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For a torus T defined over a global field K , we revisit an analytic
class number formula obtained by Shyr in the 1970s as a general-
ization of Dirichlet’s class number formula. We prove a local–global
presentation of the quasi-discriminant of T , which enters into this
formula, in terms of cocharacters of T . This presentation can serve
as a more natural definition of this invariant.
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0. Introduction

The well-known class number formula expresses the class number of a number field K in terms
of other arithmetic invariants of K :
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where w is the number of roots of unity in K , � is the discriminant of K , ρ is the residue of the
Dedekind Zeta-function of K at s = 1, R is the regulator of K and r (resp. t) is the number of real
(resp. pairs of complex) embeddings of K .

In the early 1960s, T. Ono defined in [Ono] analogues of these invariants for algebraic tori defined
over both kinds of global fields, namely, the number field case (denoted by case (N)) and the case of
algebraic function field in one variable over a finite field of constants Fq (denoted by case (F)). One
of these invariants is the quasi-discriminant. As in the case of the discriminant of a global field, the
quasi-discriminant of T is the volume of the fundamental domain of the maximal compact subgroup
of T (AK )/T (K ) – where AK is the adele ring – with respect to the Tamagawa measure. J.M. Shyr
gave in [Shyr1] a similar definition in the case of algebraic Q-tori. In this new construction, other
arithmetic invariants are taken from Ono’s definition. This led him to a relation which can be viewed
as an “analogue of the class number formula” for algebraic Q-tori. This relation can be generalized to
tori defined over any global field K , as follows:

cShyr
T := |�K |−d/2C∞

∏
p

Lp(1,χT ) · ωp

(
Tp(Op)

) = ρT τT wT

hT RT
(0.1)

where C∞ is an archimedean factor and �K is the discriminant of K , d = dim T . For any prime p of K ,
Kp is the complete localization of K at p, Tp = T ⊗ Kp , Tp(Op) is the maximal compact subgroup
of Tp(Kp), Lp(s,χT ) is the local Artin L-function and ωp is some Haar measure on Tp(Kp). ρT is the
residue of the global Artin L-function at s = 1, w T is the cardinality of the torsion part of the group
of units of T , hT is the class number of T , RT is the regulator of T (equal to 1 in case (F)), and τT is
the Tamagawa number of T . This work is described in the fourth section and on Appendix A. We call
cShyr

T the Shyr invariant.
Locally, let K be a henselian local field with a ring of integers Op and a finite residue field k. Let

T be an algebraic K -torus splitting over a finite Galois extension L/K with Galois group Γ . We inves-
tigate the invariant Lp(1,χT ) · ωp(T (Op)). Ono defined the group T (Op) using the dual Γ -module,
namely its group of characters. In order to measure it, we would like to describe it as a group of Op-
points of some integral model. In the first section we exhibit the properties and relation between two
integral models of T , namely, the standard integral model X defined by V.E. Voskresenskiı̆ (which is
of finite type), and the well-known Néron–Raynaud integral model T (which is locally of finite type).
After applying a smoothening process to X , the identity components of both models coincide. Let ΦT
be the k-scheme of the group of components of the reduction of T modulo p. In the second section
we prove that:

Lp(1,χT ) · ωp

(
T (Op)

) = ∣∣ΦT (k)tor
∣∣.

In the third section, we use a construction of Kottwitz in [Ko], to prove an isomorphism of k-schemes
ΦT (k) ∼= (X•(T )I )

〈F 〉 where X•(T ) is the cocharacter group of T , I is the inertia subgroup of Γ and
F is the Frobenius automorphism generating Γ/I . This isomorphism gives us another computation of
the local component in Shyr’s invariant:

Lp(1,χT ) · ωp

(
Tp(Op)

) = ∣∣ker
(
1 − F |X•(T )I

)
tor

∣∣.
Globally, together with the infinite place information, we prove in the fourth section our main theo-
rem, which can be viewed as a local–global result, in spirit of the Artin–Hasse conductor-discriminant
formula:

Main theorem.

cShyr
T = |�K |−d/2C∞

∏
p

∣∣ker
(
1 − Fp|X•(Tp)Ip

)
tor

∣∣ = ρT τT wT

hT RT
.
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From this formula one can see that the Shyr invariant can be decomposed into the product of the
“arithmetic–geometric part” (related to the discriminant of the ground field) and the “algebraic” part
(reflecting the Galois action on the cocharacters).

1. Integral models of algebraic tori

Let K be any field. An algebraic torus T is an algebraic K -group such that T ⊗K L ∼= Gd
m,L for some

finite Galois extension L/K where Gm is the multiplicative group and d is the dimension of T . The
smallest among such extensions is called the splitting field of T . We write T ∈ C(L/K ). We denote
by X•(T ) = Hom(T ⊗K L,Gm,L) the group of characters of T . For any intermediate field K ⊆ F ⊆ L,
X•(T )F is the sublattice of characters defined over F .

