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Abstract

By using Mawhin’s continuation theorem of coincidence degree theory, sufficient criteria are obtained for the existence of
periodic solutions of the mutualism model

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x�(t) = r1(t)

[
K1(t) + α1(t) exp{y(t − τ2(t, y(t)))}

1 + exp{y(t − τ2(t, y(t)))} − exp
{
x
(
t − σ1

(
t, x(t)

))}]
,

y�(t) = r2(t)

[
K2(t) + α2(t) exp{x(t − τ1(t, x(t)))}

1 + exp{x(t − τ1(t, x(t)))} − exp
{
y
(
t − σ2

(
t, y(t)

))}]
,

where ri ,Ki,αi ∈ C(T,R
+), αi > Ki , i = 1,2, τi , σi ∈ C(T × R,T

+), i = 1,2, ri , Ki , αi , τi , σi (i = 1,2) are functions of
period ω > 0.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the mutualism model
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dN1(t)

dt
= r1N1(t)

[
K1 + α1N2(t)

1 + N2(t)
− N1(t)

]
,

dN2(t)

dt
= r2N2(t)

[
K2 + α2N1(t)

1 + N1(t)
− N2(t)

]
,

(1.1)
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where ri ,Ki,αi ∈ R
+ are constants and αi > Ki , i = 1,2. Depending on the nature of Ki (i = 1,2), system (1.1) can

be classified as facultative, obligate or a combination of both. For more details of mutualistic interactions we refer
to [5,6,15]. A modification of system (1.1) leads to the time-lagged model

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dN1(t)

dt
= r1N1(t)

[
K1 + α1N2(t − τ2)

1 + N2(t − τ2)
− N1(t)

]
,

dN2(t)

dt
= r2N2(t)

[
K2 + α2N1(t − τ1)

1 + N1(t − τ1)
− N2(t)

]
,

(1.2)

where τ1, τ2 ∈ [0,∞) are constants. In system (1.2) the mutualistic or cooperative effects are not realized instanta-
neously but take place with time delays. For further ecological applications of system (1.2), we refer to [9] and the
references cited therein.

The effects of a periodically varying environment are important for evolutionary theory as the selective forces on
systems in a fluctuating environment differ from those in a stable environment. Thus the assumptions of periodicity of
the parameters are a way of incorporating the periodicity of the environment (such as seasonal effects of weather, food
supplies, mating habits and so forth). We refer to Pianka [14] for a discussion of the relevance of periodic environments
to evolutionary theory.

Recently, Li [12], by using Mawhin’s continuation theorem of coincidence degree theory [8], investigated the
existence of positive periodic solutions for a periodic mutualism model

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dN1(t)

dt
= r1(t)N1(t)

[
K1(t) + α1(t)N2(t − τ2(t))

1 + N2(t − τ2(t))
− N1

(
t − σ1(t)

)]
,

dN2(t)

dt
= r2(t)N2(t)

[
K2(t) + α2(t)N1(t − τ1(t))

1 + N1(t − τ1(t))
− N2

(
t − σ2(t)

)]
,

(1.3)

where ri ,Ki,αi ∈ C(R,R
+), αi > Ki , i = 1,2, τi, σi ∈ C(R × R,R

+), i = 1,2, ri , Ki , αi , τi , σi (i = 1,2) are
functions of period ω > 0.

Since many authors [1,2,7,13] have argued that the discrete time models governed by difference equations are more
appropriate than the continuous ones when the populations have non-overlapping generations, also, since discrete
time models can also provide efficient computational models of continuous models for numerical simulations, it is
reasonable to study discrete time food-chain models governed by difference equations.

The theory of calculus on time scales (see [3,4] and references cited therein) was initiated by Stefan Hilger in
his PhD thesis in 1988 [10] in order to unify continuous and discrete analysis, and it has a tremendous potential for
applications and has recently received much attention since his foundational work. It has been created in order to unify
the study of differential and difference equations. Our purpose of this paper is to consider the model

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x�(t) = r1(t)

[
K1(t) + α1(t) exp{y(t − τ2(t, y(t)))}

1 + exp{y(t − τ2(t, y(t)))} − exp
{
x
(
t − σ1

(
t, x(t)

))}]
,

y�(t) = r2(t)

[
K2(t) + α2(t) exp{x(t − τ1(t, x(t)))}

1 + exp{x(t − τ1(t, x(t)))} − exp
{
y
(
t − σ2

(
t, y(t)

))}]
,

(1.4)

where ri ,Ki,αi ∈ C(T,R
+), αi > Ki , i = 1,2, τi, σi ∈ C(T × R,R

+), i = 1,2, ri , Ki , αi , τi , σi (i = 1,2) are
functions of period ω > 0. T is a periodic time scale which has the subspace topology inherited from the standard
topology on R.

