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Abstract Change detection is the measure of the thematic change information that can guide to

more tangible insights into an underlying process involving land cover, land usage and environmen-

tal changes. This paper deals with a semi-supervised change detection approach combining sparse

fusion and constrained k means clustering on multi-temporal remote sensing images taken at differ-

ent timings T1 and T2. Initially a remote sensing fusion method with sparse representation over

learned dictionaries is applied to the difference images. The dictionaries are learned from the differ-

ence images adaptively. The fused image is calculated by combining the sparse coefficients and the

dictionary. Finally the fused image is subjected to constrained k means (CKM) clustering combin-

ing few known labelled patterns and unlabelled patterns which have been collected from experts.

The enhanced (CKM) approach (ECKM) is compared with k means, adaptive k means (AKM)

and fuzzy c means (FCM). Experimental results were carried out on multi-temporal remote sensing

images. Results obtained using PCC and F1 measure confirms the effectiveness of the proposed

approach. It is also noticed that the ECKM provides better results with less misclassification of

errors as compared to k means, adaptive k means and fuzzy c means.
� 2015 Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.V. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Detection of changes in land cover/land use (Rawat and

Kumar, 2015) and changes due to natural hazards is a chal-
lenging task to deal with. Semi-supervised change detection
techniques are widely used in remote sensing and play an
important role in many application domains. They include

environmental monitoring (Shalaby and Tateishi, 2007;
Ghosh et al., 2015), assessment of land cover dynamics
(Rawat et al., 2013), forest monitoring (Kennedy et al.,
2007), urban studies (Peijun et al., 2010; Hazarika et al.,

2015), etc. The most widely used change detection technique
contains three steps, pre-processing, comparison and analysis.
In pre-processing, the multispectral images are normalised

using band ratio algorithms (Song et al., 2001). The multispec-
tral images are registered, geometric or radiometric corrected,
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atmospheric corrected (Hadjimitsis et al., 2010) for further
usage in subsequent steps. Comparison of images is done using
absolute differencing or change vector analysis for comparing

the images taken at different timings. Finally at the analysis
phase the changed pixels are differentiated from the unchanged
pixels to identify the change (El Bastawesy et al., 2014;

El Hattab, 2014).
Based on the literature (Subudhi et al., 2014; Hussain et al.,

2013) of sorting out the changed pixels from the unchanged

one two approaches are commonly used, supervised and
unsupervised. Supervised approach needs to reference map
information for setting parameters whereas an unsupervised
approach does not. Since a supervised approach (Volpi

et al., 2013) provides higher change detection accuracies com-
pared to unsupervised, a reference map is difficult to obtain for
certain remote sensing applications. Hence a semi-supervised

approach (Lal et al., 2015a; Roy et al., 2012) is proposed with
a combination of sparse fusion (Lal et al., 2015b).

The use of semi-supervised and unsupervised approaches

has been well documented in the literature (Bovolo et al.,
2008). Among them the most widely used is the novel
approach using an ensemble of semi-supervised classifiers

proposed by Roy et al. (2014) for change detection in remotely
sensed images. The approach uses a multiple classifier system
in a semi-supervised (learning) framework instead of using a
single weak classifier. Iterative learning of base classifiers is

continued using the selected unlabelled patterns along with a
few labelled patterns. Ensemble agreement is utilised for
choosing the unlabelled patterns for the next training step.

Finally, each of the unlabelled patterns is assigned to a specific
class by fusing the outcome of base classifiers using some com-
bination rule. A novel spatio-contextual fuzzy clustering algo-

rithm was proposed by Subudhi et al. (2014) for unsupervised
change detection from multispectral and multi-temporal
remote sensing images. The proposed technique uses fuzzy

Gibbs Markov Random Field (GMRF) to model the spatial
grey level attributes of the multispectral difference image.
The change detection problem is solved using the maximum
a posteriori probability (MAP) estimation principle. The

MAP estimator of the fuzzy GMRF modelled difference image
is found to be exponential in nature. Mishra et al. (2012) have
used two fuzzy clustering algorithms, namely fuzzy c-means

(FCM) and Gustafson–Kessel clustering (GKC) along with
local information for unsupervised change detection in multi-
temporal remote sensing images. Ghosh et al. (2011) proposed

a context-sensitive technique for unsupervised change detec-
tion in multi-temporal remote sensing images. The technique
is based on a fuzzy clustering approach and takes care of spa-
tial correlation between neighbouring pixels of the difference

image produced by comparing two images acquired on the
same geographical area at different times.

