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Abstract 

We continue the work initiated in our earlier article (.I. Pure Appl. Algebra 70 (1991) 53-72); 
as there, for G a group let B(G) (respectively N(G)) be the set of Hausdorff group topologies on 
G which are (respectively are not) totally bounded. In this abstract let A be the class of (discrete) 
maximally almost periodic groups G such that IGI = (G/G’]. We show (Theorem 3.3(A)) for 
G E A with IGI = y > w that the condition that 13(G) contains a chain C with ICI = p is 
equivalent to a natural and purely set-theoretic condition, namely that the partially ordered set 
(P(2y), c) contains a chain of length p. (Thus the algebraic structure of G is irrelevant.) Similar 
results hold for chains in B(G) of fixed local weight, and for chains in N(G). 

Theorem 6.4. If 7; E B(G) and the Weil completion (G, 7;) is connected, then for every 
Hausdorff group topology ‘XI C 7; with w(G,7;,) < CYI = w(G,IT;) there are 2”‘-many group 
topologies between ‘XI and 7;. 

From Theorem 7.4. Let F be a compact, connected Lie group with trivial center. Then the 
product topology 7;r on F” is the only pseudocompact group topology on F”, but there are chains 

C c Z3(Fw) and C’ c B(F”) with ICI = (2’)+ and IC’I = 2(‘+) such that 7il C nC and 7;) C_ TIC’. 
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1. Introduction and summary 

Given an infinite Abelian group G and a cardinal y such that logJG[ < y < 21Gl, 

the first-listed author with Berhanu and Reid [6] determined the width, height and depth 

of the poset B,(G) of totally bounded group topologies on G with (local) weight y. 

These results were extended by the second-listed author [48] to groups in the class A 

defined as follows: G E A if G in its discrete topology is maximally almost periodic 

and the commutator subgroup G’ of G satisfies /G/G’1 = IGI 3 w. Motivated by these 

results, we initiated in [ 151 the study of long chains of Hausdorff group topologies (with 

emphasis on totally bounded group topologies) on a given group. We showed there inter 

ah that an Abelian group G with IGI = N admits such a chain of length /? if and only 

if the obviously necessary set-theoretic condition is satisfied, namely that the power set 

P(cr) admits a chain of length ,0. In Section 3 of the present paper we extend this result 

to groups G E A, and we give in addition the correct extension of this characterization 

to chains of topologies of fixed local weight. Independently Dikranjan [26,27] and co- 

authors [5] studied these and similar issues in a larger, more general class of groups 

(the so-called weakly Abelian groups-see [5, (7.6)] for a definition) and improved our 

Theorem 3.3 (cf. [26, Theorem I]; 127, Theorem 2.21; [S, Theorem 7.71); according 

to [27, p. 1401, the proofs follow the proof of Theorem 2.13 of 1481. We announced 

Theorem 3.3 in the abstract [ 121. 

To our knowledge, chains (and anti-chains) of pseudocompact and of countably com- 

pact group topologies on Abelian groups were investigated for the first time in [13]. 

For compact, connected groups, this study is continued here in Section 7. Recently 

Dikranjan [28] has presented many new and interesting results concerning chains of 

pseudocompact group topologies for pre-compact varieties, for relatively free groups, 

and for Abelian groups; these results appear to be not closely related to ours in Sec- 

tion 7. 

The results of Section 3 give rise naturally to these questions: If G is an infinite 

discrete maximally almost periodic group with IGI = [G/G/I, must G admit a totally 

bounded group topology of weight log/G/? Does every totally bounded group topology 

on an infinite Abelian group G contain a (smaller) group topology of weight loglG[? We 

respond negatively to these questions in Theorems 3.15 and 3.12, respectively. 

While our principal focus throughout is on Hausdorff group topologies, we retreat 

briefly in Section 4 to show that every group G with JG/G’I 3 w admits a minimally 

almost periodic (in general, non-Hausdorff) group topology of countable local weight. 

This gives in Section 5 for such groups G an order-isomorphism from the set B(G) of 

totally bounded Hausdorff group topologies on G into the set N(G) of those which are 

not totally bounded, as well as a partial “fixed local weight” analogue in N(G) of the 

set-theoretic characterization of Section 3 for L?(G). 

The results of Section 6, all taken from the unpublished thesis of Remus [49], are 

included here in the interest of readability and completeness. The principal contribution 

is the exact computation, for suitably restricted group topologies T (i = 0, 1) on certain 

groups G, of the cardinality of the “topological interval” 



WW Comfort, D. Remus / Topology and ifs Applicutions 75 (1997) 51-79 53 

[%, 7;] = {S: 70 C S C 7;) S is a group topology for G} 

(Of course, the “interval” [‘&, 7;] is partially ordered, not necessarily linearly ordered.) 

In Sections 6 and 7, given a totally bounded group G = (G,7) of maximal weight 

21Gl whose completion (G, 7) is connected, we show that there are 22’c’-many totally 

bounded (necessarily connected) group topologies S on G contained in 7, and we classify 

exactly those cardinals ,0 for which the set {S E B(G): S C 7) contains a chain of 

length p. And given a compact, connected group G = (G,7’) with cf(w(G)) > w, we 

show that there are 2*lG’ -many pseudocompact (necessarily connected) group topologies 

S on G containing 7; and we classify exactly those cardinals ,D for which the set 

{S E B(G): S is pseudocompact and S > 7) 

contains a chain of length 0. Finally in Section 7 we give examples of compact metric 

groups (G, 7) such that 7 is the only pseudocompact group topology on G yet there 

exist long chains of totally bounded group topologies on G. 

Some of our results were announced in [12,11], and [14, 3.1011. 

2. Preliminaries 

Notation 2.1. The symbols (Y, ,LI and y denote (generally, infinite) cardinal numbers, 

and w is the least infinite cardinal. 

The symbols Z, Q, W and C denote respectively the set of integers, rationals, reals 

and complex numbers, in each case with the usual topology and the usual algebraic 

operations, and T = {c E C: ]<I = 1). The set of primes is denoted P. 

The cyclic group of order 1), is denoted Z(n). 

Except when dealing explicitly with the additive group C or one of its subgroups, we 

denote the identity element of each group G we consider (whether or not G is Abelian) 

by 1 or 1~. 

The center of a group G is denoted Z(G). 

The commutator subgroup of a group G is denoted G’. We note that when (G, 7) is 

a topological group the group G’ may fail to be ‘7--closed, so the quotient topology T4 

on G/G’ may lack the Hausdorff separation property. 

The notation N a G indicates that N is a normal subgroup of the group G. 

With every topological group G we associate the Bohr compactification bG of G and 

the Bohr homomorphism b from G into bG. 

The following statement of the properties we need is (in its essentials) taken from 

Heyer [37, V§4]. 

Theorem 2.2. For every topological group G = (G, 7) there are a compact group bG 

and a continuous homomorphism b from G onto a dense subgroup of bG such that: for 

every continuous homomorphism h from G into a compact group K there is a continuous 

homomorphism h from bG into K such that h = h o b. 
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(For an early construction of bG when G is a locally compact Abelian Hausdorff 

group, see Anzai and Kakutani [3]; for such groups G, they refer to bG as the universal 

Bohr compactijcation of G. To our knowledge, bG was defined and examined in the 

present unrestricted setting by Weil [56], then independently by Alfsen and Holm [2]. In 

the terminology of [56] and [2], the group here denoted bG is called the groupe compact 

attache’ h G and the maximal compact representation of G, respectively.) 

Terminology and notation 2.3. We say that a group G = (G, T) is pre-compact if the 

topology ‘T is the initial topology imposed on G by the Bohr homomorphism b : G + bG. 

A pre-compact Hausdorff group is said to be totally bounded. Thus the totally bounded 

groups are exactly those Hausdorff groups G whose Weil completion [55] ?? is a compact 

group. Since a topological group is a dense topological subgroup of at most one compact 

group, we have: A topological group G is totally bounded if and only if bG = G. 

Notation 2.4. The lattice of pre-compact group topologies on a group G is denoted 

PK(G); the set of totally bounded group topologies on a group G is denoted D(G); 

the set of Hausdorff group topologies which are not totally bounded on a group G is 

denoted N(G). 

The weight of a space X, and the local weight of X at p E X, are denoted w(X) and 

X(p, X) respectively; for a topological group G we write X(G) in place of X(1, G). 

The following theorem is well known in the Hausdorff context, but we could not find 

the general case stated explicitly in the literature. We include a proof for the reader’s 

convenience. 

Theorem 2.5. Let (G, ‘T) be a topological group. 

(a) If D is dense in G then every p E D satis$es x(p, D) = x(G) 

(b) If7 E PK(G) and x(G, 7) = (Y 3 w, then w(G, 7) = CY. 