Remark 1.1. Let N1(t) = exp{x(t)} and N2(t) = exp{y(t)}. If T = R, then (1.4) reduces to the model
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dN1(t)

dt
= r1(t)N1(t)

[
K1(t) + α1(t)N2(t − τ2(t,N2(t)))

1 + N2(t − τ2(t,N2(t)))
− N1

(
t − σ1

(
t,N1(t)

))]
,

dN2(t)

dt
= r2(t)N2(t)

[
K2(t) + α2(t)N1(t − τ1(t,N1(t)))

1 + N1(t − τ1(t,N1(t)))
− N2

(
t − σ2

(
t,N2(t)

))]
.

(1.5)
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If T = Z, then (1.4) is reformulated as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N1(t + 1) = N1(t) exp

{
r1(t)

[
K1(t) + α1(t)N2(t − τ2(t,N2(t)))

1 + N2(t − τ2(t,N2(t)))
− N1

(
t − σ1

(
t,N1(t)

))]}
,

N2(t + 1) = N2(t) exp

{
r2(t)

[
K2(t) + α2(t)N1(t − τ1(t,N1(t)))

1 + N1(t − τ1(t,N1(t)))
− N2

(
t − σ2

(
t,N2(t)

))]}
.

(1.6)

2. Preliminaries

In this section, we first recall some basic definitions, lemmas on time scales which are used in what follows.
Let T be a nonempty closed subset (time scale) of R. The forward and backward jump operators σ,ρ : T → T and

the graininess μ : T → R
+ are defined, respectively, by

σ(t) = inf{s ∈ T: s > t}, ρ(t) = sup{s ∈ T: s < t} and μ(t) = σ(t) − t.

A point t ∈ T is called left-dense if t > infT and ρ(t) = t , left-scattered if ρ(t) < t , right-dense if t < sup T and
σ(t) = t , and right-scattered if σ(t) > t . If T has a left-scattered maximum m, then T

k = T \ {m}; otherwise T
k = T.

If T has a right-scattered minimum m, then Tk = T \ {m}; otherwise Tk = T.
Let ω ∈ R, ω > 0, T is a ω-periodic time scale if T is a nonempty closed subset of R such that t + ω ∈ T and

μ(t) = μ(t + ω) whenever t ∈ T.
A function f : T → R is right-dense continuous provided it is continuous at right-dense point in T and its left side

limits exist at left-dense points in T. If f is continuous at each right-dense point and each left-dense point, then f is
said to be continuous function on T. We define C(J,R) = {u(t) is continuous on J }.

For y : T → R and t ∈ T
k , we define the delta derivative of y(t), y�(t), to be the number (if it exists) with the

property that for a given ε > 0, there exists a neighborhood U of t such that
∣∣[y(

σ(t)
) − y(s)

] − y�(t)
[
σ(t) − s

]∣∣ < ε
∣∣σ(t) − s

∣∣
for all s ∈ U .

If y is continuous, then y is right-dense continuous, and if y is delta differentiable at t , then y is continuous at t .
Let y be right-dense continuous. If Y�(t) = y(t), then we define the delta integral by

t∫
a

y(s)�s = Y(t) − Y(a).

Definition 2.1. (See [11].) We say that a time scale T is periodic if there exists p > 0 such that if t ∈ T, then t ±p ∈ T.
For T �= R, the smallest positive p is called the period of the time scale.

Definition 2.2. (See [11].) Let T �= R be a periodic time scale with period p. We say that the function f : T → R is
periodic with period ω if there exists a natural number n such that ω = np, f (t + ω) = f (t) for all t ∈ T and ω is the
smallest number such that f (t + ω) = f (t).

If T = R, we say that f is periodic with period ω > 0 if ω is the smallest positive number such that f (t +ω) = f (t)

for all t ∈ T.