Now let K be a local field which is the complete localization of a global field with respect to
a prime p. We denote by Op the ring of integers of K and by Up = O×

p its subgroup of units. Let
k = Op/p be the residue field with cardinality q. Let T ∈ C(L/K ) and denote by Γ = Gal(L/K ) the
Galois group and by I its inertia subgroup.

An Op-integral model of T is an Op-scheme M whose generic fiber M ⊗Op
K is isomorphic to T .

The reduction modulo p of M is its special fiber Mp = M ⊗Op
k. Its identity component M0 is an open

subscheme of M which is the identity component of the special fiber, i.e. such that M0 ⊗k = (M ⊗k)0

(see [BLR, p. 154]).
T. Ono defined T (Op) as the maximal compact subgroup of T (K ) with respect to the p-adic topol-

ogy. This was done using the group of characters (see [Ono, 2.1.3]):

T (Op) = {
x ∈ T (K ): χ(x) ∈ Up ∀χ ∈ X•(T )K

}
.

However, in order to measure this group with respect to some local measure, this description may not
be enough. We would like to write T (Op) as the group of Op-points of some group scheme. Toward
this end, we consider two integral models of T .

1.1. The standard integral model

The following construction is due to V.E. Voskresenskiı̆ and can be found in [Pop, §1]. Notations are
as above and suppose that (L : K ) = n and dim T = d. Then X•(T ) is spanned as a Z-lattice by a basis
{χi}d

i=1. The Hopf algebra B = (L[X•(T )])Γ is the coordinate ring of T . The isomorphism T ⊗K L ∼= Gd
m

is equivalent to the isomorphism of L-algebras: B ⊗K L = LB ∼= L[X•(T )]. Let {ωi}n
i=1 be an integral

basis of L over K . Then

L
[

X•(T )
] = Bω1 ⊕ · · · ⊕ Bωn.

Thus there are linear combinations:

χi = x(1)
i ω1 + · · · + x(n)

i ωn, x( j)
i ∈ B,

χ−1
i = y(1)

i ω1 + · · · + y(n)
i ωn, y(l)

i ∈ B.

Definition 1. A(X•(T )) = Op[x( j)
i , y(l)

m ] is a Hopf Op-algebra. The group Op-scheme X = Spec A(X•(T ))

is called the standard integral model of T .

Remark 1.1. (See [Vos, §10.3].) Being obtained from a linear representation, X is of finite type over Op ,
and is reduced and faithfully flat. Further, X(Op) = T (Op) is the maximal compact subgroup of T (K )

with respect to the p-adic topology.
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1.2. The Néron–Raynaud integral model and relations to the standard model

Let K sh be the strict henselization of K and Osh
p be its ring of integers. We refer to the Néron–

Raynaud (NR for short) model T of T which is locally of finite type over Osh
p , as defined in [BLR,

Chapter 10] and satisfying T (Osh
p ) = T (K sh).

Remark 1.2. A local ring is strictly henselian if its residue field is separably closed. In our cases (N)
and (F) the residue field of any complete localization is perfect, thus K sh is the maximal un-
ramified extension of K and it is a Galois over K . Let Γsh = Gal(K sh/K ). The Γsh-invariant sub-
group of T (Osh

p ) = T (K sh) is then T (Op) = T (K ). Indeed, as T is separated, the canonical map
T (Op) → T (K ) is injective. It is also surjective by the universal property of the NR-model.

The following construction can be found in [VKM]. Let T L = T ⊗ L ∼= Gd
m,L . Let OP be the ring of

integers of L and let TL be the NR-model of T L defined over it. The Op-scheme S = R OP/Op
(TL)

obtained by the Weil restriction of scalars, is the NR-model of R = R L/K (T L). Its identity component
is S 0 = R OP/Op

(Gd
m,OP

). Let N be the schematic closure of T in S induced by the canonical em-

bedding T → R . The standard Op-model X of T is isomorphic to N ∩ S 0 (see [VKM, Proposition 6],
the proof there is for p-adic fields but the arguments are valid also in case (F)).

Lemma 1.3. X0 = N 0.

Proof. N 0 = (N ∩ S 0)0 = X0. �
The schemes N and X are not necessarily smooth, i.e., their special fibers may not be reduced. To

achieve the desired smooth NR-model T , one should apply the smoothening process (see [BLR, Chap-
ter 3]). It is sufficient to control the defect of smoothness over X = N ∩ S 0 [BLR, Proposition 10.1/4].
Thus the equality of the identity components of the two models is preserved. We denote the ob-
tained smooth standard model by Xsm. As the ring representing X is Notherian, this process consists
of blowing up finitely many maximal ideals and Xsm remains of finite type. Moreover, by definition,
the generic fibers of Xsm and X are isomorphic.

Corollary 1.4. X0
sm = T 0 .