Proof. (a) The inequality < being obvious, we show 3. It is enough to take the case 

p = 1 and to show that if A is a set of neighborhoods of 1 in G such that {UIID: U E A} 

is a local base at 1 in D, then A is a local base at 1 in G. Given a neighborhood IV of 

1 in G let V be a neighborhood of 1 in G such that V* C W; there is U E A such that 

UnDcVfID,so 

as required. 

(b) Let A be a local T-base at 1, and for U E A let 1 E Vu E ‘T and finite Fu C G 

satisfy VG’ Vu & U and Fu Vu = G. Then {xU: U E A, x E Fu} is a base 

for 7. 0 

It follows from Theorem 2.5 that for Q 3 w and G a group with 7 E a(G), the four 

conditions “x(G, 7) = CL”, “X(G, 7) = a?, “w(G, 7) = CY”, and ‘?u(G, 7) = CY” are 

equivalent. In what follows we use these conditions interchangeably. 
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For (Y > w and G a group we write 

B,(G) = (7 E B(G): x(G, 7) = a} and 

n/,(G) = (7 E N(G): x(G,‘T) = a}. 

The following two statements are very useful. Clearly (a) is a consequence of (b), 

but historically (a) preceded (b). A detailed proof of (a) is available in [36, 2858(b)]. 

To our knowledge, (b) is due to Pelczynski [43, 8.101; for a direct proof using modern 

techniques and for references to relevant papers of Hagler and Gerlits and Efimov and 

Sapirovskii, see Shakhmatov [52]. 

Theorem 2.4. Let G be an infinite compact group. Then 

(a) IG] = 2”(G), and 

(b) G contains a copy of the space (0, 1}“(G). 

Theorem 2.7. Let (G, 7;) be a totally bounded topological group and let w(G, 7;) = 

(~1 > (~0 3 /Gj 3 w. Then there is a Hausdofl group topology 70 on G such that 

70 & 7; and w(G,‘%) = CYO. 

Proof. It is enough to find a continuous isomorphism 7r from (G, 7;) onto a topological 

group H with w(H) = ~0. 

We note first that for arbitary (Y > w the generalized Cantor set F(Q) := (0, l}Q 

contains a compact set S such that ISI = IY and w(S) = CL Indeed for [ < LY define 

p(E) E F(t) by 

P(hl = 
{ 

0 ifrl#I, 
1 ifq=< 

and set X = {p(t): E < cx}. Then the set S := XF(a) = X U (0) (with 0~ = 0 for all 

[ < cu) is as required. 

It is a consequence of the Peter-Weyl theorem as generalized to arbitrary compact 

groups by van Kampen (cf. [35, 22.141) that the compact group (G,7;) embeds as a 

topological subgroup of a group K = ni,, Ki with each Ki a compact metrizable 

group (of matrices) and with ]I] = w(G, 7;) = w(G, 7;) = crt. In what follows we 

identify (G, 7;) with its image in K-that is, we write (G, 7;) C K. Using 2.6(b) and 

the preceding paragraph we write 

K > (G, 7;) > F(QI) > F(ao) > S 

with S compact and ISI = w(S) = cue; and using IG U S’ = CYO we find J C 1 so that 

IJI < CYO and the projection rr~ : K + KJ := n,,, Ki is one-to-one on G u S. 

We write rr = TJIG and H = T[G] 5 KJ. Clearly 

w(H) < ~[KJ] = IJl < ao. 

Now “~1 [S] is a homeomorphism, and S C (G, 7;) = cl~ (G, 7;). From rr~[S] C 

C~KVTJ[G] = cl~ H = z then follows w(H) = w(H) 3 w(S) = ~0, so finally 

w(H) = (~0, as required. 0 
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Corollary 2.8 (Remus [48, 2.91). Let G be an infinite discrete maximally almostperiodic 

group. Then some S < IGI satisfies Bb(G) # 0. 

Remarks 2.9. (a) Since a compact Hausdorff topology admits no strictly coarser Haus- 

dorff topology, the reader might question how Theorem 2.7 can be valid in the case that 

the hypothesized group (G,7;) is compact. This objection is not valid, since for such 

groups G the hypothesis IGI < w(G) JS incompatible with Theorem 2.6(a); indeed, every 

compact Hausdorff space X satisfies w(X) < IX/ (cf. [30, 3.1.211). 

(b) Attempts to discard the hypothesis CYO > IGI in Theorem 2.7 are thwarted for two 

reasons, (1) We show in Theorem 3.15 that there are groups G such that B(G) # 8, 

yet B,(G) = 8 f or every LY < /G/; and (2) we show in Theorem 3.12 that for every 

infinite Abelian group G (say with (G( = y 3 w) there is 7; E &r(G) such that every 

70 E B,,(G) with ‘& C ‘7-t satisfies cuo 3 y. 

Theorem 2.10. Let ‘& (i = 0, 1) be group topologies on a group G with 70 E PK(G). 

(a) I’& (i = 0, 1) is a local base at 1 for x, then thefamily A := {AoAI: A, E di} 

is a local base at 1 for 70 A 7;. 

Proof. (a) It suffices to show that A is a local base at 1 for a group topology on G. The 

four required properties given by [35, 4.51 are readily verified, using the fact (see for 

example [50, 9.22(b)]) that (G, 7) 0 IS a SIN-group in the sense that for every U E & 

there is V E & such that V C nzEC zUz_‘. 

(b) is immediate from (a). 0 

Remarks 2.11. (a) For a result stronger and more genera1 than Theorem 2.10(a), due to 

S. Dierolf and W. Roelcke, see [51, 4.1 I]. This dissertation contains also (pp. 43-44) an 

example showing that if in Theorem 2.10 above the topology 70 E PK(G) is replaced 

by an arbitrary group topology, the resulting assertion can fail. 

(b) Given a family t of group topologies on a group G, the topology Vt generated by 

U t is a group topology on G; we write Vtop t = Vgtol, t. Since Vtop t is the topology 

induced on (the diagonal copy of) G by the product space n,,, (G, t), we have Vtop t = 

Vgtop t E PK(G) if t C PK(G); thus PK(G) is a complete lattice. It is worthwhile to 

take note, however, of the following fact, which helps to explain our interest in Section 4 

in group topologies which do not satisfy the Hausdorff separation property: B(G) need 

not be a lattice, and PK(G) need not be a sublattice of the lattice of topologies on G. 

For an example to this effect fix distinct p, q E !P and let ‘& and T4 be respectively the 

p-adic and q-adic topology on the group G = Z. (A base at 0 in & is all sets of the form 

{L@: k E Z} (0 < n E Z).) Th en TV,‘&, E B(Z), but from Theorem 2.10(a) it follows 

that a subset U of Z which contains both a rP- and a T,-neighborhood of 0 satisfies 

U = Z. Thus 7n and r9 have no common lower bound in B(Z), and TP Agtop 74 = 

(0,Z) E PK(Z)\qq; every co-finite subset of Z is IT-,-open and Y&-open, so the 

inclusion TP Atop Tq > TP &top & is proper. 
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The above-cited example is from Kowalsky [41, 36E] (where V and A correspond to 

our A and V, respectively). See also Remus [45, pp. 18-211 for a detailed examination 

of this and related phenomena. 

Notation 2.12. A group G with its discrete topology P(G) is denoted Gd or (G, 7d). 

A group G with its anti-discrete topology (8, G} is denoted G,d or (G, Tad). 

Given an Abelian group G = (G, 7), the set of continuous homomorphisms from G 

to the circle group T is denoted G or (G, 7)^. Thus in particular 

G^d = (G, Y&d)* = Hom(G, ‘Q 

for every Abelian group G. 

In Theorems 2.13-2.16 we cite from the literature several results we need later. 

Theorem 2.13 (cf. [35, $161). Every Abelian group G of infinite rank such that (Gj = y 

contains a direct sum as follows: G > et<7 G, with each G, cyclic, /GcI > 1. 

Theorem 2.14 (Kakutani [40]). Every infinite Abelian group H satisfies lHom(H, ‘Q 1 = 

21Hi. 

Parts of the following result may be viewed as a refinement (in the Abelian context) 

of the fact that every totally bounded group G satisfies bG = G. 

Theorem 2.15 [22]. Let G be an Abelian group. For H a point-separating subgroup of 

Hom(G, ‘lI’) let TH be the topology induced on G by H. Then 

(a> TH E B(G); 

(b) (G,TH)^ = H; and 

(c) if H and I are different point-separating subgroups of Hom(G, ‘Q, then 7~ # Tt. 

Conversely, every 7 E t?(G) satisfies: H = (G,T)^ separates points of G, and 

T= TH. 