Lemma 2.1. If a, b ∈ T, α,β ∈ R and f,g ∈ C(T,R), then

(i)
∫ b

a
[αf (t) + βg(t)]�t = α

∫ b

a
f (t)�t + β

∫ b

a
g(t)�t ;

(ii) if f (t) � 0 for all a � t < b, then
∫ b

a
f (t)�t � 0;

(iii) if |f (t)| � g(t) on [a, b) := {t ∈ T: a � t < b}, then | ∫ b

a
f (t)�t | � ∫ b

a
g(t)�t .
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For convenience, we introduce the notation

κ = min
{[0,∞) ∩ T

}
, Iω = [κ, κ + ω] ∩ T, gM = max

t∈T

g(t), gm = min
t∈T

g(t),

ḡ = 1

ω

∫
Iω

g(s)�s = 1

ω

κ+ω∫
κ

g(s)�s,

where g ∈ C(T,R) is an ω-periodic real function, i.e., g(t + ω) = g(t) for all t ∈ T.
Next, let us recall the continuation theorem in coincidence degree theory. To do so, we need to introduce the

following notation.
Let X, Y be real Banach spaces, L : DomL ⊂ X → Y a Fredholm mapping of index zero, and P :X → X,

Q :Y → Y continuous projectors such that ImP = KerL, KerQ = ImL, and X = KerL ⊕ KerP,Y = ImL ⊕ ImQ.
Denote by LP the restriction of L to DomL ∩ KerP , KP : ImL → KerP ∩ DomL the inverse (to LP ), and
J : ImQ → KerL an isomorphism of ImQ onto KerL.

Lemma 2.2. Let Ω ⊂ X be an open bounded set and N : X → Y be a continuous operator which is L-compact on Ω̄ .
Assume

(i) for each λ ∈ (0,1), x ∈ ∂Ω ∩ DomL, Lx �= λNx;
(ii) for each x ∈ ∂ ∩ KerL, QNx �= 0, and deg{JQN,Ω ∩ KerL,0} �= 0.

Then Lx = Nx has at least one solution in Ω̄ ∩ DomL.

Lemma 2.3. (See [12].) Let

f (x, y) =
(

a1 − a1 − b1

1 + ey
− c1e

x, a2 − a2 − b2

1 + ex
− c2e

y

)

and Ω = {(x, y)T ∈ R
2: |x| + |y| < M}, where M,ai, bi, ci ∈ R

+ are constants, ai > bi , i = 1,2, and M >

max{| ln(ai/ci)|, | ln(bi/ci)|, i = 1,2}. Then

deg
{
f,Ω, (0,0)

} �= 0.

In order to achieve the a priori estimation in the case of dynamic equations on a periodic time scale T, we first give
the following inequalities, which will be very essential in this paper.

Lemma 2.4. Let t1 ∈ Iω and t ∈ T. If g : T → R is ω-periodic, then

max
t∈Iω

∣∣g(t)
∣∣ �

∣∣g(t1)
∣∣ +

κ+ω∫
κ

∣∣g�(t)
∣∣�t.

Proof. For ∀t ∈ Iω, by the definition of delta integral, we know that

∣∣g(t)
∣∣ =

∣∣∣∣∣g(t1) +
t∫

t1

g�(s)�s

∣∣∣∣∣ �
∣∣g(t1)

∣∣ +
∣∣∣∣∣

t∫
t1

g�(s)�s

∣∣∣∣∣ �
∣∣g(t1)

∣∣ +
t∫

t1

∣∣g�(s)
∣∣�s

�
∣∣g(t1)

∣∣ +
κ+ω∫
κ

∣∣g�(s)
∣∣�s,

and hence

max
t∈Iω

∣∣g(t)
∣∣ �

∣∣g(t1)
∣∣ +

κ+ω∫
κ

∣∣g�(s)
∣∣�s.

The proof is complete. �
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3. Main results

In order to explore the existence of periodic solutions of (1.4), first we should embed our problem in the frame of
coincidence degree theory. Define

Ψ ω = {
(u, v) ∈ C

(
T,R

2): u(t + ω) = u(t), v(t + ω) = v(t) for all t ∈ T
}
,∥∥(u, v)

∥∥ = max
t∈Iω

∣∣u(t)
∣∣ + max

t∈Iω

∣∣v(t)
∣∣ for (u, v) ∈ Ψ ω.

It is not difficult to show that Ψ ω is a Banach space when it is endowed with the above norm ‖ · ‖. Let

Ψ ω
0 = {

(u, v) ∈ Ψ ω: ū = 0, v̄ = 0
}
,

Ψ ω
c = {

(u, v) ∈ Ψ ω:
(
u(t), v(t)

) ≡ (h1, h2) ∈ R
2 for t ∈ T

}
.

Then it is easy to show that Ψ ω
0 and Ψ ω

c are both closed linear subspaces of Ψ ω, Ψ ω = Ψ ω
0 ⊕ Ψ ω

c , and dimΨ ω
c = 2.