2. Reductions and local volume computations

2.1. Rational points of the group of components

Denote by i : Spec k → Spec Op the canonical closed immersion of the special point. We call the
k-scheme ΦT = i∗(T /T 0) the group of components of T . There is an exact sequence of k-schemes:

1 → T 0
p → Tp → ΦT → 1,

where Tp = i∗(T ) and T 0
p = i∗(T 0). Let l be the residue field of L and let g = Gal(l/k). Since k is finite

and T 0
p is affine and connected, by Lang’s Theorem (see [Ser, Chapter VI, Proposition 5]), H1(g, T 0

p (l))
is trivial implying the exactness of:

1 → T 0
p (k) → Tp(k)

ϕ→ ΦT (k) → 1. (2.1)

Consider the map composition:
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T (K ) = T (Op)
r→ Tp(k)

ϕ→ ΦT (k)

where r is the reduction modulo p map and ϕ is the map in (2.1). As T is smooth and Op is complete
(and therefore henselian), r is surjective (see [BLR, Proposition 2.3/5]). Since ϕ is also surjective and
the kernel of r ◦ ϕ is well known to be T 0(Op) (see, e.g., [Gon, p. 1153]), we obtain:

Lemma 2.1. T (K )/T 0(Op) ∼= Tp(k)/T 0
p (k) = ΦT (k).

The same construction for the smooth standard model Xsm with its group of components φT =
i∗(Xsm/X0

sm) leads to the corresponding isomorphism of abelian groups:

Xsm(Op)/X0
sm(Op) ∼= φT (k). (2.2)

Lemma 2.2. Xsm(Op)/T 0(Op) ∼= φT (k) = ΦT (k)tor.

Proof. By Corollary 1.4, X0
sm(Op) = T 0(Op). Recall that T is the smooth schematic closure Nsm of T

in S = R OP/Op
(TL), whereas Xsm = Nsm ∩ S 0 (see (1.2)). Thus as an abelian group:

T (Op)/Xsm(Op) ⊆ S(Op)/S 0(Op) ∼= ΦR(k),

where ΦR is the group of component of RL/K (Gd
m) and it is free (see [Xar, Lemma 2.6]). We get a

decomposition of abelian groups:

ΦT (k) ∼= T (K )/T 0(Op) ∼= T (Op)/Xsm(Op) × Xsm(Op)/T 0(Op)

on which the first factor is free and the second is finite (see Remark 1.1) and therefore is the torsion
part of ΦT (k). �
2.2. Local volume computations

As K is locally compact, it admits a left invariant Haar measure. We normalize such an additive
measure dx on K by requiring: dx(p) = q−1, which is equivalent to dx(Op) = 1. This induces a multi-
plicative Haar measure ωp on the group of points T (K ) (see [Weil, §2.2]).

Definition 2. Let M be one of the aforementioned Op-models of a K -torus T , namely the (smooth)
standard model or the NR one. We call the reduction of M “good” if M0

p is a k-torus. As the identity
components of these two models coincide, the definition of good reduction does not depend on the
choice of a model.

Proposition 2.3. (See [NX, Proposition 1.1].) A K -torus T has good reduction if and only if it splits over an
unramified extension. This means that I acts trivially on X•(T ).

Remark 2.4. (See [NX, Proposition 1.2].) Let Y and N be the kernel and image of the map

tr : X•(T ) → X•(T )I , χ �→
∑
σ∈I

χσ .

Then the exact sequence:

0 → Y → X•(T ) → N → 0
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induces an exact sequence of K -tori:

1 → T I → T → Ta → 1 (2.3)

on which T I is the maximal subtorus of T having good reduction whereas Ta is I-anisotropic, i.e.
X•(Ta)

I = {0}, standing extremely on the other edge with regard to the good reduction one. The
sequence (2.3) shows that any torus is an extension of such two pieces.

Remark 2.5. (See [NX, Theorem 1.3].) Let T(p) be the toric part of T 0
p . There is an isomorphism

of Γ/I-modules:

X•(T(p)) ∼= X•(T I ) ∼= X•(T )/ker
(

X•(T )
tr→ X•(T )I).

Remark 2.6. A K -torus T admits a finite type NR-model T if and only if T ⊗K K sh does not contain
any subgroup of type Gm (see [BLR, 10.2.1]), i.e., it is I-anisotropic. In this case T coincides with the
smooth standard model Xsm (see [Pop, Proposition 10.8]).

We briefly introduce now the local Artin functions which serve as a system of convergence factors
in the infinite product of local measures on the global Shyr invariant (see formula (0.1)). The follow-
ing definitions can be found in [Vos, §13] and in [Neu, Chapter VII, §10.1]. The Galois group of the
maximal unramified subextension in L/K , namely Γ/I , is isomorphic to g = Gal(l/k) and is generated
by the Frobenius automorphism F . g acts naturally on X•(T )I , inducing an integral representation:

h : g → Aut
(

X•(T )I) ∼= GLdI (Z), dI = rank
(

X•(T )I).
Denote the character of this representation by χT .

Definition 2.7. The local Artin L-function for T is defined by

Lp(s,χT , L/K ) = Lp(s,χT ) = det

(
1d − h(F )

qs

)−1

,

where s ∈ C with Re(s) > 1.

Theorem 2.8. (See [Vos, Theorem 14.3/3].) If T splits over an unramified extension then: |T (k)| · q−d =
Lp(1,χT )−1 , d = dim T .