In this paper a change detection technique for multi-

temporal remote sensing images is proposed with four funda-
mental steps: pre-processing, comparison, fusion and analysis.
After comparison the difference images are fused for further

analysis in the proposed approach. Based on the literature,
(Gong et al., 2012; Lal and Anouncia, 2015) fusion also plays
an important role in change detection for remotely sensed

images. An improved AIHS (IAIHS) method was proposed
for pan sharpening and multi-spectral images by Leung et al.
(2014). Through the IAIHS method, the amount of spatial
details injected into each band of the multispectral (MS) image
is appropriately determined by a weighting matrix, which is
defined on the basis of the edges of the panchromatic and
MS images and the proportions between the MS bands. An

innovative object-oriented change detection approach based
on multi-scale fusion was proposed by Wang et al. (2013). This
approach introduced the classical colour texture segmentation

algorithm J-segmentation (JSEG) to change detection and
achieved the multi-scale feature extraction and comparison
of objects based on the sequence of J-images produced in

JSEG. A novel spatial and spectral fusion model (SASFM)
that uses sparse matrix factorization to fuse remote sensing
imagery with different spatial and spectral properties has been
proposed by Huang et al. (2014).

On the basis of the above mentioned analysis, in the
literature no method is available that simultaneously takes
advantage of both fusion and semi-supervised clustering

approaches for change detection. The main objective of this
work is to present robust techniques taking the advantages
of sparse fusion and constrained k means clustering for

multi-temporal remote sensing images. In this paper we pro-
pose a combination of sparse fusion and semi-supervised clus-
tering approach detecting changes for multi-temporal and

multi-spectral remote sensing images. In greater detail, the
proposed method uses ADM and CVA for generating the
difference images obtained from two co-registered and radio-
metrically corrected multispectral band images acquired over

the same geographical area at two different instants of time
T1 and T2. The difference images are fused using sparse repre-
sentation coefficients and the fused image is clustered as chan-

ged (C) and unchanged (UC) pixels by applying CKM. In
order to assess the effectiveness of the ECKM, we considered
multi-temporal data sets corresponding to the geographical areas

of Dead Sea in Israel, and compared the results produced by the
proposed approach with unsupervised clustering approaches.

The organisation of this paper is as follows. Section 2 pre-

sents an overview of the materials and methods and describes
the proposed scheme in detail. In Section 3, experimental
results and discussion are described. Performance evaluation
of results for change detection are analysed in Section 4.

Finally, Section 4 draws the conclusions of this work.
2. Materials and methods

2.1. Study area

The Dead Sea is located in the Middle East, between Jordan
and Israel. It is one of the saltiest lakes in the world. Its shores
are located 400 m below the sea level. The Dead Sea is 50 km

long and 15 km wide at its widest point and lies between
31.544893 N latitude and 35.484123 E longitude. Its main
tributary is the Jordan River which lies in the Jordan Rift Val-

ley. The Dead Sea is fed mainly by the Jordan River, which
enters the lake from the north. Due to the large-scale projects
done by Israel and Jordan to divert water from the Jordan
River for the purpose of irrigation and other water needs,

the surface of the Dead Sea has been dropping dangerously
for at least the past 50 years. If the shrinkage continues, it is
likely that the Dead Sea might disappear completely by

2050. The images of Dead Sea in the year 1984 and 2014 has
been acquired by the Landsat 5 and 8 satellites both in October
having a time window of acquisition (before/after) of thirty
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years and the main aim to show the difference of the coasts of
the Dead Sea from 1984 until today. In fact the two images
Fig. 4(a) and (b) shows how the lake, especially on the south

coast, has suffered a significant reduction in the amount of
water over the past thirty years. The marked location in the
Fig. 1 shows the exact location of the Dead Sea.

2.2. Proposed system

The enhanced constrained k means (ECKM) takes advantage

of four main methodologies: (i) creation of difference images
using ADM and CVA; (ii) difference image fusion using sparse
representation; (iii) semi-supervised clustering using con-

strained k means; (iv) formation of a change detection map.
The proposed approach is shown in the block diagram of
Fig. 2,

In the proposed approach, let us consider two coregistered

and radiometrically corrected multi-temporal images, acquired
over the same geographical area with two different timings T1
Figure 1 Map showing the

Reference map

LANDSAT 
Image T1 and

T2

Me
F1

Measure

ADM 
Image

CVA 
Image

Figure 2 Proposed system for change
and T2. The two difference images are generated using ADM
and CVA techniques. The two difference images are then fused
using sparse representation by extracting the patches to form a

dictionary. The fused images are then subjected to clustering
using CKM. A change formation map is constructed from
the clustered image comprising of changed and unchanged pix-

els. The detailed analysis of the proposed approach is given
below.