Finally: a subgroup H of Hom(G, ‘Q se p arates points of G if and only if H is dense 

in Hom(G, T) in the usual compact group topology (inherited from IrG). 

For a group G we denote by LA(bGd) the lattice of closed, normal subgroups of the 

Bohr compactification bGd of the discrete group Gd, and by Z,J the dual object (defined 

as in [36], for example) of bGd. The relations we need between these structures and the 

lattice PK(G) are given in the following theorem. 

Theorem 2.16. Let G be a group. 

(a) (Remus [45, 3.71; [46, Lemma 21) There is a lattice anti-isomorphism $ from 

PK(G) onto LA(bGd) such that every 7 E PK(G) satisfies bGd/$(‘T) = b(G, 7). 

(b) (Remus [48, 2.31) There is an order-isomorphism f from PK(G) onto a subset of 

P(Co) such that every totally bounded T E PK(G) satis$es jf(‘T)( = w(G,‘T). 

Notation 2.17. Let IX, p and y be infinite cardinals. Then 
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(a) C(y, 0) means: there is a chain C C P(r) such that ICI = ,L?; 

(b) E(y, p, LY) means: there is a chain C C P(r) such that ICI = ,LI and each C E C 

satisfies ICI = cy. 

The assertions of Theorem 2.18 are proved in Baumgartner [4]. See also [15, 311 for 

commentary and additional references. 

Theorem 2.18 (Baumgartner [4]). (a) C(Zw, 2(2w)) fails in some models of ZFC; 

(b) C(2”, 2(“+)) for all K 3 w; 

(c) C(K, K+) for all K > w; and 

(d) if GCH is assumed, then C(lc, 2”) for all K > w. 

Corollary 2.19. Let LY and y be injnite cardinals with cy < 2y. Then E(27, cy+, a) holds. 

Proof. If the chain C C P(o) witnesses C(a,cr+), then {C x a: C E C} witness 

E(cx x &,(~+,a). From IQ x c)il = LY < 2y then follows E(27,o+,a). 0 

It is noted in [15, 1.101 that if N, ,0 and y are cardinals with (Y 3 w such that 

E(r, p, cr), then p 6 2”. From this remark it follows, since a topological space (X, 7) 

with w(X, 7) < cy satisfies /7- < 2”, that if X is a set and C is a chain of topologies 

on X such that w(X, 7) < cy for each 7 E C (with cy > w), then ICI < 22e. We show 

now that for Tychonoff topologies a better inequality is available. 

Theorem 2.20. Let cy and /3 be cardinals with (Y > w, let X be a set, and let C be a 

chain of Tychonoff topologies on X such that ICI = fl and w(X, 7) < Q for each 7 E C. 

Then 0 < 2”. 

Proof. Clearly 1x1 < 2a. Suppose P = (2 a +, for 7 E C choose D(7) C X such that ) 
lD(‘j’J < (Y and D(7) is r-dense in X, and note from I[X]G”j < 2” that there are 

a (fixed) D 5 X and C’ C C such that IC’I = ,# and D(7) = D for all 7 E C’. For 

7 E C’ there is an embedding er : (X, 7) + [0, I]“, and since I([O, l]“)Dj = 2” < P 

there are distinct 7,‘7-’ E C’ (say with 7 2 7’) such that e7lD = eT/ ID. The functions 

Q-, Ed, are ‘T’-continuous on X and agree on the T-dense set D, so e7 = eT1 and 

hence 7 = T’, a contradiction. 0 

3. Chains in B(G) when /G/G’1 = IG] 

For groups G as in the title of this section we relate the existence of chains in a(G) of 

length /3 to condition C(2?, p), and we relate the existence of chains in B,(G) of length 

0 to condition E(2Y,P, a). The following consequence of Theorem 2.16(b) is basic. 

Theorem 3.1. Let cr, ,O and y be infinite cardinals and let G be a group such that 

IGI = y. Ifthere is a chain C C B,(G) such that ICI = 0, then E(27, ,B, a) holds. 
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Proof. Since the dual object CO of bGd satisfies lCel < 27 (Remus [48, 2.5]), this is 

immediate from Theorem 2.16(b). 0 

In our work [15, 3.4, 4.41 we showed that if G is an Abelian group or a free group 

with /GI = y 3 w, then D(G) contains a chain C with jC( = p if and only if C(27,p) 

holds. Now in Theorem 3.3 we generalize this statement. 

The following lemma is an immediate consequence of [48, 2.71. 

Lemma 3.2. Let (G,7) b e a topological group and let N a G. Let Tq be the (possibly 

non-Hausdom quotient topology on G/N and let go, gl E PK(G/N) satisfy Si > T4, 

go # gI. Let S, be the initial topology on G with respect to the canonical homomorphism 

4:G+GIN. ThenTVSof7VS1. 

Theorem 3.3. Let CY, ,l3 and y be injiniinite cardinals, and let G be a (discrete) maximally 

almost periodic group such that IG/ = IG/G’I = y > w. 

(A) The following conditions are equivalent: 

(4 G(2?, P); 
(b) there is a chain C C f?(G) such that ICI = p. 

(B) Let logy < (Y < 2?. Then either 136(G) = 8 for all 6 < cy, or the following 

conditions are equivalent: 

(4 E(2Y, P, a); 
(b) there is a chain C C B,(G) such that ICI = ,O. 

Proof. (This proof is based in part on the proof of Theorem 2.13 of [48].) That 

(b) + (a) in (A) is obvious; that (b) =+ (a) in (B) is a restatement of Theorem 3.1. 

For (a) + (b) in (A), use Theorem 2.7 to find S < y and 7 E Bh(G); the (not nec- 

essarily Hausdorff) quotient topology T4 on G/G’ then satisfies w(G/G’, &) < 6. Us- 

ing I(G/G’,T,)^I < S < 2y (cf. [48, 2.41) and Theorem 2.14 it is easy to see from 

(a) that there is a chain X of point-separating subgroups of Hom(G/G’, a) such that 

IX/ = /3 and each H E 31 satisfies H > (G/G’, ‘&)*. (For details, based on the relation 

lHom(G/G’, ‘QfiG/G’, ‘&)-I = 27, see [ 15, 3.41.) The topology r~ induced by H on 

G/G’ satisfies SH > T4, and (with SH the initial topology on G with respect to the 

canonical homomorphism from G onto G/G’) the map H + ‘7-V SH from 3t into a(G) 

is one-to-one by Lemma 3.2. The proof of (A) is complete. To prove (a) =+ (b) in (B), 

it being assumed that some b < cr satisfies B&(G) # 8, repeat the proof of (a) =+ (b) 

in (A) with two modifications: (1) Choose 7 E as(G) so that not only 6 < y but also 

S 6 cy, and (2) use (a) to arrange [HI = cx for each H E 31. Each H E 31 satisfies 

w(G,&) = w(G/G’&) = IHI = LY, 

and hence 

w(G,‘TVSH)<W(G,~)+W(G,SH)=~+~:=~ 

by Theorem 2.5(b), while w{G, 7 V SH) 3 (Y follows from 

(TVSH)~>~~V(SH)~=~~VS^H==H. 0 



Remark 3.4. We first announced Theorem 3.3 in [12]. A result which improves, extends 

and subsumes Theorem 3.3 has been announced and proved by Dikranjan [26,27] and 

co-authors [5] (see Section I above). 

Remark 3.5. A routine argument, as in [6, 5.21 or [30, 15.11, for example, shows that 

if a: < logy or QC > 27 then every group G with JG/ = 7 satisfies B,(G) = 0. Thus 

in Theorem 3.3(B) the condition log-* c, < Q < 27 cannot be omitted. It was shown by 

Dikranjan [26, p. 1411; 127, Lemma 2. I] that for a maximally almost periodic group G 

one has B,(G) # 0 if and only if (Y E [y(G),r(G)]; see also in this connection [5, 

Lemma 7.31. In these statements y(G) is defined to be min{K: B,(G) # S}, and r(G) 

is the weight of the finest totally bounded group topology on G. 

Corollary 3.6. Let (Y, ,8 curd y be it@itc cardinals .such that logy < (Y < 2y, and let 

G he u group such that IGI = y atld either G is Aheiian or G is a free group. Then the 

following conditions are equivalent: 

(a> BP, P, a); 
(b) there is a chain C 2 B,(G) such that ICI = p. 

Proof. That G admits a totally bounded group topology of weight logy is given by [6, 

4.41 when G is Abelian and by [48, 2.151 when G is a free group. Thus Theorem 3.3(B) 

applies. 0 

Corollary 3.7. If a, /?I and y ure as in Corollary 3.6, then there is a chain C C: B3,(G) 

such that IC( = cy+. 