Definition 2.9. Let G1, G2 be algebraic groups defined over a field K . An isogeny λ : G1 → G2 is a
surjective homomorphism of algebraic groups with finite kernel. We denote it by λ : G1 � G2.

Theorem 2.10. (See [Xar, 2.19].) Let T be an algebraic torus defined over a local field K splitting over a Galois
extension L with inertia subgroup I . ΦT is torsion-free if and only if H1(I, X•(T )) = 0.

As one can observe from Theorem 2.10, the abelian group H1(I, X•(T )) which is isomorphic by
Tate-duality to H1(I, T ), measures the lack of connectedness of the torsion part in ΦT (k). As this
property is not invariant under isogeny, according to Lemma 2.2, this prevents at the same time the
Shyr invariant to be respected by an isogeny of tori.



R.A. Bitan / Journal of Number Theory 131 (2011) 1657–1671 1663
Proposition 2.11. (See [Ono, §1.3.1].) Let K be any field and L be a finite Galois extension with Γ = Gal(L/K ).
Let T ∗, T ∈ C(L/K ). Then:

T ∗ � T ⇔ X•(T ∗) ⊗ Q ∼= X•(T ) ⊗ Q as Γ -modules.

Lemma 2.12. Let T ∗ , T be K -isogenous tori. Then the toric parts of their reductions are k-isogenous.

Proof. Consider the two exact sequences of Γ -modules for T and T ∗ , induced by the canonical de-
composition (2.3). Since Q is flat as a Z-module, exactness is preserved after tensoring with it:

0 → X•(Ta) ⊗ Q → X•(T ) ⊗ Q → X•(T I ) ⊗ Q → 0,

0 → X•(T ∗
a

) ⊗ Q → X•(T ∗) ⊗ Q → X•(T ∗
I

) ⊗ Q → 0.

Recall from Remark 2.5 that:

X•(T I ) ∼= X•(T )/ker
(

X•(T )
tr→ X•(T )I).

As T and T ∗ are K -isogenous, according to Theorem 2.11, X•(T ) ⊗ Q ∼= X•(T ∗) ⊗ Q and therefore:

ker
(

X•(T ) ⊗ Q
tr→ X•(T )I ⊗ Q

) = ker
(

X•(T ∗) ⊗ Q
tr→ X•(T ∗)I ⊗ Q

)
implying that X•(T I ) ⊗ Q ∼= X•(T ∗

I ) ⊗ Q. By Remark 2.5 this is equivalent to an isomorphism of their
reduction toric part as g = Gal(l/k)-modules:

X•(T ∗
(p)

) ⊗ Q ∼= X•(T(p)) ⊗ Q,

which again by Proposition 2.11 implies that T ∗
(p) and T(p) are k-isogenous. �

We consider another good reduction torus associated to T , namely, the factor torus T I correspond-
ing to the Γ -module X•(T )I .

Lemma 2.13. T I and T I are K -isogenous.

Proof. Consider again the canonical decomposition of Γ -modules (2.4):

0 → X•(Ta) → X•(T )
tr→ X•(T I ) → 0.

Taking the I-invariants gives the long exact sequence:

0 → X•(Ta)
I = 0 → X•(T )I → X•(T I )

I = X•(T I ) → H1(I, Ta).

The finiteness of H1(I, Ta) implies the one of coker(X•(T )I → X•(T I )), which means that the Z-lattice
X•(T )I is a sublattice of finite index in the Z-lattice X•(T I ). Back to K -tori, this indicates that the
corresponding epimorphism T I → T I has a finite kernel. �
Proposition 2.14. ωp(T 0(Op)) = |T 0

p (k)| · q−d = Lp(1,χT )−1.
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Proof. T 0 is the reduction preimage of the k-group T 0
p , thus it is smooth and therefore the reduction

of points T 0(Op) → T 0
p (k) is surjective. Consider the exact sequence:

1 → T 1(Op) → T 0(Op) → T 0
p (k) → 1. (2.4)

The reduction image of T 1(Op) is the d-tuple (1, ..,1) in T 0
p (k) where d = dim T 0 = dim T . It is

isomorphic to another preimage of this map, namely (1 + p)d , which is homeomorphic to the additive
group pd implying that ωp(T 1(Op)) = ∧d

i=1 dxi(p
d) = q−d and consequently by (2.4):

ωp

(
T 0(Op)

) = ∣∣T 0
p (k)

∣∣ · q−d.

