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Abstract-In this paper, we construct a new iterative algorithm of solution for a new class of 
nonlinear variational inequalities with fuzzy mappings and give some convergence analysis of iterative 
sequences generated by algorithm. 
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1. INTRODUCTION 

Variational inequalities not only have stimulated new results dealing with nonlinear partial dif- 
ferential equations, but also have been used in a large variety of problems arising in mechanics, 
physics, optimization and control, nonlinear programming, economics and transportation equi- 
librium, and engineering sciences, etc. (See [l-6] and the references cited therein.) 

Recently, the variational inequalities for fuzzy mappings was introduced and studied by Chang 
and Zhu [7] and later developed by Noor [8], Chang [9], Chang and Huang [lO,ll] and Lee et 
al. [12]. On the other hand, in the recent papers [13-161, He proposed some new projection 
and contraction methods for a class of linear or nonlinear variational inequalities with monotone 
mappings. 

The purpose of this paper is to construct a new iterative algorithm of solution for a new class of 
nonlinear variational inequalities with fuzzy mappings. We also give some convergence analysis of 
iterative sequences generated by algorithm. Our results develop some projection and contraction 
methods for solving monotone variational inequalities. 

2. PRELIMINARIES 

Let F(F) be the family of all fuzzy sets over Rn. A mapping F from Rn into F(Rn) is 
called fuzzy mapping over R”. If F is a fuzzy mapping over R”, the F(z) (denoted by F, in the 
sequel) is a fuzzy set over R”, and F,(y) is the membership function of the point y in F,. Let 
B E 3(Rn), p E /:O, 11. Then (B)p = {x E R” : B(z) > p} is called a pcut set of B. 

A set-valued mapping A : Rn --+ 2R” (where 2R” denotes the family of all nonempty subsets 
of Rn) is called to be upper semicontinuous [17], if for any {uk} C R”, yk E A(Q), 

‘1Lk + %c, yk + II* ---r. y+ E A(G). 

The author is very thankful to the referees for their valuable suggestions. 
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Let F : R” ----f 3(R”) and p : Rn --+ [0, 11. We can define a set-valued mapping @ as follows: 

i71R~+2~“, z I-+ (F&(Z). 

In the sequel, we shall call F the set-valued mapping induced by fuzzy mapping F. 
A fuzzy mapping F : R” -+ 3(R”) is called to be upper semicontinuous monotone, if F is 

upper semicontinuous monotone. 
Let K c R” be a closed convex set, F : R” -+ 3(R*) and p : R” --+ [0, l]. We consider the 

following problem: find u E K, y E R” such that F,(y) > p(u) and 

(v - U)T y 2 0, VVEK, (2.1) 

which is called a nonlinear variational inequality for fuzzy mapping. 
If F : R” -+ 2Rn and p(z) z 1, V’z E R”, then the problem (2.1) is equivalent to finding 

u E K, y E F(u) such that 
(u - u)T Y 2 0, t’v E K, (2.2) 

which is called a set-valued nonlinear variational inequality. Obviously, the problems (2.1) 
and (2.2) include many variational inequalities as special cases. 

Let 5’ denote the solution set of (2.1) and PK(.) d enote the projection to K. Throughout this 
paper, we assume that S # 0. In following the ]I . I], G and ]I )I u G will be denoted the Euclidean 
norm, positive definite matrix and (uTGu) ‘I2 respectively. 

3. ITERATIVE ALGORITHM 

Let /I > 0 be a constant, F : R” -+ 3(R”) and p : R” + [O,l]. By [ll], we know that 
u E K, y E R* are the solutions of problem (2.1) if and only if u E K, y E Rn such that 
F,(Y) 2 p(u) and 

e(u, y, p) dzf u - PK[U - /?y] = 0. (3.1) 

Let y E (0,2) be a constant and F be a upper semicontinuous monotone fuzzy mapping. 
Since F is monotone, we know that F is also monotone. By [18], (I + PF)-’ is a single-valued 
nonexpansive mapping. 

Now, we give the algorithm of solution for the problem (2.1) as follows. 

ALGORITHM 3.1. Given u” E R”, y” E F(u”), for k = 0,1,2,. . . , if (uk, y’“) @ 5’ and uk + by” - 
y&G-‘e(U”, yk, p) is in the image of I + @, then 

Uk+l = (I + PF)_l( Uk -I- PY” - ‘YPkG-‘e (Uk3 Y”,,@) , (3.2) 

and y”+’ E F(uk+‘) such that 

uk+’ + py”+’ = uk + Pyk - ypkG_ie (uk, yk, p) , (3.3) 

where 

b’k = 
Ile (uky yl”,P) iI2 

e(zLk,yk,p)TG-le(u”,yk,P)’ 
(34 

REMARK 3.1. 