2.2.1. Creation of difference images

The difference images are created from two multispectral
images acquired by the Landsat Thematic Mapper sensor of
the Landsat-5 satellite and Landsat Operational Land Imager

Sensor of the Landsat-8 satellite in an area of Dead Sea, Israel
on October 24, 1984 and October 27, 2014. The band combi-
nations used to create the multispectral images are 3, 2, 1

(R–G–B) and 4, 3, 2 (R–G–B) visible colour which are
downloaded from (https://earth.esa.int/web/earth-watching/
change-detection/content/-/article/the-dead-sea). The difference
Dead Sea (study area).
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detection in remote sensing images.

https://earth.esa.int/web/earth-watching/change-detection/content/-/article/the-dead-sea
https://earth.esa.int/web/earth-watching/change-detection/content/-/article/the-dead-sea


282 A.M. Lal, S. Margret Anouncia
images are then obtained using ADM and CVA methodologies.
The methods are described below.

2.2.1.1. Absolute difference method (ADM). The first differ-
ence image is created by subtracting the pixel reflectance spec-
tra of the LANDSAT image acquired at time T1 and T2. The

difference image is obtained using absolute differencing which
is shown here:

ImageAD ¼
XN
i

ImageT1 � ImageT2; for i ¼ 1; 2; . . .N ð1Þ

Here N is the number of bands and the difference image is
obtained by subtracting the pixel reflectance of the images.

Generally, the higher intensity pixels are considered as chan-
ged area and the lower intensity pixels are considered as
unchanged area. The threshold value set here is based on the

pixel intensity variations of the reference map.

2.2.1.2. Change vector analysis (CVA) method. The second dif-

ference image is computed by subtracting the spectral change
vectors of the LANDSAT image acquired at time T1 and
T2. This technique exploits a simple vector subtraction opera-

tor to compare two multispectral images, under analysis, pixel-
by-pixel. In some cases, depending on the specific type of
changes to be identified, the comparison is made on a subset
of the spectral channels. The difference image is computed as

the magnitude of spectral change vectors obtained for each
pair of corresponding pixels (Ghosh et al., 2009). Let us
consider two co-registered and radiometrically corrected c
spectral band images IT1 and IT2, of size m � n, acquired over
the same area at different times T1 and T2, and let
DCVA = fImageCV; 1 6 C 6 m; 1 6 V 6 ng be the differ-

ence image obtained by applying change vector analysis to
IT1 and IT2,

ImageCV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXc

i¼1

ðImageCVðIT1Þ � ImageCVðIT2ÞÞ2
s

for i ¼ 1; 2; . . . ;N ð2Þ
Here ImageCV(IT1) and ImageCV(IT2) are grey levels at the

position (C, V) in the ith band of the images IT1 and IT2. Basi-
cally, the change vector analysis uses two channels to map the
magnitude of change and the direction of change between the

two input images for each date. The length is determined by
the vector between two timelines. If there is no change the
length will be 0. The direction of the change is interpretable.

A threshold value is picked up from the reference image for
finding the change. The results achieved by the change vector
analysis method are having the capacity to locate and detect
the different types of changes in terms of biomass gain and loss

(Dubayah et al., 2010).

2.2.2. Difference images fusion using sparse representation

In sparse representation image is approximated as a linear
combination of a few atoms from the dictionary. The training
dictionary contains definite number of overlapped patches
mined from observed images. Learned dictionary trained from

training patches produce better results to a pre-constructed
one. Image signals x 2 Rn can be estimated as:

x ¼ D / ð3Þ
whereD 2 Rn is the dictionary and a is the sparse vector. Toobtain

a sparse vectorwhich contains the smallest number of non zero ele-
ments the following optimization problem is to be solved:

min k / k0 such that kx�D / k22 6 q ð4Þ
where jj / jj0 denotes the number of non-zero components in a
and q is the approximated error of the input image. The above

optimization is anNP-hard problem and can be solved only by a
combination of columns. The simplest algorithm to solve this
problem is orthogonal matching pursuit (OMP) (Li et al.,
2013; Yang and Li, 2012).

