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We introduce the following integral-type operator on the space H(B) of all holomorphic
functions on the unit ball B ⊂ C

n

P g
ϕ( f )(z) =

1∫
0

f
(
ϕ(tz)

)
g(tz)

dt

t
, z ∈ B,

where g ∈ H(B), g(0) = 0 and ϕ is a holomorphic self-map of B. The boundedness and
compactness of the operator from the Bloch space B or the little Bloch space B0 to the
Bloch-type space Bμ or the little Bloch-type space Bμ,0, are characterized. In the main
results we calculate the essential norm of the operators P g

ϕ : B (or B0) → Bμ (or Bμ,0) in
an elegant way.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Let B be the open unit ball in C
n , D the unit disk in C, H(B) the class of all holomorphic functions on the unit ball and

H∞ = H∞(B) the space of all bounded holomorphic functions on B with the norm

‖ f ‖∞ = sup
z∈B

∣∣ f (z)
∣∣.

Let z = (z1, . . . , zn) and w = (w1, . . . , wn) be points in C
n , 〈z, w〉 = ∑n

k=1 zk w̄k and |z| = √〈z, z〉.
For f ∈ H(B) with the Taylor expansion f (z) = ∑

|β|�0 aβ zβ , let


 f (z) =
∑

|β|�0

|β|aβ zβ

be the radial derivative of f , where β = (β1, β2, . . . , βn) is a multi-index, |β| = β1 + · · · + βn and zβ = zβ1
1 · · · zβn

n (see [29]).
A positive continuous function μ on [0,1) is called normal [30] if there is δ ∈ [0,1) and a and b, 0 < a < b such that

μ(r)

(1 − r)a
is decreasing on [δ,1) and lim

r→1

μ(r)

(1 − r)a
= 0,

μ(r)

(1 − r)b
is increasing on [δ,1) and lim

r→1

μ(r)

(1 − r)b
= ∞.

If we say that a function μ : B → [0,∞) is normal we will also assume that it is radial, that is, μ(z) = μ(|z|), z ∈ B.
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The weighted space H∞
μ = H∞

μ (B) consists of all f ∈ H(B) such that

sup
z∈B

μ(z)
∣∣ f (z)

∣∣ < ∞,

where μ is normal. For μ(z) = (1 − |z|2)β , β > 0 we obtain the (classical) weighted space H∞
β = H∞

β (B).
The little weighted space H∞

μ,0 = H∞
μ,0(B) is a subspace of H∞

μ consisting of all f ∈ H(B) such that

lim|z|→1
μ(z)

∣∣ f (z)
∣∣ = 0.

The Bloch-type space, denoted by Bμ = Bμ(B), consists of all f ∈ H(B) such that

Bμ( f ) = sup
z∈B

μ(z)
∣∣
 f (z)

∣∣ < ∞,

where μ is normal. With the norm

‖ f ‖Bμ = ∣∣ f (0)
∣∣ + Bμ( f )

the Bloch-type space becomes a Banach space.
The α-Bloch space Bα is obtained for μ(z) = (1 − |z|2)α , α ∈ (0,∞) (see, e.g., [26,35,38] and references therein).
The little Bloch-type space Bμ,0 is a subspace of Bμ consisting of those f such that

lim|z|→1
μ(z)

∣∣
 f (z)
∣∣ = 0.

Bearing in mind the following asymptotic relation from [36] (see also [8] for the case of the α-Bloch space)

bμ( f ) := sup
z∈B

μ(z)
∣∣∇ f (z)

∣∣ � sup
z∈B

μ(z)
∣∣
 f (z)

∣∣ (1)

we see that Bμ can be defined as the class of all f ∈ H(B) such that bμ( f ) is finite. Also the little Bloch-type space is
equivalent with the subspace of Bμ consisting of all f ∈ H(B) such that

lim|z|→1
μ(z)

∣∣∇ f (z)
∣∣ = 0.

