mutation leads to epigenetic instability that in turn

enhances phenotypic plasticity and thereby accelerates the

emergence, adaptation, and evolution of neoplastic lesions.

Our findings further suggest that human tumors with CTCF

disruption might manifest as discrete epigenetic subtypes with

clinically distinct outcomes and potentially unique therapeutic

opportunities.

EXPERIMENTAL PROCEDURES

Tumor Induction and Analysis

All experiments with mice were approved by the Fred Hutchinson Cancer

Research Center animal care and use committee and performed according

to Institutional Animal Care and Use Committee regulations. Experimental

mice were generated by crossing 129/sv Ctcf +/� mice to C57BL6 Ctcf +/+

mice. Isogenic C57BL6/129 F1 Ctcf
+/� and Ctcf +/+ offspring were genotyped

(Moore et al., 2012), maintained on standard lab chow and water ad libitum,

and housed in a 12 hr light-dark cycle. A second cohort was generated and

mice were exposed at 2 weeks of age to 400 cGy ionizing radiation (137Cesium

at 500 cGy/min). A third cohort was given 1 mg of DMBA dissolved in 200 ml of

sesame oil by gavage once a week for 6 weeks. A fourth was injected at 14 to

15 days of age with a single dose of urethane (1 mg/g body weight, intraperi-

toneally). Eight urethane-treated mice of each genotype were injected with

BrdU (100 mg/kg; Sigma) 1 hr before sacrifice. For all experiments, mice

were observed on a daily basis through 24 months and euthanized when mori-

bund. Mice were necropsied, and all grossly visible tumors and surrounding

normal tissues were fixed in formalin or frozen.

Statistical Analysis

Tumor development and patient survival data were analyzed using Kaplan

Meier survival plots with log rank test for significance. The mean tumor multi-

plicity and tumor incidence at each anatomic site were compared between the

genotypes using the Mann-Whitney nonparametric test and Fisher’s exact

test, respectively. Significant differences in foci formation were assessed via

a Kruskal Wallis test with Dennett’s posttest for multiple comparisons. CTCF

mRNA expression was compared to DNA copy number using Wilcoxon rank

sum test. Data are presented as either mean ±SD ormean ±SEMas indicated,

and asterisks depicted in figures represent statistical significance.

Molecular Biology Protocols

See Supplemental Experimental Procedures for detailed protocols on immu-

nohistochemistry, immunophenotyping and cell cycle analysis of lymphomas,

Southern blotting, quantitative RT-PCR (qRT-PCR), DNA sequencing, electro-

phoretic mobility shift assay, bisulfite sequencing analysis of DNAmethylation,

and experiments on MEFs.

ERRBS

Genome-wide methylation analysis was performed on noncancerous murine

lung tissue at approximately 48 weeks after urethane treatment, at which

time no histological differences were seen in normal lungs betweenCtcf geno-

types. Five hundred nanograms of DNA from eight Ctcf +/� mice (four male,

four female) and seven wild-typemice (threemale, four female) was processed

by the ERRBS protocol (Akalin et al., 2012) as described in Supplemental

Experimental Procedures.
tweenCTCFmutant (n = 45) versusCTCF diploid (n = 114) endometrial tumors.

or clarity (see Table S7). Right, volcano plot of permutation-based significance

n CTCF mutant versus wild-type tumors (beta value differentials).

fied by CTCF copy number (p < 0.05; log rank test).



TCGA Analysis

Mutation annotation format files containing somatic mutation calls for breast-

invasive carcinoma and uterine corpus endometrioid carcinoma were down-

loaded from the TCGA Data Coordination Center. The GISTIC2 algorithm

was used to identify samples with significant somatic gains or losses of

CTCF. Methylation beta values were calculated as the fraction (ranging from

0 to 1) of methylated beads from the Illumina Infinium DNA methylation plat-

form, taken from Level 3 TCGA data as described in Supplemental Experi-

mental Procedures.

ACCESSION NUMBERS

Data are deposited in the National Center for Biotechnology Information’s

Gene Expression Omnibus (GEO) and are accessible through GEO accession

number GSE48975.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and seven tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2014.04.004.
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