As for the right hand equality of the proposition, T 0
p is an affine smooth and connected k-group

(see [NX, §1]). It has a canonical decomposition over k:

T 0
p = T(p) × U

where T(p) is a k-torus and U is a unipotent k-group. U is isomorphic to an affine space Adim U
k thus

|U (k)| = qdim U and therefore: |T 0
p (k)| · q−d = |T(p)(k)| · q−dI where dI = dim T(p) . Let T I be the max-

imal subtorus of T with good reduction. From Remark 2.5, X•(T I ) ∼= X•(T(p)) as Γ/I-modules. Thus
we may deduce that T(p) is the reduction of T I , splitting over an unramified extension. Hence by The-
orem 2.8 |T(p)(k)| · q−dI = Lp(1,χT I )

−1. According to Lemma 2.13, T I and T I are K -isogenous. These
tori have good reduction, thus due to Lemma 2.12 their reductions (being k-tori) are k-isogenous, im-
plying that their L-functions coincide (see [Vos, p. 106]). In particular Lp(1,χT I ) is equal to Lp(1,χT I )

which is by definition equal to Lp(1,χT ). �
As noted in Remark 1.1, X(Op) is the maximal compact subgroup of T (K ). Further, it is equal to

Xsm(Op) (see [BLR, §3.1, Definition 1]). From Lemma 2.2 and Proposition 2.14 the local component in
the Shyr invariant can be computed by:

Corollary 2.15. Lp(1,χT ) · ωp(Xsm(Op)) = (Xsm(Op) : T 0(Op)) = |ΦT (k)tor|.

3. Relation with the cocharacter group

The following construction can be found in [Ko, §7.2]. It was originally defined over a p-adic field
but as we shall see, it can be applied also in case (F). Let K sh be the strict henselization of the
local field K in a separable closure Ks . As K sh is the maximal unramified extension of K , the group
Gal(Ks/K sh) is the inertia subgroup I of the absolute one Gal(Ks/K ). R. Kottwitz extends the canonical
epimorphism (K sh)× → Z with kernel equal to the group of units of K sh, to an epimorphism

KT : T
(

K sh) → X•(T )I

where the latter group is the I-coinvariants of the cocharacter group. Let T be the NR-model of T
defined over the ring of integers Osh

p of K sh.

Lemma 3.1. ker(KT ) = T 0(Osh
p ).

Proof. As noted in the first line of the proof of [HR, Proposition 3, p. 189], ker(KT ) is the unique
Iwahori subgroup of T (K sh). Thus, by [HR, Definition 1, p. 188], and the statement of the cited propo-
sition, ker(KT ) coincides with T 0(Osh

p ) (see [RP, Remarks 2.2(iii)]). Note that the proof applies to any
strictly henselian discretely-valued field and therefore covers both cases (N) and (F). �
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Since the residue field of K sh is ks , the group of components of T splits over it, i.e. ΦT (ks) = ΦT .
Hence together with Lemma 2.1, the Kottwitz construction gives rise to an isomorphism

T
(

K sh)
/T 0(Osh

p

) ∼= ΦT ∼= X•(T )I . (3.1)

Now let T be defined over K and let T be its NR-model. The absolute group gsep = Gal(ks/k) being
generated by the Frobenius automorphism F , is identified with Γsh = Gal(K sh/K ). The scheme T 0

has a geometrically connected fiber. Moreover, it is affine over Op (see [KM, Proposition 3] and [BLR,
p. 290]). Thus by Lang’s Theorem, the cohomology group

H1(〈F 〉, T 0(Osh
p

)) = H1(〈F 〉, T 0(ks)
)

where k is considered as an Op-algebra, is trivial. Hence taking the Γsh-invariants of (3.1) gives rise
to an epimorphism (see [Ko, 7.6.2]):

T (K ) → (
X•(T )I

)〈F 〉

with kernel equals to T 0(Osh
p ) ∩ T (K ) = T 0(Op). Again by Lemma 2.1 and Corollary 2.15 we get:

Corollary 3.2.

T (K )/T 0(Op) ∼= ΦT (k) ∼= ker
(
1 − F |X•(T )I

)
and:

Xsm(Op)/T 0(Op) ∼= ΦT (k)tor ∼= ker
(
1 − F |X•(T )I

)
tor.

Example 3.3. Let L be a cyclic extension of K with Galois group Γ = 〈σ 〉. Let R = R L/K (Gm) be
the corresponding Weil torus, i.e., such that for any K -algebra B , R(B) = (B ⊗ L)× . The norm torus
T ′ = R(1)

L/K (Gm) is the kernel of the norm map NL/K : R → Gm,K , mapping any element of R(B) to
the product of its images under all Galois automorphisms. Suppose L/K is totally ramified, i.e., I = Γ .
Then T ′ is an I-anisotropic torus. Its NR-model T ′ which is of finite type, coincides with the smooth
standard one X ′

sm (see Remark 2.6). Note that the character group X•(R) = Z[Γ ] (see [Vos, §3.12])
coincides as a Γ -module with the group of cocharacters:

X•(R) = Hom(Gm, R ⊗ L) = Hom
(
Z,Z[Γ ]) = Z[Γ ] = X•(R).

Since Γ is cyclic, T is isomorphic as a Γ -module to the projective group P = R/Gm (see [LL, p. 22]).
The exact sequences of K -tori:

1 → T ′ → R → Gm → 1,

1 → Gm → R → P → 1

induce the exact sequences of dual modules:

0 → Z → X•(R) → X•(T ′) → 0,

0 → Z → X•(R) → X•(P ) → 0.