From this observation and for some technical benefits, for the norm of the α-Bloch space we choose the second definition,
that is, f ∈ Bα if and only if

‖ f ‖Bα = ∣∣ f (0)
∣∣ + sup

z∈B

(
1 − |z|2)α∣∣∇ f (z)

∣∣ < ∞.

If μ(z) = (1 − |z|2), then the quantity bμ( f ) in (1), will be denoted by b( f ).
Let ϕ be a holomorphic self-map of B. For f ∈ H(B) the composition operator is defined by Cϕ f (z) = f (ϕ(z)) (see, e.g.,

the monograph [9] or recent papers [10,18,27,37]).
Let g ∈ H(D) and ϕ be a holomorphic self-map of D. Products of integral and composition operators on H(D) were

introduced by S. Li and S. Stević in a private communication (see, e.g., [23,24] and [25], as well as related paper [20]) as
follows

Cϕ J g f (z) =
ϕ(z)∫
0

f (ζ )g(ζ )dζ and J g Cϕ f (z) =
z∫

0

f
(
ϕ(ζ )

)
g(ζ )dζ. (2)

Operators in (2) are extensions of the following integral operator

T g( f )(z) =
z∫

0

f (ζ )g′(ζ )dζ

which was introduced in [28]. Some other results on the operator T g can be found, e.g., in [1–3,31]. For some results on
n-dimensional extensions of the operator, see [4–7,11–17,19,21,22,32–34,36] and references therein.

One of the interesting questions is to extend operators in (2) in the unit ball settings and to study their function theoretic
properties between spaces of holomorphic functions on the unit ball in terms of inducing functions.

Assume that g ∈ H(B), g(0) = 0 and ϕ is a holomorphic self-map of B, then we introduce the following operator on the
unit ball

P g
ϕ( f )(z) =

1∫
f
(
ϕ(tz)

)
g(tz)

dt

t
, f ∈ H(B), z ∈ B. (3)
0
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If n = 1, then g ∈ H(D) and g(0) = 0, so that g(z) = zg0(z), for some g0 ∈ H(D). By the change of variable ζ = tz, it follows
that

P g
ϕ f (z) =

1∫
0

f
(
ϕ(tz)

)
tzg0(tz)

dt

t
=

z∫
0

f
(
ϕ(ζ )

)
g0(ζ )dζ.

Thus operator (3) is a natural extension of the second operator in (2).
Here we study the boundedness and compactness of operator P g

ϕ from the Bloch space B or the little Bloch space B0
to the Bloch-type space Bμ or the little Bloch-type space Bμ,0. In Sections 4 and 5 we calculate the essential norm of the
operators P g

ϕ : B (or B0) → Bμ (or Bμ,0).
Throughout the paper C will denote a positive constant not necessarily the same at each occurrence. The notation A � B

means that there is a positive constant C such that A/C � B � C A.

The following lemmas are used in the proofs of the main results.

Lemma 1. Suppose g ∈ H(B), g(0) = 0, μ is normal and ϕ is a holomorphic self-map of B. Then the operator P g
ϕ : B (or B0) → Bμ

is compact if and only if P g
ϕ : B (or B0) → Bμ is bounded and for any bounded sequence ( fk)k∈N in B (or B0) converging to zero

uniformly on compacts of B, we have ‖P g
ϕ fk‖Bμ → 0 as k → ∞.

The proof of Lemma 1 follows by standard arguments (see, for example, the proofs of Proposition 3.11 in [9] and Lemma 3
in [34]). Hence, we omit its proof.

Lemma 2. Suppose f , g ∈ H(B) and g(0) = 0. Then


 P g
ϕ( f )(z) = f

(
ϕ(z)

)
g(z).