Proof. From Corollaries 2.19 and 3.6. 0 

Remark 3.8. The condition ICI = (Y+ in Corollary 3.7 cannot in general be strengthened 

in ZFC to ICI = 2”. Indeed fix y 3 w, choose G with IGI = y, and set cy = 27. Then 

cy, y and G are as in Corollary 3.6, so if there is a chain C C 13,(G) with /Cl = 2” 

then E(27, p, N) holds by Corollary 3.6 and hence in particular C(27,2”) holds; but 

as indicated above in Theorem 2.18 this condition fails even for y = w in some models 

of ZFC. 

It is tempting to strive for a direct proof of the implication (b) + (a) of Thco- 

rem 3.3(B), avoiding reference to the dual ob.ject & and the order-preserving embedding 

f : PK(G) 4 P(Ce) of [48, 2.51, by responding positively to the following natural qucs- 

tion [ 11, Question 21. 

Given a set X and a chain C of (Hausdorff) topologies on X with ru(X, 7) = a for 

each 7 E C, can one choose for each 7 E C a base U(7) for 7 such that iB(7)/ = CY 

and B(7) i a(r) whenever i’, 7’ E C with 7 C T”! 

When X is an Abelian group and C C B,(X), Theorem 2.15 furnishes a positive 

response to this question. Nevertheless the answer is “No” in general, as we shall sec. 
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Theorem 3.9. Let y 3 w. For every Abelian group G with JG( = y there is a chain C 

of Hausdoflgroup topologies on G with \C( = T+ and w(G, ‘T) = y for each 7 E C 

such that one cannot choose a base i3(-r) for 7 so that simultaneously (I) iB(‘T)I = y 

for each 7 E C and (2) B(7) C B(7’) w h enever ‘T,‘T’ E C with ‘T C ‘7. One may 

arrange further that the discrete topology 7d is in C, and that C\{Td} C a,(G). 

Proof. With H = Hom(G, T) we have \HI = 2y by Theorem 2.6(b). Now recursively, 

using 27 > y+ and IG] = y, choose a y+-sequence 3t = {H(E): [ < r+} of subgroups 

of H such that H(0) separates points of G, 77 < [ < yf implies H(q) C H(E) and 

H(E) # H(q), and each H(t) satisfies IH( = y. By Theorem 2.15 and [6, 4.31 the 

map H(t) + ‘THcE) is an order-isomorphism from the chain X into B,(G). 

Now let 7 be any group topology for G such that w(G, 7) = y and each TH(E) 2 7. 

(For example, let ‘7- = 7d.) To see that the chain C := {~H(Q: [ < r+} U (7) is as 

required it is enough to show that if A([) is a base for 7~~~1 then 

L 1 u 40 3 Y+ 
+ 

(for then no base A for 7 with IAl < y can contain each A(<)). But this is obvious: 

For each < < yf there is 

U(C) E fi(E+l)\fi(E) = G(c+I)\ u T&)r 

T<E 

so there is B(t) E d([ + l)\UnGE A(v). 0 

We have noted already in (the proof of) Corollary 3.6 that for every Abelian group 

G with ]G/ = y there is 7 E &s-,,(G); m ee as shown in [6], using [22], one may d d 

choose 7 = 7~ with H a dense subgroup of the compact group Hom(G, T) 2 TG with 

(HI = logy. This result makes natural the following question, which to our knowledge 

has not been addressed in the literature. 

Question 3.10. Let G be an Abelian group with IGI = y > w, and let 7 E a(G). Must 

there exist S E E&, (G) such that S C ‘T? 

We give a strong negative answer to this question. 

Lemma 3.11. Let G, (i = 0, 1) be totally bounded topological groups and h : Gi --H Go 

a continuous surjective homomorphism. Then 74Go) 6 w(G1). 

Proof. The Weil completion [55] G of G, satisfies w(c) = w(Gi). It is well known that 
-- 

the function h, being uniformly continuous, extends to a continuous surjection h : Gi - 

Go (see in this connection for example [7, 11133, Remarque following Proposition 61). 

The result then follows from this general topological statement: A continuous surjection 

between compact Hausdorff spaces cannot raise weight (cf. [30, 3.1.221). •II 
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It follows in particular from Lemma 3.11 that if G is a group and z E B(G) (i = 0, 1) 

with 70 G 7;, then w(G, ‘&) 6 w(G, 7;). When the condition 7; E B(G) is omitted the 

resulting statement can fail; for an example it is enough to choose any group G with 

a totally bounded group topology 70 such that w(G, 70) > IGI and to take for 7; the 

discrete topology on G. 

Theorem 3.12. Let y and cr be cardinals such that w 6 y < Q < 27. For every Abelian 

group G with JG( = y there is 7 E Bti,(G) with this property: 

every Hausdorfgroup topology S on G such that S C 7 

satisjes w(G, S) 3 y. (*) 

Proof. For such cy and y there is a point-separating subgroup H of Hom(G, T) such that 

IHI = cry, and the topology 7 = 7~ (notation as in Theorem 2.15) satisfies 7 E B,(G). 

Thus B,(G) # 0, and when y = w any ‘T E B,(G) is as required; in what follows we 

take y > w. 

We claim first that it is enough to show that some subgroup G’ of G satisfies (the 

analogue of) (*). Suppose G’ C G and there is 7’ E B,(G’) such that every S’ E B(G’) 

with S’ C 7’ satisfies w(G’,T) 3 y, and let H’ = (G’,‘T’)^; then /H’] = pi and 

7’ = ‘&J by Theorem 2.15. For each h’ E H’ choose h E Hom(G, a) such that 

h/G’ = h’, and choose further a point-separating set F of homomorphisms from G/G’ 

to T such that IFI < JG/G’J < y; let H be the subgroup of Hom(G, T) generated by 

{h: h’ E H’} u{fo$: f E F} 

(with 4 : G -+ G/G’ th e usual homomorphism) and define 7 = 7~. Then 7 E B(G), and 

since INI = cu+y = cz we have w(G, 7) = CY by Theorem 2.15-that is, 7 E B,(G). If 

S E B(G) and S C 7 then every Ic E (G, S)^ satisfies kIG’ E H’, so SIG’ s TIG’ = 7’; 

thus w(G,S) > w(G’,SIG’) 3 y. The claim is proved. 

From y > w and Theorem 2.13 follows the existence of a subgroup G’ of G of the 

form 

with each GE cyclic, /GE/ > 1. We choose disjoint subsets A, (i = 0, I) of y such that 

y = A0 u A1 and IAil = y, and we write G’ = Gb @ G; with 

The compact dual group ?? of the discrete group G’ satisfies 

&~X~=J--J~X~~ 

EEA11 EEA1 

(cf. [35, 23.211) with each G a compact metrizable group. For [ < y we choose a finite 

or countable dense subgroup De of Et. (When GE is finite we must choose DC = Gg; 





The groups CH(~(Z)) are S-closed in H, so from the relation 

ker(r,) = n { CH (y(z)): :G E H\ker(r,)} 

-a consequence of the relation R: $! ctr(2/(:I;)-it follows that ker(Ti) is S-closed in H. 

Hence H/ker(T,), endowed with the quotient topology S,, is a (Hausdorff) topological 

group. Since algebraically H/ker(r,) is th e van der Waerden group Gi we have S, = z, 

so rITi : (H, S) t (Gi, 7J is continuous, as required. 0 

Theorem 3.15. For every y > c there is a group G such that 

(i) G is divisible and Gd is a maximally almost periodic group; 

(ii) IGI = IG/G’/ = y; and 

(iii) every S E B(G) satisfies w{G,S) 3 y. 

Proof. Let L be a compact, conncctcd Lie group with trivial center. It is then immediate 

from Bourbaki [8, p. 101, Proposition 21 that L = L’. Let A be a divisible Abelian group 

such that IAl = y, and define H = @? L and G = H x A. Then G is divisible, and Cd 

is maximally almost periodic since L,i and A,1 are so. From IHI = y. c = y and IAl = y 

follows IGI = y and JG/G’I = \A( = y, so it remains to show (iii). 

Given S E B(G) we have SIH E B(H) so by Theorem 3.14 the product topology 

7 on LY satisfies SIH > TIH. Then from Lemma 3.11 and the ‘T-density of H in LY 

follows 

w(G,S) > w(H,SIH) 3 w(H:TlH) = w(Ly, 7) = y, 

as required. 0 

For a specific example as in Theorem 3.15 one may choose L = SO(3,IIR), A = 

037 Q. 
It is shown in the preprint [5, 7.131 that for every y > w there is a group G of finite 

exponent satisfying conditions (ii) and (iii) of Theorem 3.15 above; see also [26, p. 1451 

for an earlier announcement. 

We show in Theorem 3.17 that for suitably restricted van der Waerden groups Gi and 

for H = @+-I Gi, the conclusion of Theorem 3.14 can strengthened. 