1666 R.A. Bitan / Journal of Number Theory 131 (2011) 1657–1671
We get an isomorphism of Γ -modules: X•(T ′) ∼= X•(P ) ∼= X•(T ′). Explicitly we have

X ′
sm(Op)/T ′0(Op) ∼= X•

(
T ′)

I =
(

Z[σ ]
/∑

i

σ i
)/

(1 − σ) = μn

thus by Corollary 2.15 we get Lp(1,χT ′ ) · ωp(X ′
sm(Op)) = n. More generally, for any extension L/K ,

we have X ′
sm(Op)/T ′ 0(Op) ∼= φT ′ = μe where e is the ramification index (see [Pop, Theorem 3]).

4. Ono and Shyr invariants

In the following section we briefly describe the analogues of the arithmetic invariants of number
fields for algebraic tori as defined by Ono, and the analogue of the classical class number formula for
algebraic Q-tori, as formulated by Ono and Shyr. This construction is generalized to K -tori where K is
any global field. Finally, our local results will be inserted in these invariant formulas.

4.1. Arithmetical invariants of algebraic tori

Notation 4.1. Let K be a global field, i.e., either a number field or an algebraic function field in one
variable over a finite field of constants Fq . We denote:

�K – the discriminant of K . In case (F) equals to q2g−2 where g is the genus of K .
S – a finite set of valuations of K which contains the set S∞ of the archimedean ones.
K v – the completion of K with respect to a valuation v ∈ S .

Ov – the ring of integers of K v and U v = O×
v – its subgroup of units.

T v = T ⊗ K v and T v (Ov) = {x ∈ T v (K v ): χ(x) ∈ U v ∀χ ∈ X•(T )K v }.
If v = p is a prime, Tp(Op) is the maximal compact subgroup of Tp(Kp).
P is a prime of L lying over p, Γp = Gal(LP/Kp) and Ip is the inertia subgroup.

In Definition 2.7 we defined the local Artin L-function. Globally, consider the action of Γ on X•(T )

and the corresponding representation Γ → Aut(X•(T )) ∼= GLn(Z). Its character χT is decomposed into
a sum of irreducible characters of Γ with integral coefficients:

χT =
m∑

i=1

aiχi, ai ∈ Z,

where χ1 is the principal character.
The global Artin L-function is defined by the Euler product:

L(s,χT ) = L(s,χT , L/K ) =
∏
p

Lp(s,χTp
, LP/Kp)

again with Re(s) > 1, having a pole at s = 1 of order a1.

Definition 3. The quasi-residue of T is the limit:

ρT = lim
s→1

(s − 1)a1 L(s,χT ).

Following Ono in [Ono], for any finite set of places S which contains S∞ we define T A(S) =∏
v∈S T v

∏
v /∈S T v (Ov ). Then the adelic group T A is the inductive limit of T A(S) with respect to S . The

group of S-units is T K (S) = T K ∩ T A(S). The group of units of T is then T K (S∞) where S∞ is the set of
archimedean places, which are the elements of Γ composed with the absolute norm | · |∞ .
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Theorem 4.2 (Shyr’s generalization of Dirichlet Unit Theorem). (See [Shyr2].) The group T K (S) is a direct
product of the finite group T K ∩ T c

A where: T c
A = ∏

v T v (Ov) and a group isomorphic to Zr(S)−r where:
r(S) = ∑

v∈S rv .

Let T be a Q-torus and let rQ = rank(X•(T )Q), r∞ = rank(X•(T )R). Let {ξi}r∞
i=1 be a Z-basis

of X•(T )R such that {ξi}rQ

i=1 is a Z-basis of X•(T )Q . Then the group of units T K (S∞) is decomposed
into W × E where W is finite and E ∼= Zr∞−rQ . We denote w T = |W |.

Definition 4. Let {e j}r∞
j=rQ+1 be a Z-basis of E . The number RT = |det(ln |ξi(e j)|rQ+1� j�r∞ )| is called

the regulator of T over Q. Geometrically, this number represents (as for number fields) the volume of
the fundamental domain for the free part of group of units.

We set: T 1
A = {x ∈ T A: χ(x) ∈ I1

K ∀χ ∈ X•(T )K } where I1
K = {a ∈ I K : ‖a‖ = 1} and I K denotes the

idele group. It is the maximal subgroup of T (AK ) such that T 1
A/T (K ) is compact.

Definition 5. The class number of T is the finite index:

hT =
{ [T A : T K · T S∞

A ] case (N),

[T 1
A : T K · T S∞

A ] case (F).

The global measure is obtained by the infinite product of these local measures, multiplied by a set
of convergence local factors, namely, the Artin local L-functions Lp(1,χT ):

τ = ρ−1
T |�K |− d

2
∏
v|∞

ωv

∏
p

Lp(1,χT )ωp.

This is called the Tamagawa measure. This measure applied to
∏

p Tp(Op) is convergent – almost all
primes are unramified on which Lp(1,χT ) · ωp(Tp(Op)) = 1.

4.2. The quasi-discriminant definition

The geometrical meaning of a global field discriminant is the volume of a fundamental domain of
its ring of integers. An analogue for the case of an algebraic torus T defined over a global field, called
the “quasi-discriminant” of T , is the volume – with respect to some normalized Haar measure – of the
fundamental domain of the maximal compact subgroup of T (AK )/T (K ). In the next section we refer
to two similar analogues, given by T. Ono and J.M. Shyr, to this invariant in the case of algebraic tori.