Proof. Assume that the holomorphic function f (ϕ(z))g(z) has the expansion
∑

β aβ zβ . Since g(0) = 0, note that a0 = 0.
Then


[
P g

ϕ( f )
]
(z) = 


1∫
0

∑
β �=0

aβ(tz)β
dt

t
= 


(∑
β �=0

aβ

|β| zβ

)
=

∑
β �=0

aβ zβ,

which is what we wanted to prove. �
Lemma 3. Let f ∈ B(B). Then the following inequality holds

∣∣ f (z)
∣∣ � ‖ f ‖B max

{
1,

1

2
ln

1 + |z|
1 − |z|

}
. (4)

Proof. The proof of the lemma follows from the following inequality

∣∣ f (z) − f (0)
∣∣ =

∣∣∣∣∣
1∫

0

〈∇ f (tz), z̄
〉
dt

∣∣∣∣∣ � b( f )

1∫
0

|z|dt

1 − |z|2t2
= b( f )

1

2
ln

1 + |z|
1 − |z| ,

where b( f ) = supz∈B(1 − |z|2)|∇ f (z)|. �
2. The norm of the operator P g

ϕ : B (or B0) → Bμ

In this section we calculate the norms ‖P g
ϕ‖B→Bμ and ‖P g

ϕ‖B0→Bμ .

Theorem 1. Assume g ∈ H(B), g(0) = 0, μ is normal, ϕ is a holomorphic self-map of B and P g
ϕ : B (or B0) → Bμ is bounded. Then

∥∥P g
ϕ

∥∥
B→Bμ

= ∥∥P g
ϕ

∥∥
B0→Bμ

= sup
z∈B

μ(z)
∣∣g(z)

∣∣max

{
1,

1

2
ln

1 + |ϕ(z)|
1 − |ϕ(z)|

}
. (5)

Proof. If f ∈ B, then by Lemma 2 and (4) we obtain

∥∥P g
ϕ f

∥∥
Bμ

= supμ(z)
∣∣g(z) f

(
ϕ(z)

)∣∣ � ‖ f ‖B supμ(z)
∣∣g(z)

∣∣max

{
1,

1

2
ln

1 + |ϕ(z)|
1 − |ϕ(z)|

}
, (6)
z∈B z∈B
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from which it follows that

∥∥P g
ϕ

∥∥
B→Bμ

� sup
z∈B

μ(z)
∣∣g(z)

∣∣max

{
1,

1

2
ln

1 + |ϕ(z)|
1 − |ϕ(z)|

}
. (7)

The same inequality holds for P g
ϕ : B0 → Bμ.

Now we prove the reverse inequality. By taking the function given by f0(z) ≡ 1 ∈ B0 and using the boundedness of
P g

ϕ : B → Bμ , we obtain

∥∥P g
ϕ

∥∥
B→Bμ

= ‖ f0‖B
∥∥P g

ϕ

∥∥
B→Bμ

�
∥∥P g

ϕ f0
∥∥

Bμ
= sup

z∈B

μ(z)
∣∣g(z)

∣∣∣∣ f0
(
ϕ(z)

)∣∣ = sup
z∈B

μ(z)
∣∣g(z)

∣∣. (8)

The same inequality holds for P g
ϕ : B0 → Bμ.

For w ∈ B, set

f w(z) = 1

2
ln

1 + 〈z, w〉
1 − 〈z, w〉 , (9)

with ln 1 = 0. Since f w(0) = 0 and

(
1 − |z|2)∣∣∇ f w(z)

∣∣ = (1 − |z|2)|w|
|1 − 〈z, w〉2| � 1 − |z|2

1 − |w|2|z|2 � min

{
1,

1 − |z|2
1 − |w|2

}
,

it follows that supw∈B ‖ f w‖B � 1, and f w ∈ B0 for each fixed w ∈ B.