(9 

(ii) 

(iii) 

(iv) 

If F is a set-valued mapping, then Algorithm 3.1 reduces to a new iterative algorithm of 
solution for the set-valued nonlinear variational inequality (2.2). 
If F is a single-valued mapping, then Algorithm 3.1 reduces to the PC methods for mono- 
tone variational inequalities of [13]. 
If F is a single-valued mapping, G = I and y = 1, then Algorithm 3.1 reduces to the 
Douglas-Rachford operator splitting methods (see [13,19,20]). 
In addition, if F is a single-valued mapping, G = I, y = 1, and K = R”, then Algorithm 3.1 
reduces the the Levenberg-Marquardt method for unconstrained optimization [13,16]. 
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4. CONVERGENCE 

We first give the following lemma. 

LEMMA 4.1. Let (u*, y’) E S, then 

(u - u* + P(Y - y*))T4~,y,P) 2 I14wy,P)l12 + P(u - u*lT(y - Y*), 

Vu E Rn, Vy E F(U). 
(4.1) 

PROOF. Since (u*, y*) is a solution of the problem (2.1) and PK(.) E K, it follows from (2.1) 
that 

P!/*T(PK(U - PY) - u*) 2 0, Vu E R”, vy E F(u). (4.2) 

A well know basic property of the projection mapping is 

(u - P_@gT(PKZ -u) 2 0, QUE R”, VUE K. (4.3) 

Letting v := ‘(I - py and u := u* in (4.3), we have 

(e(u, y, P) - PY)T(P~(u - PY) - U*) 2 0. (4.4) 

Adding (4.2) and (4.4), we obtain 

(e(u, y, P) - P(Y - Y*))~(u - u* - e(u, y, PI) 2 0. (4.5) 

From the above inequality follows the assertion of this lemma immediately. This completes the 
proof. 

THEOREM 4.1. ‘The sequences {u”} and {y”} g enerated by Algorithm 3.1 satisfy the following 
inequality: 

IIU k+l - u* t- p (yk+l - y*> 11; I llulc - u* + P (yy” - y*) 11; 

- Y@ - Y)pk lie (Ukj yk7 P) /I2 (4.6) 

- 2’-?‘pkP (u” - U*)T (Yk -Y*) I v (u*, y*) E s. 

PROOF. From (3.2) and (3.3), we have 

Uk+l _ uk + p (y”+’ - y”) = -y&G-le (u”, yk, p) . (4.7) 

It follows from (3.4), (4.1), and (4.7) that 

lb k+l _ u* + p (y”+’ - y*)ll; = lluk - u* + p (y” - Y’) - ypkG-‘e(u”, Y”,,& 

= lluk - u* + p (yk - Y*) 11:: 

- 2YPk (uk -~*+P(yk-y*))~e(u~,y~,B) 

+ Y2p$ (u’, Y’, 0)’ G-‘e (u”, Y’, 0) 

5 ljuk - ‘11* + P (Yl” - y*> II:: 

- $2 - ?)Pklle(uk7 yk, P)ii2 

- 2?‘pkP (uk - u*> T (Yk - Y/‘> 1 v (u’, y*) E s. 

This completes the proof. 
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THEOREM 4.2. The sequences {u”} and {y”} generated by Algorithm 3.1 converge to ii and jj, 
respectively and (G, g) is a solution of the problem (2.1). 

PROOF. Let (6, jj) be a solution of the problem (2.1). Since F is monotone, it follows from (4.6) 
that the sequences {uk} and {yk} are bounded. Also from (4.6), we have 

~~(~-Y)P~/~~(I~“,Y~,P)II~ I I/““-fi+P(Yo-Ij)ll~. 
k=O 

This implies that 
ieme(uk,yk,p) = 0. 

Let ti be a cluster point of {uk}, the subsequence {u”j} converge to ii, and jj be a cluster point of 
{yk}, the subsequence {ykj} converge to 8. Since PK(.) is continuous, (3.1) shows that e(u, y, ,0) 
is continuous, and therefore, 

e(C, jj, p) = jlimW e (u”~, y”j, p) = 0. (4.8) * 

Since yk E F(u”), uk. 3 -+ ti, ykj -+ 0, and F is upper semicontinuous, we have jj E F(G) and 
so (4.8) implies that (a,$ is a solution of the problem (2.1). 

Now, we prove that uk --+ in and yk --+ g. In fact, from (a,$ E S and (4.6), we get 

lb k+l-ii+p(yk+l-g)(I;< llZLk-a+/3(yk-g)~l~, 

and this yields that 

This completes the proof. 

,lim, uk = ti, jimmyk = &. 
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