Lemma 3.16. Every compact, algebraically simple Lie group is u van der Waerden 

group. 

Proof. The connected component C of such a group G satisfies either C = {l} or 

C = G, so G is totally disconnected or connected. In the first of these cases, since 

every compact totally disconnected group has a base at the identity consisting of open- 

and-closed normal subgroups (cf. [35, 7.7]), G is finite, hence discrete, hence a van der 

Waerden group. In the second case G is a compact, connected, (algebraically) simple Lie 

group and hence is a van der Waerden group (see Remark 3.13). 0 
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Theorem 3.17. Let { (Gi, x): i E I} b e a set of compact, algebraically simple, non- 

Abelian Lie groups, let 7 be the product topology on G := n,,, Gi, and let H = 

aiEI G,. Then 7/H is the only totally bounded group topology on H (in symbols: 

B(H) = {‘UH)). 

Proof. Given S E B(H), f rom 3.14 we have S > 71H. To show S 2 71H, it is enough 

to show that every S-continuous homomorphism h from H to a compact group K is 

71 H-continuous. By the Peter-Weyl-van Kampen theorem (cf. [35, 22.141) each such 

K embeds algebraically and topologically into a product of the form n,s,,-, u(n,)an 

with u(n) the group of n x n unitary matrices over the complex field, so it is enough to 

treat the case h : H + U(n). It follows from (the proof of) [29, 7.3.1 l] that the S-closed 

group ker(h) has algebraically the form ker(h) = (BiEJ Gi) x {I~\J}, so the group 

is (isomorphic to) a subgroup of U(n). Let Uc and 70 denote the topologies induced on 

L by U(n) and (G, 7), respectively, and let (L,&) = Lx(“) and (L, 70) = n,,,,, G, 

be the corresponding Weil completions. Since UIJ > 70 by Theorem 3.14, the identity 

function id : (L, Z&j + (L, 70) extends to a continuous homomorphism 

Z:(L,Uo) + n Gi 

iEI\J 

It is well known that every closed subgroup, and every (Hausdorff) quotient group of a 

Lie group, is again a Lie group (cf. [53, 2.12.16,2.9.6]), so in particular the group (L, Z-40) 

and its quotient (L,&)/ker(id), which is topologically isomorphic to n,E1,J G,, is a 

Lie group. If I1\JI 3 w then (L,&)/ker(id) IS a nondiscrete Lie group in which every 

neighborhood of 1 contains a nontrivial subgroup, contrary to [44, 2.2.141. Thus I\J is 

finite. Since (as is easily verified) each product of finitely many van der Waerden groups 

is itself a van der Waerden group, and since by Lemma 3.16 each of the groups (Gi, x) 

(i E I) is a van der Waerden group, the group (L, 70) is a van der Waerden group. It 

is then clear that h: (H,T/H) = (L,%) CD ker(h) + u(n) is continuous as required; 

indeed given U open in U(n) the function ho := hlL satisfies h,‘(U) E ‘&, so h-’ (U), 

which is ((h,‘(U)) x (Il,,r,~ Gi)) n H, is open in (H,‘TlH). •I 

Remarks 3.18. (a) It is a theorem of Goto [33, Corollary 31 that every proper normal 

subgroup of a simple, connected Lie group G lies in the center of G. Thus the hypothe- 

sized condition on the groups G, (i E 1) in Theorem 3.17 is equivalent to the condition 

that each of those groups is either a finite, non-Abelian simple group or a compact, 

connected, simple Lie group with trivial center. 

(b) In work independent of the present paper, the authors of [5, 7.141 have shown a 

special case of Theorem 3.17 above: For an arbitrary cardinal y 3 w and with A the 

usual alternating group of degree 5 in the discrete topology, the only totally bounded 

group topology on ey A is the restriction to By A of the product topology on AT. 
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(c) It is shown by Ajtai, Havas and Komlos [l] that every infinite Abelian group 

G admits a Hausdorff group topology 7 which is not maximally almost periodic. It 

is interesting to note that the analogous assertion fails for many infinite non-Abelian 

groups. For examples to this effect let {F,: i E 1) be any set (not necessarily faithfully 

indexed) of finite groups with 111 3 w and with 1 = lZ(Fi)] < IFi/ for each i E I, 

give each Fi the discrete topology, and let 7 be the product topology on G := ni,, Fi. 

Then just as in the proof of Theorem 3.14, reference to van der Waerden groups now 

being suppressed, one sees that for every subgroup El of G satisfying H > @,i,I Fi and 

for every Hausdorff group topology S on H, each epimorphism 7r, : (H, S) ---H (Fi, ‘Q 

is continuous. Thus the points of H are separated by S-continuous homomorphisms 

into compact groups, i.e., (H, S) IS necessarily a maximally almost periodic topological 

group. 

4. On the existence of minimally almost periodic group topologies 

The results of this section are all due to the second-listed co-author and are taken from 

the unpublished thesis [49, Kapitel 41. Here we construct (in general, non-Hausdorff) 

group topologies which WC use in Section 5 to find long chains of Hausdorff group 

topologies which are not totally bounded. 

We remind the reader: A topological group (G, 7) IS minimally almost periodic if and 

only if lb(G)1 = l-that is, if every 7-continuous h E Hom(G,K) with K compact 

satisfies h(z) = 1~ for all IC E G. 

The following result is basic to our argument. 

Lemma 4.1. Let G be a group with normal subgroup N such that G/N has a minimally 

almost periodic group topology 7 # Tad, and let 24 be the initial topology on G induced 

by the canonical homomorphism 4 : G + (G/N, 7). Then 

(i) (G, U) is a minimally almost periodic topological group; 

(ii) (G,U) # Gad; and 

(iii) x(G, U) = x(G/N, 7). 

Proof. Clearly 7 = U,, so (ii) and (iii) are obvious. To prove (i) let h E Hom( (G, U), K) 

with K compact and h continuous. Then N C ker(h) and the homomorphism h : G/N + 

K such that L o 4 = h is T-continuous on G/N, so h(z) = E(zN) = 1~ for every 

IC E G, as required. 0 

The following theorem paves the way for Theorem 4.5, the principal result of this 

section. 

Theorem 4.2 (Ajtai, Havas and Komlos [l]). Let G = Z or G = if@“) (p E IP) or 

G = CD, Z(P) @ E p> or G = CBllCw Z(P,) tirL E PI with P, < P,+I (all n < ~1. 
Then G admits a Hausdorff minimally almost periodic group topology. 
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Lemma 4.3. Every group G with IGIG’ > w has a quotient isomorphic to one of the 

groups listed in Theorem 4.2. 

Proof. Clearly we may assume that G is an infinite Abelian group. We consider two 

cases. 

Case 1. G is a torsion group. Let G = @,,n G, be the usual resolution of G into its 

p-primary components (cf. [35, Appendix A]; [31, §S)]. If each G, is finite then there 

are infinitely many p E IP such that 1 < lGp] < w with G, a direct sum of cyclic groups, 

so G has a quotient of the form G/N = encw Z(p,) with p, < p,+t (all n < w). 

Suppose then that some G, is infinite, and note that G, = G/ @ {GP: q E IF’, q # p}. 

Since G, is an infinite Abelian p-group, there is by [3 1, 32.31 a subgroup A of G, of the 

form A = eiCI Z(pF1) such that G,/A is divisible. If G, = A then G, has a quotient 

of the form G/N = eU Z(p); if G, # A then G/A is the direct sum of groups of the 

form Z(p”), hence has Z(p”) as a quotient. 

Case 2. G is not a torsion group. Let T be the torsion subgroup of G, set H = G/T, 

and let B be a maximal independent subset of H. Then H/(B) is a torsion group, so 

if [H/(B) 1 3 w the desired conclusion follows from Case 1. We assume therefore that 

1 H/(B) ( < w. If B is infinite then from 

HIP) N (HI2(@)/( @)/2(B)) = (H/2@))/ (@ z(2)) 
IBI 

it follows that H/2(B) is an infinite torsion group, so again Case 1 applies; if B is finite 

then H is finitely generated and from the familiar structure theorem for finitely generated 

Abelian groups ([35, A.271; [31, 15.5)] it follows that Z is a quotient of H. 0 

Lemma 4.4. Let (G, 7) b e a countable Abelian Hausdofltopological group. Then there 

is a HausdorfSgroup topology S for G such that S C 7 and x(G, S) = w. 

Proof. For 1 # x E G let U, be a T-open neighborhood of 1 such that x $ U,, and let 

S be the smallest group topology for G containing each of the sets U, (1 # z E G). 0 

Now we can state the main result of this section. 