From this and the boundedness of P g
ϕ : B (or B0) → Bμ we have that when ϕ(w) �= 0 and for every t ∈ (0,1) the

following inequality holds

∥∥P g
ϕ

∥∥
B0→Bμ

�
∥∥P g

ϕ ftϕ(w)/|ϕ(w)|
∥∥

Bμ

= sup
z∈B

μ(z)
∣∣g(z)

∣∣1

2

∣∣∣∣ln 1 + t〈ϕ(z),ϕ(w)/|ϕ(w)|〉
1 − t〈ϕ(z),ϕ(w)/|ϕ(w)|〉

∣∣∣∣
� 1

2
μ(w)

∣∣g(w)
∣∣ ln

1 + t|ϕ(w)|
1 − t|ϕ(w)| . (10)

Note that (10) obviously holds if ϕ(w) = 0.

Letting t → 1 in (10), we obtain that for each w ∈ B,

∥∥P g
ϕ

∥∥
B0→Bμ

� 1

2
μ(w)

∣∣g(w)
∣∣ ln

1 + |ϕ(w)|
1 − |ϕ(w)| .

From this and since w is an arbitrary element of B, it follows that

∥∥P g
ϕ

∥∥
B0→Bμ

� 1

2
sup
z∈B

μ(z)
∣∣u(z)

∣∣ ln
1 + |ϕ(z)|
1 − |ϕ(z)| . (11)

Note also that

∥∥P g
ϕ

∥∥
B→Bμ

�
∥∥P g

ϕ

∥∥
B0→Bμ

. (12)

From (8), (11) and (12) we obtain that

∥∥P g
ϕ

∥∥
B→Bμ

�
∥∥P g

ϕ

∥∥
B0→Bμ

� sup
z∈B

μ(z)
∣∣g(z)

∣∣max

{
1,

1

2
ln

1 + |ϕ(z)|
1 − |ϕ(z)|

}
. (13)

From (7) and (13), equalities in (5) follow. �
Corollary 1. Assume g ∈ H(B), g(0) = 0, μ is normal and ϕ is a holomorphic self-map of B. Then P g

ϕ : B (or B0) → Bμ is bounded
if and only if

sup
z∈B

μ(z)
∣∣g(z)

∣∣max

{
1,

1

2
ln

1 + |ϕ(z)|
1 − |ϕ(z)|

}
< ∞. (14)

Proof. If P g
ϕ : B (or B0) → Bμ is bounded, then (14) follows from Theorem 1. If (14) holds, then the boundedness of

P g
ϕ : B (or B0) → Bμ follows from (6). �
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3. The boundedness of the operator P g
ϕ : B0 → Bμ,0

Here we characterize the boundedness of the operator P g
ϕ : B0 → Bμ,0.

Theorem 2. Assume g ∈ H(B), g(0) = 0, μ is normal and ϕ is a holomorphic self-map of B. Then P g
ϕ : B0 → Bμ,0 is bounded if and

only if P g
ϕ : B0 → Bμ is bounded and g ∈ H∞

μ,0.

Proof. Assume that P g
ϕ : B0 → Bμ,0 is bounded. Then clearly P g

ϕ : B0 → Bμ is bounded. Taking the test function
f0(z) = 1 ∈ B0 we obtain g ∈ H∞

μ,0.

Conversely, assume P g
ϕ : B0 → Bμ is bounded and g ∈ H∞

μ,0. Then, for every polynomial p, we have

μ(z)
∣∣
 P g

ϕ p(z)
∣∣ = μ(z)

∣∣g(z)p
(
ϕ(z)

)∣∣ � μ(z)
∣∣g(z)

∣∣‖p‖∞ → 0, as |z| → 1.