4.2.1. Ono’s invariant
The following construction can be found in [Ono]. Let {χi}rK

i=1 be a Z-basis of X•(T )K . Consider
the epimorphism ψ : T A → R

rK+ defined by

α �→ (
ln

∣∣χi(α)
∣∣)

1�i�rK
.

It yields the isomorphism T A/T 1
A

∼= R
rK+ . For a Haar measure d defined on T A , consider the decompo-

sition

d(T A/T K ) = d
(
T A/T 1

A

) · d
(
T 1

A/T K
)
.

Let tK be the pullback of the Haar measure dx1···dxr
x1···xr

on R
rK+ from T A/T 1

A . Define the normalized Haar

measure ΩT on T A , i.e., such that
∫

T 1 /T d(ΩT /tK ) = 1.

A K
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Definition 6. Comparing the measure ΩT /tK with the Tamagawa measure gives the constant

cOno
T = ωT

ΩT /dK
.

Now assume K = Q. Let {ξi}r∞
i=1 be a Z-basis of X•(T )R such that {ξi}rQ

i=1 is a Z-basis of X•(T )Q .
Define Φ0 : TR → Rr∞ by

x �→ (
ln

∣∣ξi(x)
∣∣)

1�i�r∞ .

By the Unit Theorem, rank(U ) = r∞ − r. Let {e j}r∞
j=rQ+1 be a Z-basis of E and consider the parallelo-

tope:

P0 =
{

r∞∑
j=rQ+1

λ jΦ0(e j): 0 � λ j � 1

}
.

This is the fundamental domain of E on Rr∞−rQ and its Euclidean volume is the regulator RT . This
domain may be extended to dimension r∞ by the cube (1 � λ j � e)1� j�rQ

. The extended embedding

Φ : T S∞
A → Rr∞ defined by Φ(x) = Φ0(x∞) (ignoring the non-archimedean places components), gives

rise to a parallelotope P by a continuation of a unit cube on Rr∞ . Thus the Euclidean volume of P on
Rr∞ remains RT .

Lemma 4.3. (See [Ono, 3.8.5].)
∫
Φ−1(P )

d(ΩT /tQ) = w T /hT .

Denote by I the unit cube in Rr∞ . Define by M∞ the ∞ component of Φ−1(I), i.e.,

M∞ = {
x ∈ TR: 1 �

∣∣ξi(x)
∣∣∞ � e, 1 � i � r∞

}
.

The regulator, being the Euclidean volume of P on Rr∞ , is obtained by

∫
Φ−1(P )

d(ΩT /tQ)∫
Φ−1(I) d(ΩT /tQ)

hence we get

cOno
T = ωT

ΩT /tQ

(
Φ−1(P )

) = RT ωT (Φ−1(I))

ΩT /tQ(Φ−1(P ))
= RT

∫
M∞ ω∞

∏
p Lp(1,χT )ωp

wT /hT

= RT hT

wT

∫
M∞

ω∞
∏
p

∫
Tp(Op)

Lp(1,χT )ωp.

According to Theorem 4.2, the group of units of T defined over any number field K has a decom-
position TZ

∼= W × E on which the group E is isomorphic to Zr∞−rK and |W | = w T . Hence Ono’s
result can be generalized to an algebraic torus defined over any number field K , by including the
discriminant which is different from 1 in the general case. Recall that

ωT = |�k|−d/2ω∞
∏
p

Lp(1,χT )ωp.
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Hence

cOno
T = ωT

ΩT /tK

(
Φ−1(P )

) = RT ωT (Φ−1(I))

ΩT /tK (Φ−1(P ))
= RT |�k|−d/2

∫
M∞ ω∞

∏
p Lp(1,χT )ωp

wT /hT

= RT hT

wT
|�k|−d/2

∫
M∞

ω∞
∏
p

∫
Tp(Op)

Lp(1,χT )ωp. (4.1)

Remark 4.4. This generalization is not required in case (F) on which the group of units of T has no
free part, and thus has no regulator. Indeed, Ono’s result in that case is not restricted to Fq(x) being
the analogue of Q, and Ono’s formula does include the discriminant there. We will write this formula
explicitly in Appendix A.

4.2.2. Shyr’s invariant
J.M. Shyr in [Shyr1] gave a similar definition to the one of Ono in the case of algebraic Q-tori. Con-

sider the decomposition of a local measure d into dT v (K v) = d(T v (K v )/T v (Ov)) · dT v (Ov). The mea-
sure νv is defined by the pullback of the measure dx1···dxrv

x1···xrv
on R

rv+ (and the canonical discrete measure

on Zrp , respectively) for T v (K v)/T v (Ov), matched together with the normalized Haar measure on
T v (Ov). Then the measure νT is defined by the infinite product

∏
v νv and νT (T A/T K ) = νT (T A/T c

A).
In this new construction, the other arithmetic invariants are taken from Ono’s definition. Explicitly
global Shyr invariant is computed by:

cShyr
T =

∫
M∞

ω∞
∏
p

∫
Tp(Op)

Lp(1,χT )ωp.