OMP Algorithm

The OMP method to compute sparse coefficients for each image,

S ¼ min
/2Rm

1
2 kx�D / k22 such that k / k0 6 q

Step 1: Initialization: a=0, residual r = x, active set X= £
Step 2: While k / k0 < q

{

Select the element with maximum correlation with the residual

î ¼ arg max
i¼1;2;...m

jdTi rj
Update the active set, coefficients and residual

X ¼ X [ î

/X ¼ ðdTXdXÞ
�1
dTXr

r ¼ x� dX/X

}

Step 3: End

In our method, we divide the source images into small patches
and use the fixed dictionary D with small size to solve this

problem. In addition, a sliding window technique is adopted
to make the sparse representation shift invariant, which is of
great importance to image fusion. The block diagram of sparse
fusion is shown in Fig. 3.

Sparse Fusion Algorithm

Input: Difference images DIi and DIk
DIi = Difference image created using ADM

DIk = Difference image created using CVA

Output: Fused image DIf
Initialize: q= 0.1, block size= 8 � 8

Step 1: Load input images DIi and DIk
Step 2: Sparse representation using OMP and dictionary,

min k / k0 such that kx�D / k22 6 q

Step 3: Fuse sparse coefficients V̂f

Step 4: Restore fused image vectors as,

V̂1 ¼ DŜ1; V̂2 ¼ DŜ2; . . . ; V̂k ¼ DŜk

Step 5: Reconstruct fused image vector and used fused vectors to

reconstruct the image,

V̂f ¼ DŜf

Step 6: End

Finally the fused image is reconstructed from V̂f
2.2.3. Fused image clustering using constrained K means

The fused difference image is clustered using a semi-supervised
clustering approach known as constrained k means clustering
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Figure 3 Block diagram of sparse fusion.
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(CKM). This work focuses on the reference map knowledge
that can be expressed as a set of instance-level constraints on
the clustering process. Here we consider two types of pair-

wise constraints, must link constraints (MLC) specify that
two instances have to be in the same clusters. Cannot link con-
straints (CLC) specify that two instances need not be placed in
the same cluster. The below algorithm explains the flow of the

constraint k means algorithm as given by Wagstaff et al. (2001)
for data sets,

CKM Algorithm

Image set I MLC= Clu ¼ # IxI, CLCClu–# IxI

1. Let {C1. . .Cj} be the initial cluster centres

2. For each point Ii in I assign it to the closest cluster Ci such that

violate constraints (Ii, Ci, Clu =, Clu–) is false. If no such

cluster exists, fail. return {}.

3. For each cluster Ck update’s its centre by averaging all of the

points Ij that has been assigned to it.

4. Repeat steps 2 and 3 until convergence

5. Return {C1. . .Cj}

Violate-constraints (Image I, cluster C, MLC= Clu ¼ # IxI,

CLC ¼ Clu–# IxIÞ
1. For each ðI; I ¼Þ 2 Clu ¼: IfI ¼R C, return true

2. For each ðI; I–Þ 2 Clu– : IfI– 2 C, return true

3. Otherwise return false.
2.2.4. Formation of the change mapThe formation of a change

map is mainly used to notify the changed and unchanged areas
respectively. Here two cluster centres are obtained by applying
CKM clustering denoted by c1 and c2 respectively. Each pixel

of the fused image DIf is assigned to one of the two clusters

using the equation given below. Based on the distance of each

pixel from the cluster centre, the pixels are assigned to the
cluster having a minimum distance. Finally a binary change
map is created as given below in:

Cmðx;yÞ ¼
1; kDIfðx; yÞ � c1k 6 kDIfðx; yÞ � c2k
0; otherwise

�
ð5Þ

where k k is the Euclidean distance. The resultant image con-
tains zeros and ones representing changed and unchanged
areas.

3. Experimental results and discussion

In order to carry out an experimental analysis aimed at assess-

ing the effectiveness of the proposed approach ECKM, we
have considered multi-temporal data sets corresponding to
geographical areas of the Dead Sea in Israel. A detailed
description of the data set is given below.