Theorem 4.5. Every group G such that (G/G’1 3 w admits a minimally almost periodic 

group topology ‘T such that T # Tad and x(G, 7> = w. 

Proof. This is immediate from Lemmas 4.1, 4.3, 4.4 and Theorem 4.2. 0 

Remark 4.6. It is natural to inquire when looking at Theorem 4.5 whether every infinite 

Abelian group admits a Hausdorff minimally almost periodic group topology. The answer 

to this question is “No”; indeed the authors have noted in [lo, 351 that for every infinite 

cardinal y there is an example G to this effect with IG/ = y and with G an Abelian 

torsion group of bounded order. To the authors’ best knowledge there exists at present 

no characterization or classification of those Abelian groups which admit a Hausdorff 



minimally almost periodic group topology. For some information on groups of this kind, 

the interested reader may consult Remus [47]. 

5. Chains in N(G) when IGIG’ = IGJ 

Here for groups G with jG/G’( = /Gj = y 3 w we use the results of Section 4 to 

construct an order-isomorphism from the partially ordered set B(G) into N(G). This 

furnishes in Theorem 5.3 for such groups G a chain C 5 NQ(G) with JCJ = 0, provided 

condition E(27, ,B, CX) is assumed. 

Though our first lemma is a special case of [25, Lemma 11, we include a proof in the 

interest of completeness. 

Lemma 5.1. Let Si (i = 0, I) be group topologies on a group G such that SO C &. if 

there is an S1 -dense subset D of G such that SO 1 D = S1) D, then SO = S1, 

Proof. It suffices to show that every St -neighborhood U of 1 satisfies SO - int U # 0. 

Given U, let V be a symmetric &-neighborhood of 1 such that V2 C U, and let W E Se 

satisfy W n D = V n D. From W E St follows 

so@#Se-intW=WcSo-intU. 0 

Theorem 5.2 [49, 5.11. L”_’ (G, 7) b. e a minimally almost periodic group with 7 # T&, 

and for S E 23(G) define S = S V 7. Then 

(a) the map S + s is an order-isomorphism from the partially ordered set B(G) into 

N(G); and 
(b) ifin addition x(G, 7) = w then every S E B,(G) (cx > w) satis$es s E N,(G). 

Proof. (a) From S > S E B(G) it follows that each of the group topologies s satisfies 

the Hausdorff separation axiom. If S E 23(G) then from 7- C S it would follow that 

the minimally almost periodic topology 7 satisfies 7 E PK(G), so that 7 = ‘&. The 

proof that s E N(G) whenever S E B(G) is complete. 

For the isomorphism statement in (a) it is enough to show that the map S + S is 

strictly monotone in the sense that 

if&EB(G) (i=O,l) with&cSi andSo#Sr, thenSe#St. (*I 

(Indeed in any upper semi-lattice L a map L + L of the form s + S = s V t (for fixed 

t E L) is injective whenever it is strictly monotone, as CO = .Ft gives secist = & V ft = 

&J = s;.) 

To prove (*), let Si E B(G) (i = 0, 1) satisfy Se C St and Se = St, and let &, di 
and dz respectively be local bases for SO, St and 7 at 1. Since St A ‘7 is a minimally 

almost periodic, pre-compact group topology on G we have St A 7 = I$. Now from 

Theorem 2.10(a) the set A := {Al AZ: Ai E A,} is a local base for St A 7- at 1, so 
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Si A T = ‘& gives Al . A2 = G for all Ai E di (i = 1,2). It is then immediate that the 

“diagonal” n = {(p, p): p E G} is dense in (G x G, Si x r): Indeed if (pi, ~2) E G x G 

and Ai = Ai’ E di then to find p E G such that (p,p) E (p1Al) x (p?Az) it suffices to 

choose ai E Ai so that ala;’ = pl’pz and to set p = plal = pza;?. 

Now for i = 0,l the diagonal map 

&(G,S,)+(GxG,S,x7-) 

given by p + (p, p) is an algebraic and topological embedding, so from g = g follows 

Se x 71 A = S1 x 7JA. Since A is Si x ‘T-dense in G x G and So x 7 C: Si x 7 we 

have So x 7 = S1 x 7 from Lemma 5.1, as required. 

(b) Identifying (G,S) algebraically and topologically with the dense subset A of 

(G x G, S x 7) as above, using Theorem 2.5(a) we have 

~(G,S)=~(GXG,SX~)=X(G,S)+X(G,~)=~~+~=~~, 

as required. 0 

Theorem 5.3. Let Q, ,D and y be infinite cardinals, and let G be a (discrete) maximally 

almost periodic group such that (GI = /G/G’1 = y 3 w. 

(A) The following conditions are equivalent: 

(4 GP, P); 
(b) there is a chain C c B(G) such that ICI = p; 

(c) there is a chain C 2 N(G) such that ICI = ,O. 

(B) Let logy < (Y < 2?. Then either Bh(G) = 8 for all b < a, or (a) and (b) are 

equivalent and each implies (c): 

(4 JWJ, P, a); 
(b) there is a chain C 2 B,(G) such that ICI = p; 

(c) there is a chain C C N,(G) such that ICI = /3. 

Proof. The two equivalences (a) H (b) are from Theorem 3.3, restated here for emphasis. 

By Theorem 4.5 there is a minimally almost periodic group topology 7 # Tad on G 

such that x(G,7) = w, so the two implications (b) + (c) follow from Theorem 5.2. 

That (c) + (a) in (A) is obvious. 0 

We have been unable to determine whether the implication (c) + (a) in (B) holds in 

Theorem 5.3. Specifically, we pose this question. 

Question 5.4. Let CY, /3 and y be infinite cardinals such that logy < (Y < 27. Let G be a 

group with IGI = y and with a chain C C N,(G) such that ICI = ,0. Does E(27, p, a) 

hold? 

We indicated above in (the proof of) Corollary 3.6 that every Abelian group G with 

IG( = y 3 w, and every free group G with IGI = y 3 w, satisfy &s,(G) # 8; therefore 

such groups satisfy all hypotheses of Theorem 5.3. We have been unable to answer 

Question 5.4 even for such groups G. 
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Remark 5.5. In the absence of the maximally almost periodic hypothesis of Theo- 

rems 3.3 and 5.3, the existence of a long chain in N(G) does not imply the existence of 

one in L?(G). Indeed we show now that 13(G) = 0 is possible. 

Theorem 5.6. Let y > w. There is a group G with IGI = IG/G’J = y and I?(G) = 0 

with the following properties. 

(A) For all p 3 w the following conditions are equivalent. 

(2) C(2’> Ph 

(B) 
(b) there is a chain C 2 N(G) such that ICI = p. 

If logy 6 (Y < 2a and E(27, /3,0) holds, then there is a chain C c Na(G) such 

that ICI = p. 

Proof. Let n E lV with n 3 2 and let GL(n,Q) and SL(n,Q) denote respectively the 

general linear and the special linear n-dimensional matrix groups with entries in Q. It 

is known (see for example Hein [34, Kapitel 1, $21) that (GL(n,Q))’ = SL(n,Q), 

Z(GL(n,Q)) = Q* (th e multiplicative group of nonzero rational numbers), and 

GL(n, Q),‘SL(n, Q) = Q*. 
Now define G = @_, GL(n, Q). Then 

G/G’ = @ GL(n, Q)/ @ SL(n, Q) = @ Q*, 
-I Y Y 

so (Gl = [G/G’1 = y. Since the (discrete) group GL(n, Q) is not maximally almost peri- 

odic (cf. [35, 22,22(g)]), surely Gd is not maximally almost periodic; that is, B(G) = 8. 

Now given /3 2 w, the implication (b) + (a) of (A) is clear, To prove (a) 9 (b), 

and to prove (B), use $_, Q* = Z(G) 2 G and note from Theorem 5.3 above that 

there is a chain C’ 2 N($, Q*) such that (C’l = p (and also C’ c ni,(@, Q) if 

E(27, p, CY) holds). For ‘7- E C’ the topology S(T) := {zU: n: E G, U E 7) satisfies 

S(7)/ @_, Q* = ‘7-and S(7) E N(G) (and with S(7) E N,(G) if 7 E Nti($? Q*)), 

so C := (S(7): 7 E C’} is a chain as required. q 

6. Totally bounded group topologies on certain non-Abelian groups 

The results of this section, with 6. I-6.10 all from the unpublished thesis of Remus [49, 

Section 3.2 of Kapitel 31, are presented here for use in Section 7. The principal compu- 

tation is in Theorem 6.4: If 7; (; = 0, 1) are totally bounded group topologies on a group 

G with 70 C 7; and (G, 7;) connected and w(G, 70) = era < ~1 = w(G, x), then the 

“topological interval” [‘&, 7;] (defined as in Section 1) satisfies I[%, 7;]) = 2”’ I 

Throughout this and the next section, given a topological group G, we denote by F(G) 

the set of compact, connected normal subgroups of G. 