Shyr obtained a relation between the Haar measures: τT = ρ−1
T cShyr

T νT . This led him to a formula
reflecting the relation between the other arithmetic invariants of T which can be viewed as a torus
analogue of the class number formula, namely:

cShyr
T = ρT τT wT

hT RT
. (4.2)

As we have done in (4.1), due to the generalization of the Unit Theorem, this result can be gener-
alized to an algebraic torus T defined over any number field K on which the field discriminant may
not be 1. In that general case we would get

cShyr
T = ωT

(
Φ−1(I)

) = |�K |−d/2
∫

M∞

ω∞
∏
p

∫
Tp(Op)

Lp(1,χT )ωp. (4.3)

The number DT = 1/(cShyr
T )2 is called the quasi-discriminant of T over K .

4.3. Main theorem

With the above notations, using our previous local results, namely, Corollaries 2.15 and 3.2, we
now get the following computation of the Shyr invariant as appears in (4.3) with the relation in (4.2).

Theorem 4.5. For any prime p of K , let Fp be the local Frobenius automorphism, let X•(Tp) be the cocharacter
group of Tp = T ⊗ Kp and let X•(Tp)Ip be its coinvariants factor group. Then:
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cShyr
T = |�K |−d/2C∞

∏
p

∣∣ker
(
1 − Fp|X•(Tp)Ip

)
tor

∣∣ = ρT τT wT

hT RT
,

where

C∞ =
{∫

M∞ ω∞ case (N),

(ln q)−rK case (F),

and �K = q2g−2 , RT = 1 in case (F).
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Appendix A. Tori defined over algebraic function fields

Let X be a smooth, projective and irreducible algebraic curve of genus g defined over Fq and let
Y be a finite Galois cover of X . Let K = Fq(X) and L = Fq(Y ) be the corresponding fields of rational
functions. Then L/K is a finite Galois extension with Γ = Gal(L/K ). Let T ∈ C(L/K ) be an algebraic
torus of dimension d.

Just as for number fields, let ωp be a normalized invariant form on Kp , i.e., such that ωp(Op) = 1.
Since degp = (Op/p : Fq), we have |Op/p| = qdeg p . Hence the normalization condition implies
ωp(p) = q−degp . The infinite product

∏
p ωp which is multiplied by the set Lp(1,χT , L/K ) as a system

of correcting factors, induces the Tamagawa measure on T (see [Weil, §2.2]):

ωT = q−(g−1)d
∏
p

Lp(1,χT )ωp, d = dim T .

Define the normalized measure ΩT on T A by the condition
∫

T 1
A/T K

dΩT = 1.

Then ωT = (ln q)rK cOno
T ΩT , reflecting the decomposition

d(T A/T K ) = d
(
T A/T 1

A

) · d
(
T 1

A/T K
)

on which T A/T 1
A is given the measure (ln q)rK (see [Ono, §3.2]). Hence in this case we get the relation:

τT = cOno
T

ρT
=

hT
∏

p

∫
Tp(Op)

Lp(1,χT )ωp

wT ρT (ln q)rK qd(g−1)
. (A.1)

As in Shyr’s approach, consider the decomposition

T A/T K ∼= (
T A/T 1

A

) × (
T 1

A/T S∞
A T K

) × (
T S∞

A T K /T K
)
.

By the same construction as in Section 4.2.2, μT |T A/T 1
A

= tK and therefore:

ρ−1
T ωT (T A/T K ) = tK

(
T A/T 1

A

) · τT = μT (T A/T K )

μT (T A/T 1
A)

· τT .

Now, as we gave the measure (ln q)rK to each point in T A/T 1
A , we get
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ρ−1
T ωT (T A/T K ) = τT · μT (T A/T K )

(ln q)rK
.

Thus over T A/T K we have ρ−1
T ωT · (ln q)rK = τT μT .

Since here there are no archimedean places, we have T S∞
A = ∏

p Tp(Op) = T 1,S∞
A .

Now hT = (T 1
A : T S∞

A T K ) and T S∞
A T K /T K ∼= T S∞

A /W where W is finite.

Thus cShyr
T = ωT

νT
(T S∞

A ). But: T S∞
A ⊂ T 1

A and so: νT (T S∞
A ) = 1. Hence

cShyr
T = ωT

νT

(
T S∞

A

) = (ln q)−rK

qd(g−1)

∏
p

Lp(1,χT )ωp

(
Tp(Op)

)
. (A.2)

From the equation above τT = ρ−1
T cShyr

T νT , we get the following relation, which can be viewed as a
class number formula analogue for algebraic tori defined over function fields:

cShyr
T = ωT

νT

(
T S∞

A

) = ρT τT μT
(
T S∞

A

) = ρT τT wT

hT
. (A.3)

Note that this result is none other than formula (A.1) obtained by T. Ono (see [Ono, 3.8.10′]).
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