We now come to the fundamental theorem of this paper.

Theorem 3.1. The system (1.4) has at least one ω-periodic solution.

Proof. Take X = Y = Ψ ω and define

N

[
x

y

]
=

[
N1
N2

]
=

⎡
⎢⎢⎣

r1(t)

[
K1(t) + α1(t) exp{y(t − τ2(t, y(t)))}

1 + exp{y(t − τ2(t, y(t)))} − exp
{
x
(
t − σ1

(
t, x(t)

))}]

r2(t)

[
K2(t) + α2(t) exp{x(t − τ1(t, x(t)))}

1 + exp{x(t − τ1(t, x(t)))} − exp
{
y
(
t − σ2

(
t, y(t)

))}]
⎤
⎥⎥⎦ ,

L

[
x

y

]
=

[
x�

y�

]
, P

[
x

y

]
= Q

[
x

y

]
=

[
x̄

ȳ

]
,

[
x

y

]
∈ X.

Then KerL = Ψ ω
c , ImL = Ψ ω

0 , and dim KerL = 2 = codim ImL. Since Ψ ω
0 is closed in Ψ ω, it follows that L is a

Fredholm mapping of index zero. It is not difficult to show that P and Q are continuous projections such that ImP =
KerL and ImL = KerQ = Im(I − Q). Furthermore, the generalized inverse (to L) KP : ImL → KerP ∩ DomL

exists and is given by

KP

[
x

y

]
=

[
X − X̄

Y − Ȳ

]
where X(t) =

t∫
κ

x(s)�s and Y(t) =
t∫

κ

y(s)�s.

Thus

QN

[
x

y

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

ω

κ+ω∫
κ

r1(t)

[
K1(t) + α1(t) exp{y(t − τ2(t, y(t)))}

1 + exp{y(t − τ2(t, y(t)))} − exp
{
x
(
t − σ1

(
t, x(t)

))}]
�t

1

ω

κ+ω∫
κ

r2(t)

[
K2(t) + α2(t) exp{x(t − τ1(t, x(t)))}

1 + exp{x(t − τ1(t, x(t)))} − exp
{
y
(
t − σ2

(
t, y(t)

))}]
�t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

KP (I − Q)N

[
x

y

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t∫
κ

N1(s)�s − 1

ω

κ+ω∫
κ

t∫
κ

N1(s)�s �t −
(

t − κ − 1

ω

κ+ω∫
κ

(t − κ)�t

)
N̄1

t∫
N2(s)�s − 1

ω

κ+ω∫ t∫
N2(s)�s �t −

(
t − κ − 1

ω

κ+ω∫
(t − κ)�t

)
N̄2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

κ κ κ κ
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Obviously, QN and KP (I −Q)N are continuous. Since X is a Banach space, it is easy to show that KP (I − Q)N(Ω̄)

is compact for any open bounded set Ω ⊂ X. Moreover, QN(Ω̄) is bounded. Thus, N is L-compact on Ω̄ with any
open bounded set Ω ⊂ X. Corresponding to the equation Lx = λNx, Ly = λNy, λ ∈ (0,1), we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x�(t) = λr1(t)

[
K1(t) + α1(t) exp{y(t − τ2(t, y(t)))}

1 + exp{y(t − τ2(t, y(t)))} − exp
{
x
(
t − σ1

(
t, x(t)

))}]
,

y�(t) = λr2(t)

[
K2(t) + α2(t) exp{x(t − τ1(t, x(t)))}

1 + exp{x(t − τ1(t, x(t)))} − exp
{
y
(
t − σ2

(
t, y(t)

))}]
.

(3.1)

Assume that (x(t), y(t))T ∈ X is a solution of system (3.1) for a certain λ ∈ (0,1). By integrating (3.1) over [κ, κ +ω],
we obtain

κ+ω∫
κ

r1(t)

[
K1(t) + α1(t) exp{y(t − τ2(t, y(t)))}

1 + exp{y(t − τ2(t, y(t)))} − exp
{
x
(
t − σ1

(
t, x(t)

))}]
�t = 0 (3.2)

and
κ+ω∫
κ

r2(t)

[
K2(t) + α2(t) exp{x(t − τ1(t, x(t)))}

1 + exp{x(t − τ1(t, x(t)))} − exp
{
y
(
t − σ2

(
t, y(t)

))}]
�t = 0. (3.3)

It is easy to see that we can rewrite (3.2) and (3.3) respectively as
κ+ω∫
κ

r1(t)(α1(t) − K1(t))