Lemma 6.3. Let G be a topological group and N 4 G. The connected component C of 

N sati$es C a G. 
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Lemma 6.2 [39, 4(l)]. If M a N Q G with M, N and G compact and connected, then 

M a G. 

Lemma 6.3. Let G he an infinite compact group and H a closed normal subgroup. Then 

(a) (,[16, 6.11) w(G) = w(H) + w(G/H); 

(b) ([38, 3.21) if H is a totally disconnected subgroup of the connected component of 

G, then w(G) = w(G/H). 

Theorem 6.4. Let (G, 7;) be a totally bounded topological group with w(G, 7;) = crl > 

w and with (G, 7) 1 connected. Then every totally bounded group topology 70 on G such 

that To 2 7; and w(G,To) = oo < CYI satisfies \[%,‘T’I]\ = 2”‘. 

Proof. The anti-isomorphism $ : PK(G) + LA(bGd) of 2.16(b) satisfies b(G,S) = 

bGd/@(S) for S E PK(G). I n what follows we write q(x) = Ni (i = 0, 1); suitably 

restricted, I,!J then gives an anti-isomorphism from the “interval” [‘&, 7;] of totally bounded 

group topologies on G between 70 and 7; onto the “interval” [Ni , NO] of closed, normal 

subgroups of bGd between Ni and NO. The map 

4: [Nl,No] --sf [{l>,NolNt] c: LA((GJ?)) 

given by 4(N) = N/N 1 IS an order-isomorphism. We write MO = @(NO) and we show 

I[{l},Mo]l = 2”‘. F or notational convenience we write G = (G, 7;) and ?? = (G, 7;), 

and we denote by C the connected component of MO. 

Since w(G) = w(c) = NI and each M E LA@) is closed in G we have ILA(??)I 6 

2”‘. We claim 

(1) w(C) = (~1 and 

(2) IF(C)I = 2Q’. 

(1) The group MO/C is totally disconnected, so from C a ?? and G/MO = 

(G/C)/(Mo/C) (cf. 6.1 and [35, 5.351) we have w(??/Mo) = w(??/C) (using 

Lemma 6.3(b)). From ??/Mo = (G,$) then follows UJ(??/C) = ~0, so w(C) = ~1 

by Lemma 6.3(a). Thus (1) is proved. TO prove (2) we cite the proof of Theo- 

rem 6.5 in our work [16]: There is a continuous epimorphism h from C onto a product 

K = nicI K, of compact connected metrizable groups with 111 = w(C). (The proof 

uses a standard structure theorem from the theory of compact connected groups-see 

for example Price [44, 65.61). When the connected component 20(C) of the center 

of C satisfies w(Zo(C)) < w(C) the groups Ki may be chosen (non-Abelian) Lie 

groups, and when w(Zo(C)) = lu(C) one may choose Ki = T for all i E I.) In 

the present case from (1) we have 111 = (~1. For F E 3(K) let CF be the con- 

nected component of h-‘(F). Then Cp a C (by Lemma 6.1) and h[Cp] = F by 

[35, 7.121; thus the map F + C F is one-to-one from 3(K) into F(C). Clearly 

jZF(K)I 3 2*‘, so (2) is proved; finally from Lemma 6.2 follows F(C) 2 [{l}, MO], so 

2a’ 2 (LA(??)I > \[{l}, MO]\ 3 j3(C)I = 2al, as required. q 

Now in Theorems 6.5 and 6.7 we give two consequences of Theorem 6.4. 
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Theorem 6.5. rf (G, 7) is a totally bounded group such that w(G, 7) = 21Gl and (G, 7) 

is connected, then j{S E B(G): S 5 7}1 = 22’6’. 

Proof. Take ?‘- = ‘7-i. By Theorem 2.7 there is 70 E alGl such that ‘& C 7;, and 

Theorem 6.4 gives I[%, ‘7-j/ = I[%, 7;]1 = 2”‘(“,5) = 22’G’. 0 

Given a compact group (G, 7) with 7u(G, 7) = CY, we let Ps(G, 7) (respectively 

CPs(G, 7)) be the partially ordered set of group topologies on G which are finer than 

7 and are pseudocompact (respectively are pseudocompact and connected). For each 

cardinal Y set 

P+(G) = {U E Ps(G,‘T): 7n(G,U) = -y}, and 

CPs,(G) = {U E CPs(G, 7): 7o(G,U) = y}. 

From Lemma 3.11 it follows that each U E Ps,(G, 7) satisfies cy < w(G, M) < 21Gl. 

Lemma 6.6. Let (G, 7) b e a nondegenerate compact, connectedgroup. Then Ps(G, 7) = 

CPs(G, 7). 

Proof. Being connected, the compact group (G,7) is divisible [42]. That every S E 

Ps(G, 7) is connected is given by this result of Wilcox [57]: every pseudocompact, 

divisible group is connected. 0 

As usual the (a) width the (b) height and the (c) depth of a partially ordered set 

P are defined to be the supremum of the cardinality of those subsets of P which are 

respectively (a) an anti-chain (b) well-ordered and (c) anti-well-ordered. If there is an 

anti-chain A C: P such that IAl = width(P) then we say that width(P) is assumed, and 

similarly for height(P) and depth(P). 

Theorem 6.7. Let (G, 7) b e a cornpuct, connected group such that w(G, 7) = Q with 

cf(a) > w, and let cx < y < 21Gl. Dejine 7 = min{y+,21GI}. Then 

(a) IPs(G,‘T)[ = ICPs(G,‘T)l = 22’c’; 

(b) jPsy(G,7)) = jCPs,(G,‘T)l = 27.1G’; 

(c) width(Ps,(G, 7)) = width(CPs,(G, 7)) = 27’IGI and these widths are assumed; 

(d) height(Ps,(G,T)) = height(CPs,(G,T)) = ;Y and these heights are assumed; 

and 

(e) depth(Ps,(G, 7)) = depth(CPs,(G, 7)) = y and these depths are assumed. 

Proof. That Ps,(G,T) = CPs,(G,‘T) IS immediate from Lemma 6.6. That 2y’iGl, 7 

and y are upper bounds as asserted in (b)-(e) can be shown as in the first part of the proof 

of [48, Theorem 2.131. Now take 7 = 70. It is shown in our work [16,6.6(b)] that there is 

a pseudocompact group topology 7; on G such that 70 z 7; and w(G, 7;) = 21G1. Each 

topology in [To, 7;] is the continuous image of the pseudocompact topology ‘7-1, hence is 

pseudocompact. The verification that the cited upper bounds in (b)-(e) are assumed is 
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then routine, using (the proof of) Theorem 6.4 for the interval [‘&, 7;] and the formula 

given in Theorem 6.10 below. Statement (a) is the special case y = 21°1 of (b). 0 

Remarks 6.8. (a) Theorem 6.7 shows in effect that Theorem 5.8(b) of [ 161 remains valid 

for compact, connected groups G such that cf(w(G)) > w. 

(b) It is immediate from Notation 2.3 that for each topology S E [x, 7;] as in Theo- 

rem 6.4 the identity function id: (G, 7;) + (G, S) extends continuously to a surjection ___ - 
id: (G,7;) + (G,S). Th us each of the completions (G, S) with S E [%, 7;] is a com- 

pact, connected topological group. 

(c) We have no example proving that the hypothesis “(G, 7;) is connected” in Theo- 

rem 6.4. is necessary. This suggests the following question, to which we anticipate that 

the answer is “Yes”. 

Question 6.9. Let G be a group and let z E B,,(G) (i = 0, 1) with crl > LYO > w. 

Must ][‘7&7;]] = 2 “‘? Must l{S E B(G): S c 7;}/ = 2”‘? 

(That l[T&7;11 3 cri is shown already in [49, Satz 3.251 using the theory of unitary 

representations; indeed there is a chain C C [z, 7;] such that ]C] = cyi. Further, it is 

shown there that for every cardinal y with cya < y < [pi one has l&(G) n [To, 7;] 1 > -yf . 
Recently the present authors [ 171 gave a different proof of these same results, using an 

argument based on the method of Theorem 2.7 above.) 

In connection with Question 6.9 it is silly to ask whether every group (G, 7) with 

7 E B,(G) and cr > w satisfies ]{S E B(G): S C 7}] = 2a. Indeed if 7 is a compact 

topology then {S E B(G): S C 7) = (7). 

In the statement and proof of the next theorem, which was used in Theorem 6.7 and 

will be needed also in Section 7, we use notation as in the proof of Theorem 6.4. 