3.1. Data set related to Dead Sea, Israel area

The data set used in this experiment is made up of two mul-
tispectral images acquired by the Landsat Thematic Mapper

sensor of the Landsat-5 satellite in an area of Dead Sea,
Israel on October 24, 1984 and October 27, 2014 which is
shown in Fig. 4(a) and (b). From the given Landsat image
a portion of 512 � 512 pixels has been selected for our

application. In order to make a quantitative and qualitative
evaluation of the effectiveness of the proposed approach, a
reference map image shown in Fig. 4(e) was manually

defined by experts according to a detailed visual analysis
of both the available multi-temporal images and the differ-
ence images created by ADM and CVA in Fig. 4

(c) and (d). In the proposed approach the difference images
are fused using a sparse representation for further clustering
of pixels to changed and unchanged areas. The fused image
is shown in Fig. 4(f).

The change detection maps obtained for the Dead Sea data
set by the k means, AKM, FCM and CKM without fusion are
shown in Fig. 5(a)–(d) and those for, k means, AKM, FCM

with fusion and ECKM are shown in Fig. 6(a)–(d) respectively.
One can visually compare the change detection maps generated
by the existing and ECKM techniques with the corresponding

reference image. This gives a rough idea about the quality of
the generated change detection maps.

The performance of the proposed approach (ECKM) was

analysed both qualitatively as well as quantitatively, the result
obtained from the proposed approach was compared with k
means, AKM and FCM. It is clear in Fig. 6. that the result
achieved by means of proposed approach ECKM seems to

be far better than other existing methods visually.
The effectiveness of the proposed change detection

approach is evaluated totally by analysing the change detec-

tion map. The change detection map obtained by CKM
seems to be better than FCM for the Dead Sea data set
because the number of unchanged pixels wrongly identified

as changed pixels has been generated at larger portions by
the FCM. The same inference can be drawn for this data
set comparing k means, AKM, and FCM without fusion
and with fusion. The observation is similar for our proposed

approach; ECKM is doing better than CKM. This leads us to
judge the effectiveness of our proposed approach quantita-
tively, which obviously is better than visual inspection and

is presented here.



Figure 4 (a) Landsat 5 image acquired on October 24, 1984. (b) Landsat 8 image acquired on October 27, 2014. (c) Difference image

generated using CVA technique. (d) Difference image generated using ADM technique. (e) Reference map of the changed area. (f) Fused

image using SR.
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4. Performance evaluations of results

For the quantitative assessment of the proposed technique, the
following quantities suggested by Rosenfield and Fitzpatrick-
Lins (1986) have been computed for each change map with
respect to the reference map.

Tp – the number of changed pixels identified correctly.
Tn – the number of pixels correctly identified as unchanged.
Fn – the number of changed pixels wrongly identified as

unchanged pixels.
Fp – the number of unchanged pixels identified as changed

pixels.
The quantities given above are evaluated by a confusion

matrix and various metrics can be obtained using the above

derived quantities to assess the performance of an algorithm.
In this paper, the following metrics are adopted:

1. Overall error (OE): Overall error deals with the probability

that a changed pixel is wrongly identified as an unchanged
pixel.



Figure 5 Change detected via various methods without fusion. (a) Change detected using k means. (b) Change detected using AKM. (c)

Change detected using FCM. (d) Change detected using CKM.
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OE ¼ Fn

Fnþ Tp
ð6Þ

2. Commission error (CE): Commission error deals with the
probability that an unchanged pixel is wrongly identified
as a changed pixel.

CE ¼ Fp

Tnþ Fp
ð7Þ

3. Percentage correct classification (PCC): It identifies the
overall accuracy of the proposed method by means of
detecting the changed pixels as changed and unchanged pix-

els as unchanged.

PCC ¼ ðTpþ TnÞ
ðTpþ Tnþ Fpþ FnÞ ð8Þ

4. Precision: Precision is referred to the fraction of changed
pixels identified correctly.

Precision ¼ Tp

Tpþ Fp
ð9Þ

5. Recall: Recall is referred to the fraction of changed pixels
identified as unchanged.

Recall ¼ Tp

Tpþ Fn
ð10Þ

6. F1 measure: F1 measure is a measure which combines pre-

cision and recall. It is a harmonic mean of both.
F1measure ¼ 2 � Precision � Recall
Precisionþ Recall

ð11Þ

7. G measure: G measure is a geometric mean of precision and

recall

Gmeasure ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
precision � recall

p
ð12Þ

8. MCC (Mathew’s correlation coefficient)

MCC ¼ Tp � Tn� Fp � FnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTpþ FpÞðTnþ FnÞðTpþ FnÞðTnþ FpÞp ð13Þ