Since the set of all polynomials is dense in B0, for each f ∈ B0 there is a sequence of polynomials (pk)k∈N such that

lim
k→∞

‖ f − pk‖B = 0. (15)

From (15) and since the operator P g
ϕ : B0 → Bμ is bounded, it follows that

∥∥P g
ϕ f − P g

ϕ pk
∥∥

Bμ
�

∥∥P g
ϕ

∥∥
B0→Bμ

‖ f − pk‖B0 → 0,

as k → ∞. Hence P g
ϕ(B0) ⊂ Bμ,0. Since Bμ,0 is a closed subset of Bμ the boundedness of P g

ϕ : B0 → Bμ,0 follows. �
4. Essential norm of P g

ϕ : B (or B0) → Bμ

Let X and Y be Banach spaces, and L : X → Y be a bounded linear operator. The essential norm of the operator L : X → Y ,
denoted by ‖L‖e,X→Y , is defined as follows

‖L‖e,X→Y = inf
{‖L + K‖X→Y : K is compact from X to Y

}
,

where ‖ · ‖X→Y denote the operator norm.
From this definition and since the set of all compact operators is a closed subset of the set of bounded operators it

follows that operator L is compact if and only if ‖L‖e,X→Y = 0.

Here we prove the main result in the paper, namely, we calculate the essential norm of the operator P g
ϕ : B (or B0) → Bμ .

Theorem 3. Assume g ∈ H(B), g(0) = 0, μ is normal, ϕ is a holomorphic self-map of B and P g
ϕ : B (or B0) → Bμ is bounded. If

‖ϕ‖∞ = 1, then

∥∥P g
ϕ

∥∥
e,B→Bμ

= ∥∥P g
ϕ

∥∥
e,B0→Bμ

= 1

2
lim sup
|ϕ(z)|→1

μ(z)
∣∣g(z)

∣∣ ln
1 + |ϕ(z)|
1 − |ϕ(z)| , (16)

while if ‖ϕ‖∞ < 1, then

∥∥P g
ϕ

∥∥
e,B→Bμ

= ∥∥P g
ϕ

∥∥
e,B0→Bμ

= 0. (17)

Proof. First assume that ‖ϕ‖∞ = 1. Set the following family of test functions

f ε
w(z) =

(
ln

(1 + |w|)2

1 − 〈z, w〉
)ε+1(

ln
1 + |w|
1 − |w|

)−ε

, w ∈ B \ {0}.

It is easy to see that

∣∣ f ε
w(0)

∣∣ �
(
ln

(
1 + |w|)2)ε+1

(
ln

1 + |w|
1 − |w|

)−ε

� 2ε+1 ln 2

and

lim|w|→1

∣∣ f ε
w(0)

∣∣ = 0. (18)
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Further we have

(
1 − |z|2)∣∣∇ f ε

w(z)
∣∣ = (ε + 1)

(1 − |z|2)|w|
|1 − 〈z, w〉|

∣∣∣∣ln (1 + |w|)2

1 − 〈z, w〉
∣∣∣∣
ε(

ln
1 + |w|
1 − |w|

)−ε

� (ε + 1)
(1 − |z|2)|w|

1 − |z||w|
(

ln
(1 + |w|)2

1 − |z||w| + 2π

)ε(
ln

1 + |w|
1 − |w|

)−ε

(19)

� (ε + 1)
(
1 + |z|)|w|

(
ln

(1 + |w|)2

1 − |w| + 2π

)ε(
ln

1 + |w|
1 − |w|

)−ε

. (20)

From (20) it follows that

lim sup
|w|→1

b
(

f ε
w

)
� 2(ε + 1) (21)

and from (19) that, for each fixed w ∈ B \ {0}, f ε
w ∈ B0.

Hence (18) and (21) imply

lim|w|→1

∥∥ f ε
w

∥∥
B � 2(ε + 1). (22)

Now, assume that (ϕ(zk))k∈N is a sequence in B such that |ϕ(zk)| → 1 as k → ∞. Note that from (22) it follows that the
sequence Fk(z) = f ε

ϕ(zk)
(z), k ∈ N is such that

lim
k→∞

‖Fk‖B � 2(ε + 1), (23)

and that Fk converges to zero uniformly on compacts of B as k → ∞. By Theorem 3.16 in [38] it follows that Fk → 0 weakly
in B0 as k → ∞. Hence for every compact operator K : B0 → Bμ we have that

lim
k→∞

‖K Fk‖Bμ = 0. (24)