1 + exp{y(t − τ2(t, y(t)))} �t +
κ+ω∫
κ

r1(t) exp
{
x
(
t − σ1

(
t, x(t)

))}
�t =

κ+ω∫
κ

r1(t)α1(t)�t (3.4)

and
κ+ω∫
κ

r2(t)(α2(t) − K2(t))

1 + exp{x(t − τ1(t, x(t)))} �t +
κ+ω∫
κ

r2(t) exp
{
y
(
t − σ2

(
t, y(t)

))}
�t =

κ+ω∫
κ

r2(t)α2(t)�t. (3.5)

Thus from (3.1) and (3.4), it follows that
κ+ω∫
κ

∣∣x�(t)
∣∣�t < λ

κ+ω∫
κ

r1(t)

[
K1(t) + α1(t) exp{y(t − τ2(t, y(t)))}

1 + exp{y(t − τ2(t, y(t)))} + exp
{
x
(
t − σ1

(
t, x(t)

))}]
�t

<

κ+ω∫
κ

r1(t)(α1(t) − K1(t))

1 + exp{y(t − τ2(t, y(t)))} �t

+
κ+ω∫
κ

r1(t) exp
{
x
(
t − σ1

(
t, x(t)

))}
�t +

κ+ω∫
κ

r1(t)α1(t)�t

= 2

κ+ω∫
κ

r1(t)α1(t)�t � M1,

that is,
κ+ω∫
κ

∣∣x�(t)
∣∣�t < M1. (3.6)

Similarly, by (3.1) and (3.5), we have
κ+ω∫ ∣∣y�(t)

∣∣�t < 2

κ+ω∫
r2(t)α2(t)�t � M2. (3.7)
κ κ
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Moreover, from (3.4) it follows that

κ+ω∫
κ

r1(t)α1(t)�t �
κ+ω∫
κ

r1(t) exp
{
x
(
t − σ1

(
t, x(t)

))}
�t �

κ+ω∫
κ

r1(t)K1(t)�t,

which implies that there exist a point t ′1 ∈ Iω and a constant C1 > 0 such that∣∣x(
t ′1 − σ1

(
t ′1, x

(
t ′1

)))∣∣ < C1.

Suppose that t ′1 − σ1(t
′
1, x(t ′1)) = t1 + nω, t1 ∈ Iω and n is an integer, then∣∣x(t1)

∣∣ < C1. (3.8)

Similarly, by (3.5) we can obtain that there exist a point t2 ∈ Iω and a constant C2 > 0 such that∣∣y(t2)
∣∣ < C2. (3.9)

Therefore it follows from (3.6)–(3.9) and Lemma 2.4 that

max
t∈Iω

∣∣x(t)
∣∣ �

∣∣x(t1)
∣∣ +

κ+ω∫
κ

∣∣x�(t)
∣∣�t < C1 + M1,

max
t∈Iω

∣∣y(t)
∣∣ �

∣∣y(t2)
∣∣ +

κ+ω∫
κ

∣∣y�(t)
∣∣�t < C2 + M2.

Clearly Mi and Ci (i = 1,2) are independent of λ. Denote M = M1 + M2 + C1 + C2 + D, where D > 0 is taken
sufficiently large such that M > max{| ln(riαi/r̄i)|, | ln(riKi/r̄i)|, i = 1,2}. Now we take Ω = {(x(t), y(t))T ∈
X: ‖(x, y)T ‖ < M}. This satisfies condition (i) in Lemma 2.2.

When (x, y)T ∈ ∂Ω ∩ KerL = ∂Ω ∩ R
2, (x, y)T is a constant vector in R

2 with |x| + |y| = M . Then

QN

[
x

y

]
=

⎡
⎢⎢⎢⎣

r1α1 − r1α1 − r1K1

1 + exp{y} − r̄1 exp{x}

r2α2 − r2α2 − r2K2

1 + exp{x} − r̄1 exp{y}

⎤
⎥⎥⎥⎦ �=

[
0
0

]
.

Furthermore, take J = I : ImQ → KerL, (x, y)T �→ (x, y)T . By Lemma 2.3, we have

deg
{
JQN(x,y)T ,Ω, (0,0)

} = deg
{
QN(x,y)T ,Ω, (0,0)

} �= 0.

We now know that Ω verifies all the requirements in Lemma 2.2 and thus that (1.4) has at least one ω-periodic
solution. The proof is complete. �
Remark 3.1. By Remark 1.1, we know that (1.5) and (1.6) have at least one positive periodic solution if (1.4) has at
least one periodic solution.
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