From Tables 1–4 and Figs. 7–10 it’s very clear that the pro-

posed approach ECKM has obtained the highest PCC 98.5%
among all the existing methods such as k means, AKM and
FCM. An analysis has been carried out in terms of OE and
CE. It was conveyed that the lesser the value of OE and CE

the better is the technique. The overall error (OE) 0.06%
obtained in the proposed approach ECKM indicates that
changed pixels have been almost identified accurately with less

misclassification errors. The CE obtained by the proposed
approach is also lesser than the existing techniques. The F1
measure obtained by ECKM is 0.65 which is more than k

means, AKM and FCM. The other quantitative measures such
as recall, precision, G measure and MCC also provides better
results for the proposed approach ECKM as shown in Tables

2 and 4 and Figs. 8 and 10. The computational time taken is
also less compared to the existing methods.



Figure 6 Change detected via various methods with fusion (a) Change detected using k means. (b) Change detected using AKM. (c)

Change detected using FCM. (d) Change detected using ECKM.

Table 1 Results of various parameters used for quantitative comparison of the existing methods without fusion.

Method Tp (pixels) Tn (pixels) Fp (pixels) Fn (pixels) OE (%) CE (%) PCC (%)

K means 1779 197,683 61,460 1222 40.7 23.7 76.0

FCM 2421 232,282 26,861 580 19.3 10.3 89.5

AKM 2478 233,110 26,033 539 17.8 10.0 89.8

CKM 2556 239,679 19,464 445 14.8 7.51 92.4

Table 2 Results of various parameters used for quantitative

comparison of the existing methods without fusion.

Method Precision Recall F1 measure G measure MCC

K means 0.0281 0.5928 0.053 0.1291 3.5168

FCM 0.0843 0.7991 0.152 0.2596 5.5900

AKM 0.0869 0.8213 0.157 0.2672 5.7765

CKM 0.1161 0.8517 0.204 0.3144 6.1262

Table 3 Results of various parameters used for quantitative compa

Method Tp (pixels) Tn (pixels) Fp (pixels)

K means 2390 232,730 26,413

FCM 2791 254,204 2939

AKM 2869 255,265 3878

ECKM 3740 254,512 3622
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From an overall analysis it is felt that while solving the
change detection problem, incorporating fusion of the images

with semi-supervised clustering of the output is improved com-
pared to existing ones. The existing techniques require the
assumption of distributions of clusters and are very time con-

suming (k means, AKM, FCM). On the other hand the pro-
posed approach concentrates more on the changed areas to
further predict changes in the near future.
rison of the existing methods with fusion.

Fn (pixels) OE (%) CE (%) PCC (%)

611 20.3 10.1 89.6

210 7.00 1.91 98.0

132 4.40 1.50 98.4

270 0.06 0.14 98.5



Table 4 Results of various parameters used for quantitative

comparison of the existing methods with fusion.

Method Precision Recall G measure F1 measure MCC

K means 0.0830 0.7964 0.2571 0.15 5.5622

FCM 0.3611 0.9300 0.5795 0.52 7.0948

AKM 0.4252 0.9560 0.6376 0.58 7.3236

ECKM 0.5080 0.9327 0.6883 0.65 9.5187
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Figure 7 Performance evaluation of the existing methods

without fusion.
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Figure 8 Quantitative performance evaluation of the existing

methods without fusion.
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Figure 9 Performance evaluation of ECKM of the existing

methods with fusion.
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Figure 10 Quantitative performance evaluation of ECKM of the

existing methods with fusion.
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5. Conclusion

A semi-supervised change detection method combining the

idea of sparse fusion and CKM clustering is designed. The
devised methodology is applied to the multi-temporal remo-
tely sensed images. A seed point is randomly chosen on the

reference image based on the background knowledge of the
image. Considering the seed point as a centroid, the fused
image is subjected to the clustering process. The formed clus-
ters differentiate the changed region from an unchanged one.

To make visibility more, the changed regions are exposed
prominently. In order to achieve it, the distances between
the clusters with respect to the fused points are computed.

Points with minimum distance are assigned as 1 while with
the maximum distance is assigned as 0. Due to the conversion
of binary points, the region with the change would be high-

lighted prominently. On comparing the time taken to com-
plete the process, it is noted that the designed ECKM
performed considerably faster than other existing methods.

Experimental results of the designed process are evaluated
for different real multi-temporal data sets and the effective-
ness is proved through the results obtained. The results
showed a significant accuracy when compared to the other

existing methods.
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