Assume that K : B0 → Bμ is an arbitrary compact operator. Then from the boundedness of P g
ϕ : B0 → Bμ we have that

for each k ∈ N

‖Fk‖B
∥∥P g

ϕ + K
∥∥

B0→Bμ
�

∥∥(
P g

ϕ + K
)
(Fk)

∥∥
Bμ

�
∥∥P g

ϕ Fk
∥∥

Bμ
− ‖K Fk‖Bμ . (25)

Letting k → ∞ in (25) and using (24) we obtain

lim
k→∞

‖Fk‖B
∥∥P g

ϕ + K
∥∥

B0→Bμ
� lim sup

k→∞
(∥∥P g

ϕ Fk
∥∥

Bμ
− ‖K Fk‖Bμ

)

= lim sup
k→∞

∥∥P g
ϕ Fk

∥∥
Bμ

= lim sup
k→∞

sup
z∈B

μ(z)
∣∣g(z)

∣∣∣∣Fk
(
ϕ(z)

)∣∣
� lim sup

k→∞
μ(zk)

∣∣g(zk)Fk
(
ϕ(zk)

)∣∣

= lim sup
k→∞

μ(zk)
∣∣g(zk)

∣∣ ln
1 + |ϕ(zk)|
1 − |ϕ(zk)| .

From this and (23) we have

2(ε + 1)
∥∥P g

ϕ + K
∥∥

B0→Bμ
� lim sup

k→∞
μ(zk)

∣∣g(zk)
∣∣ ln

1 + |ϕ(zk)|
1 − |ϕ(zk)| . (26)

Taking the infimum in (26) over the set of all compact operators K : B0 → Bμ and since ε is an arbitrary positive
number, we obtain

∥∥P g
ϕ

∥∥
e,B0→Bμ

� lim sup
k→∞

1

2
μ(zk)g(zk) ln

1 + |ϕ(zk)|
1 − |ϕ(zk)| ,

which implies the inequality

‖P g
ϕ‖e,B0→Bμ � lim sup

|ϕ(z)|→1

1

2
μ(z)g(z) ln

1 + |ϕ(z)|
1 − |ϕ(z)| . (27)
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Now we prove the reverse inequality. Assume that (rl)l∈N is a sequence which increasingly converges to 1. Consider the
operators defined by

P g
rlϕ( f )(z) =

1∫
0

g(tz) f
(
rlϕ(tz)

)dt

t
, l ∈ N. (28)

Assume that (hk)k∈N is a bounded sequence in B (or B0) converging to zero uniformly on compacts of B. Since g ∈ H∞
μ ,

we have

μ(z)
∣∣
 P g

rlϕ(hk)(z)
∣∣ = μ(z)

∣∣g(z)hk
(
rlϕ(z)

)∣∣ � ‖g‖H∞
μ

sup
|w|�rl

∣∣hk(w)
∣∣ → 0,

as k → ∞. Hence by Lemma 1, for each l ∈ N, P g
rlϕ : B (or B0) → Bμ is compact.

Let ρ ∈ (0,1) be fixed for a moment. Employing Lemma 2, the fact that g ∈ H∞
μ , and the following formula (see, [38,

Theorem 3.14])

sup
f ∈B,‖ f ‖B�1

∣∣ f (z) − f (w)
∣∣ = 1

2
ln

1 + |ϕw(z)|
1 − |ϕw(z)| , z, w ∈ B

(where ϕw is the involutive automorphism of B that interchanges 0 and w), we have
∥∥P g

ϕ − P g
rlϕ

∥∥
B→Bμ

= sup
‖ f ‖B �1

sup
z∈B

μ(z)
∣∣g(z)

∣∣∣∣ f
(
ϕ(z)

) − f
(
rlϕ(z)

)∣∣
� sup

‖ f ‖B �1
sup

|ϕ(z)|�ρ
μ(z)

