around a high level. The harmonic mean formula leads to a proof of asymptotic convergence which is perhaps technically easier than standard proofs, and to a formula for c which is more amenable to analytic bounding and simulation.

On Invariant Record Processes and their Applications

F. Thomas Bruss, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium

Let A_1, A_2, \ldots be independent random variables with common continuous distribution function F defined on some finite or infinite interval [0, t], and N be some \mathbb{N} -valued random variable independent of the A_i 's.

Let $T_1 < T_2 < \cdots < T_N$ be the order statistics of A_1, \ldots, A_N . The A_i 's are thought of as being random arrival times of objects drawn independently from a (not necessarily known) distribution, N as the total number of arrivals on [0, t] and the T_i 's as the chronological order in which an observer can see them. We say that T_j is a k-record, if the associated object is the kth best of the first j. The problem is to predict, having observed $[0, \tau], \tau < t$, the total number of future k-records in any subinterval of $[\tau_1, \tau_2]$ with $\tau \le \tau_1 < \tau_2 \le t$.

Suppose that the observer, not knowing N or its distribution, starts, at time 0, with a noninformative prior (e.g. $P(N = n) = c, \forall n$). If we denote by σ_{τ} the σ -field generated by arrivals (or records) up to time τ then clearly $P(N = n | \sigma_{\tau})$ depends on σ_{τ} . We will, however, prove the following somewhat surprising result.

Theorem. Let $R_K^{\tau}(s) = \#k$ -records in $(\tau, s]$. Then, given $T_j \leq \tau$, all record counting processes $(R_1^{\tau}(s)), (R_2^{\tau}(s)), \ldots, (R_{j+1}^{\tau}(s))$ are i.i.d. inhomogeneous Poisson processes with intensity 1/F(s) on $[\tau, t]$.

Applications show how several optimal selecting problems can be reduced to easy exercises simply by imbedding them into this model.

References

- [1] F.T. Bruss, A unified approach to a class of best choice problems with an unknown number of options, Ann. Probab. 12 (3) (1984) 882-889.
- [2] F.T. Bruss and S.M. Samuels, A unified approach to a class of optimal selection problems with an unknown number of options, Ann. Probab. 15 (2) (1987).
- [3] D.P. Gaver, Random Record Models, J. Appl. Prob. 13 (1976) 538-547.

From a Solar Energy Model to Extreme-Type Limit Laws

Gerard Hooghiemstra, Delft University of Technology, The Netherlands

Let $X_1 = x$ and define, for $n \ge 2$,

 $X_n = \max\{\alpha X_{n-1}, \alpha X_{n-1} + Y_n\}, \quad \alpha \in [0, 1),$

where Y_n is an i.i.d. sequence with distribution F.