Theorem 6.10. Every F E 3(K) sa 1s t' ji es w(G, (+$)-‘(CF)) = w(K/F)+w(G, TO). 

Proof. Since G/Cp is the compact completion of (G, (4 o $)-‘(CF)), from Theo- 

rem 2.5 we have w(G, (4 0 +)-‘(CF)) = w(c/C~). Since (G/CF)/(C/CF) = G/C 

(cf. [35,5.351), Lemma 6.3(a) gives w(G/C’F) = w(C/c~)+w(??/C). NOW w(G, ‘TQ) = 

w(G/C) (see the proof of Theorem 6.4), so w(G/CF) = w(C/Cp) + w(G,%). Since 

h-‘(F)/CF is totally disconnected and (C/c~)/(h-‘(F)/CF) = C/h-‘(F) we have 

w(C/C,V) = w(C/h-‘(F)) by L emma 6.3(b). Hence ~u(C/CF) = w(K/F), and 

w(G, (4 0 $)-‘(CF)) = w(K/F) + w(G, 70) follows. •I 

In the interest of completeness we now give a result, possibly known and closely 

related to a part of the argument given in the proof of Lemma 6.6, which we have not 

found stated explicitly in the literature. 

Theorem 6.11. Let x (i = 0,l) be pseudocompact group topologies on a group G with 

70 E 7;. Then (G,‘T) 0 IS connected if and only if (G, 5) is connected. 



Proof. Surely if (G, 7;) IS connected then its continuous image (G, 70) is connected. 

For the converse let (G, 70) be connected. Then the completion (G, 70) is connected, 

hence divisible [42]. Now as in [42], given p E (G, 7;), set ~0 = p and recursively find 

pnfl E (G,7;) such that p$, = 1)7x. Then {pTL: n E N} generates a divisible Abelian 

subgroup A, of (G, 7;) such that p E A,. The groups clm(Ar,) are then compact, 

divisible Abelian groups, hence are connected [35, 24.251. Hence their union, which is 

(G, 7;), is connected. Since (G, 7;) is pseudocompact the group (G, 7;) is its Stone- 

tech compactification (cf. [23]), so the conncctedness of (G, 7;) gives the connectedness 

of (G,7;). •I 

In connection with Theorem 6.11 it should be noted that a connected, pseudocompact 

group need not be divisible. Thus a divisible, compact group can have a dense, connected, 

nondivisible subgroup. See [57] for an example. 

7. Chains of topological group topologies for certain groups 

Here we extend the class of groups G for which the conclusions of Theorems 3.3 

and 5.3 are valid. 

Theorem 7.1. Let cy, /3 and y be irEfinite cardinals and let (G, 7) be a totally bounded 

group with IGI = y such that ur(G, 7) = 27 and (G, 7) is connected. 

(A) The following conditions are equivalent: 

(a) C(27,p) holds; 

(b) there is a chain C 2 B(G) such that ICI = ,O and U C 2 7. 

(B) Let y < cr < 27. Then the following conditions are equivalent: 

(a) E(27, ,O, cx) holds; 

(b) there is a chain C 2 B,,(G) such that ICI = /3 and UC C 7. 

Proof. That (b) + (a) in (A) is obvious, while (b) + (a) in (B) is given by Theorem 3.1. 

To prove (a) + (b) in (A) we write 7; = 7 and cyl = 27, we choose ‘ZJ E 13,(G) with 

To C 7; as given by Theorem 2.7, and we will sharpen the proof of Theorem 6.4 to find 

a chain C* & [Nt , NO] with IC*l = p; then C := {$-1(N): N E C*} is as required. 

Indeed it is enough to note with C and h: C + K = n,,, Ki as in Theorem 6.4 with 

(I( = 27 that if A is a chain in P(1) with (A( = ,!3 then 

A* := n K, x {li}~~: A E A 
iEI\A > 

is a chain in 3(K) anti-isomorphic to A, so C” := {&‘(CF): F E A*} is a chain as 

required. 

To prove (a) + (b) in (B) choose A as above with jAl = Q for each A E A and for 

A E A set 

F(A) = n Ki x {1%~.4}. 
GI\A 
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From K/F(A) = niEA Ki follows w(K/F(A)) = (Y, so Theorem 6.10 gives w(G, (40 

~+!J)-‘(CF(~))) = (Y for each A E A. 0 

For use later we remark that in Theorem 7.1(A) and (B) the constructed chains C 

satisfy: 70 C S C 7; for each S E C. 

Theorem 7.2. Let N, /3 and aio be infinite cardinals and let (G, 3) be a compact con- 

nected group with w(G, To) = CYO. Suppose that either cf(aa) > w or the connected 

component Zo(C) of th e center C of G satisjies w(Zo(C)) = ~0 > w. 

(A) the following conditions are equivalent: 

(a) C(22a”, ,O) holds; 

(b) there is a chain C of connected, pseudocompact group topologies on G such 

that ICI = ,B and 70 C nC. 

(B) Let LYO 6 (Y < 22”“. Then th e f ollowing conditions are equivalent: 

(a) E(22”“, 0, a) holds; 

(b) there is a chain C of connected, pseudocompact group topologies on G such 

that ICI = /3, C C B,(G), and 70 C nC. 

Proof. We have 1 GI = 2 a0 from Theorem 2.15. It then follows from our work [16, 

6.6(b)], writing CYI = 21Gl = 22”“, that there is a pseudocompact group topology 7; on 

G such that ?rt > 70 and w(G, ‘7-t) = ~1. Since (G, 7-t) is connected by Theorem 6.11, 

the required statements follow from the proofs of Theorems 6.4 and 7.1-indeed in (A) 

and (B) the chain C may be chosen so that C C [TO, 7;]. 0 

The construction given in the proof of the following theorem is closely related to an 

argument used in [ 18,21,16] to produce pseudocompact group topologies. 

Theorem 7.3. Let F be a compact metric group with (Fj > 1 and let 70 be the product 

topology on FW. Then there is a totally bounded group topology 7; on FW such that 

7; > 70 and w(F”,7;) = 2’. 

Proof. Let W = p(w)\ w and define 4: F” + FW by 4(f)(p) = f(p); here for f E F” 

the symbol J denotes that continuous function f: p(w) + F such that f C J. 

We claim that graph(4) is dense in F” x FW. Indeed given C = {Ici: i < n} and 

{pi: i < n}, faithfully indexed subsets of w and W respectively, and given ui E Fk, 

and vi E FP, for i < n, we can find f E F“’ such that f(hi) = ui and 4(f)(pi) = ui. 

Clearly there are pairwise disjoint subsets Ai (i < n) of w such that Ai E pi; it is enough 

to define f E F” by 

f(k) = { 
ui if k = ki E C, 

II, if k E Ai\C E pz; 

then 4(f) = J(pi) = vz, as required. The claim is proved. 

Since JWl = 2’ (cf. [32,9.2], for example) we have w(FW x Fw) = 2’; the completion 

of the group graph(4) is F” x FW, so Theorem 2.5 gives w(graph(yj)) = 2(. 
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To complete the proof we define 7; on F” so that the isomorphism (F”, 7;) + graph(4) 

is a homeomorphism into F” x FW. That 7; > 70 follows from continuity of the pro- 

jection function 7~ : F” x FW + F” with respect to the product topologies. •I 

Theorem 7.4. Let F be a compact, connected Lie group with trivial center and let 7_ 

be the usual product topology on F”. Then 

(a) 70 is the only pseudocompact group topology on F”; 

(b) IS( = I{S E B(F”): S > %}I = 22c; and 

(c) there are chains C & B(F“) and C’ C B(F”) with TO C nC and TO c n C’ such 

that ICI = (2’)+ and IC’I = 2(‘+). 

Proof. (a) From Theorem 3.14 it follows that every S E B(F“‘) satisfies S > 3. The 

required statement then follows from [ 18, 3. I]: A compact metric group topology admits 

no proper pseudocompact group refinement. 

(b) By Theorem 7.3 there is 7; E B(Fw) such that 7; > 70 and w(FW,7;) = 2c 

with (F”, 7;) dense in FW x F2’ E F2’. Since (F”, 7;) = F2’ is connected, we 

have 1[%,7;]1 = 22c by Theorem 6.4 and hence I(5 E 23(F”): S > ‘&}I > 22’; that 

lB(Fw)l < 22c is immediate from IF”1 = c. 

(c) We have C(2’, (2’)‘) and C(2’, 2(“)) from Theorems 2.18(c) and 2.18(b), re- 

spectively. The topology 7; on F” given in (b) has w(F”,7;) = 2c and (Fw,7;) 

connected, so according to (the remark following) Theorem 7.1 there are chains C and 

C’ of the indicated cardinalities as required, each element S of which indeed satisfies 

even7acSc7-t. 0 
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