∣∣g(z)
∣∣∣∣ f

(
ϕ(z)

) − f
(
rlϕ(z)

)∣∣
+ sup

‖ f ‖B �1
sup

|ϕ(z)|>ρ
μ(z)

∣∣g(z)
∣∣∣∣ f

(
ϕ(z)

) − f
(
rlϕ(z)

)∣∣
� ‖g‖H∞

μ
sup

‖ f ‖B �1
sup

|ϕ(z)|�ρ

∣∣ f
(
ϕ(z)

) − f
(
rlϕ(z)

)∣∣ (29)

+ sup
|ϕ(z)|>ρ

μ(z)
∣∣g(z)

∣∣1

2
ln

1 + |ϕϕ(z)(rlϕ(z))|
1 − |ϕϕ(z)(rlϕ(z))| . (30)

Since

∣∣ϕϕ(z)
(
rlϕ(z)

)∣∣ =
∣∣∣∣ϕ(z) − Pϕ(z)(rlϕ(z)) − sq Q ϕ(z)(rlϕ(z))

1 − 〈rlϕ(z),ϕ(z)〉
∣∣∣∣ = |ϕ(z)|(1 − rl)

1 − rl|ϕ(z)|2 �
∣∣ϕ(z)

∣∣,
and since the function

h(x) = ln
1 + x

1 − x
(31)

is increasing on the interval [0,1), we obtain

sup
|ϕ(z)|>ρ

μ(z)
∣∣g(z)

∣∣ ln
1 + |ϕϕ(z)(rlϕ(z))|
1 − |ϕϕ(z)(rlϕ(z))| � sup

|ϕ(z)|>ρ
μ(z)

∣∣g(z)
∣∣ ln

1 + |ϕ(z)|
1 − |ϕ(z)| . (32)

Now we estimate the quantity in (29). Let

Il := sup
‖ f ‖B �1

sup
|ϕ(z)|�ρ

∣∣ f
(
ϕ(z)

) − f
(
rlϕ(z)

)∣∣.
By using the mean value theorem and the definition of the Bloch space, we obtain

Il � sup
‖ f ‖B �1

sup
|ϕ(z)|�ρ

(1 − rl)
∣∣ϕ(z)

∣∣ sup
|w|�ρ

∣∣∇ f (w)
∣∣

� ρ
1 − rl

1 − ρ2
sup

‖ f ‖B �1
‖ f ‖B

= Cρ(1 − rl) → 0 as l → ∞. (33)

Letting l → ∞ in (29) and (30), using (32) and (33), and then letting ρ → 1 we obtain the inequality

∥∥P g
ϕ

∥∥
e,B→Bμ

� lim sup
|ϕ(z)|→1

1

2
μ(z)g(z) ln

1 + |ϕ(z)|
1 − |ϕ(z)| . (34)

From (27), (34) and since∥∥P g
ϕ

∥∥
e,B→Bμ

�
∥∥P g

ϕ

∥∥
e,B0→Bμ

,

both equalities in (16) follow.
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Now assume ‖ϕ‖∞ < 1, then similar to operators in (28) it is proved that the operator P g
ϕ : B (or B0) → Bμ is compact,

which is equivalent with (17), finishing the proof of the theorem. �
The following result regarding the compactness of the operator P g

ϕ : B (or B0) → Bμ is a direct consequence of Theo-
rem 3.

Corollary 2. Assume g ∈ H(B), g(0) = 0, μ is normal, ϕ is a holomorphic self-map of B such that ‖ϕ‖∞ = 1, and the operator
P g

ϕ : B (or B0) → Bμ is bounded. Then the operator P g
ϕ : B (or B0) → Bμ is compact if and only if

lim|ϕ(z)|→1
μ(z)

∣∣g(z)
∣∣ ln

1 + |ϕ(z)|
1 − |ϕ(z)| = 0. (35)

5. Essential norm of the operator P g
ϕ : B (or B0) → Bμ,0

Here we calculate the essential norm of the operator P g
ϕ : B (or B0) → Bμ,0.

Theorem 4. Assume g ∈ H(B), g(0) = 0, μ is normal, ϕ is a holomorphic self-map of B and the operator P g
ϕ : B (or B0) → Bμ,0 is

bounded. Then

∥∥P g
ϕ

∥∥
e,B→Bμ,0

= ∥∥P g
ϕ

∥∥
e,B0→Bμ,0

= 1

2
lim sup
|z|→1

μ(z)
∣∣g(z)

∣∣ ln
1 + |ϕ(z)|
1 − |ϕ(z)| . (36)

Proof. Since P g
ϕ : B (or B0) → Bμ,0 is bounded, then for the test function f0(z) ≡ 1 ∈ B0, we obtain that g ∈ H∞

μ,0.

First assume ‖ϕ‖∞ < 1. Then, similar to operators in (28) it can be proved that P g
ϕ : B (or B0) → Bμ,0 is compact. Hence

∥∥P g
ϕ

∥∥
e,B (or B0)→Bμ,0

= 0.

On the other hand, since ‖ϕ‖∞ < 1, and g ∈ H∞
μ,0, it follows that

lim sup
|z|→1

μ(z)
∣∣g(z)

∣∣ ln
1 + |ϕ(z)|
1 − |ϕ(z)| �

(
ln

1 + ‖ϕ‖∞
1 − ‖ϕ‖∞

)
lim|z|→1

μ(z)
∣∣g(z)

∣∣ = 0,

from which (36) follows in this case.
Now assume ‖ϕ‖∞ = 1. It is clear that

lim sup
|z|→1

μ(z)
∣∣g(z)

∣∣ ln
1 + |ϕ(z)|
1 − |ϕ(z)| � lim sup

|ϕ(z)|→1
μ(z)

∣∣g(z)
∣∣ ln

1 + |ϕ(z)|
1 − |ϕ(z)| . (37)

Assume that (zk)k∈N is such a sequence that

lim sup
|z|→1

μ(z)
∣∣g(z)

∣∣ ln
1 + |ϕ(z)|
1 − |ϕ(z)| = lim

k→∞
μ(zk)

∣∣g(zk)
∣∣ ln

1 + |ϕ(zk)|
1 − |ϕ(zk)| .

If supk∈N |ϕ(zk)| < 1, then in view of the fact g ∈ H∞
μ,0, the last limit is zero and consequently the second limit in (37) is

also zero. Otherwise, there is a subsequence (ϕ(zkl ))l∈N such that |ϕ(zkl )| → 1 as l → ∞, so that both limits in (37) are
equal, that is,

lim sup
|z|→1

μ(z)
∣∣g(z)

∣∣ ln
1 + |ϕ(z)|
1 − |ϕ(z)| = lim sup

|ϕ(z)|→1
μ(z)

∣∣g(z)
∣∣ ln

1 + |ϕ(z)|
1 − |ϕ(z)| .

From this and by Theorem 3 the result follows in this case, finishing the proof of the theorem. �
Corollary 3. Assume g ∈ H(B), g(0) = 0, μ is normal, ϕ is a holomorphic self-map of B and the operator P g

ϕ : B (or B0) → Bμ,0 is
bounded. Then the operator P g

ϕ : B (or B0) → Bμ,0 is compact if and only if

lim|z|→1
μ(z)

∣∣g(z)
∣∣ ln

1 + |ϕ(z)|
1 − |ϕ(z)| = 0. (38)
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[6] D.C. Chang, S. Stević, Estimates of an integral operator on function spaces, Taiwanese J. Math. 7 (3) (2003) 423–432.
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[23] S. Li, S. Stević, Products of composition and integral type operators from H∞ to the Bloch space, Complex Var. Elliptic Equ. 53 (5) (2008) 463–474.
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