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We sought to develop and characterize a novel paucibacillary model in mice, which develops necrotic lung
granulomas after infection with Mycobacterium tuberculosis. Six weeks after aerosol immunization with
recombinantMycobacterium bovis bacillus Calmette-Guerin overexpressing the 30-kDa antigen, C3HeB/FeJ
mice were aerosol infected withM. tuberculosis H37Rv. Six weeks later, mice were treated with one of three
standard regimens for latent tuberculosis infection or tumor necrosis factor (TNF)eneutralizing antibody.
Mouse lungs were analyzed by histological features, positron emission tomography/computed tomogra-
phy, whole-genome microarrays, and RT-PCR. Lungs and sera were studied by multiplex enzyme-linked
immunosorbent assays. Paucibacillary infection was established, recapitulating the sterilizing activities
of human latent tuberculosis infection regimens. TNF neutralization led to increased lung bacillary load,
disrupted granuloma architecture with expanded necrotic foci and reduced tissue hypoxia, and accelerated
animal mortality. TNF-neutralized mouse lungs and sera showed significant up-regulation of interferon g,
IL-1b, IL-6, IL-10, chemokine ligands 2 and 3, and matrix metalloproteinase genes. Clinical and micro-
biological reactivation of paucibacillary infection by TNF neutralization was associated with reduced
hypoxia in lung granulomas and induction of matrix metalloproteinases and proinflammatory cytokines.
This model may be useful for screening the sterilizing activity of novel anti-tuberculosis drugs, and
identifying mycobacterial regulatory and metabolic pathways required for bacillary growth restriction and
reactivation. (Am J Pathol 2014, 184: 2045e2055; http://dx.doi.org/10.1016/j.ajpath.2014.03.008)
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Progress in understanding latent tuberculosis (TB) infection
(LTBI) has been impeded by the difficulty in obtaining relevant
host tissue and microbiological samples from persons latently
infected with Mycobacterium tuberculosis (Mtb) and by the
lack of adequate research models and molecular tools. Unlike
human LTBI, the classic mouse model of TB infection is
characterized by a high bacillary burden with progressive lung
pathological features and earlymousedeath.1Dependingon the
initial inoculum of Mtb, bacillary numbers can exceed 106 to
107 in the lungs of nonimmunizedmice by the onset of adaptive
immunity, and the animals generally survive for 1 to 3 months
after infection. Previous studies have shown that Mycobacte-
rium bovis bacillus Calmette-Guerin (BCG)-immunized
BALB/c mice are able to effectively limit bacillary growth
afterMtb aerosol challenge and do not succumb to infection.2,3

More important, the relatively small bacillary population
established exhibits greater susceptibility to rifampin (R) rela-
tive to isoniazid (H), mirroring anti-tubercular susceptibility
stigative Pathology.

.

profiles observed inLTBI.4 However, a major deficiency is that
the lung lesions lack caseation necrosis, which is the patho-
logical hallmark of human TB granulomas,5,6 in which bacilli
are believed to reside during LTBI.7 Larger animal models
faithfully represent many features of human LTBI but are
expensive and not widely available.8,9 The ideal model would
combine the availability, economy, and superior tractability of
mice with key features of LTBI, including the establishment of
a paucibacillary infection within necrotic lung granulomas, as
observed in larger animal models.
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Recently, there has been significant interest in C3HeB/FeJ
mice, which lack expression of Ipr1 and develop well-
circumscribed TB lung granulomas with central necrosis10

and tissue hypoxia,11 as observed in larger animal models.12

Because of these favorable features, this mouse strain has
been used recently to test the efficacy of various anti-tubercular
regimens and novel anti-inflammatory therapies.13e16

Herein,we vaccinatedC3HeB/FeJmicewith a recombinant
BCG strain overexpressing the 30-kDa antigen17 to develop a
novel model of paucibacillary infection. We found that this
model faithfully represents the hierarchy of sterilizing activ-
ities of standardLTBI regimens.18By using the tumor necrosis
factor (TNF)eneutralizing antibody, MP6-XT22, which has
been shown to exacerbate chronic TB in mice to effect re-
activation,19 we characterized the progression from latent
to active infection in live animals using positron emission
tomography (PET)/computed tomography (CT) imaging,
and post-mortem by microbiological, histopathological, and
immunohistochemistry (IHC) using a hypoxia-specific probe.
Finally, we characterized the cytokine profiles in the lungs and
sera of mice before and after reactivation of infection.

Materials and Methods

Mtb Strains

A recombinant M. bovis BCG strain overexpressing the 30-
kD major secretory protein (rBCG30)2,3 and Mtb H37Rv
(Johns Hopkins University, Baltimore, MD)20 were used.
rBCG30 was used as an immunizing agent because it is
more immunogenic in mice than the parent BCG Tice strain
and has a hygromycin resistance selection marker to
differentiate it from Mtb.21

Antibiotic Therapy and TNF Neutralization

Separate groups of mice were randomized to receive daily (5
days per week) oral treatment with human-equivalent doses
Table 1 Basic Experimental Scheme

Variable No. of mice sacrificed at the given time points*

Groupy W-12 W-6 W0 W4 W6 W8

Uninfected
Infected untreated 5 5 5 5 5 (þ12)
TNF-az 5 5
H10 5 5 (þ15)
R10 5 5 (þ15)
R10Z150 5 5 (þ15)
Total mice 5 5 5 25 5 20

Values in the table are numbers of animals.
*Time points: week �12, immunization with rBCG30 via aerosol 12 weeks befor

treatment; week 0, day of treatment initiation; week 4, 1 month after treatment in
held for 12 additional weeks beyond the completion of treatment before being s

yDrug doses (mg/kg) as indicated by subscripts. Doses of each drug were determ
time curve and were given daily (5 of 7 days) by gavage.

zAntieTNF-a treatment, 0.5 mg i.p. twice weekly per mouse for 1 month.
W, week.
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of H, 10 mg/kg, R, 10 mg/kg alone, or R, 10 mg/kg with
pyrazinamide (Z), 150 mg/kg, which was initiated 6 weeks
after infection (day 0).11,15 Antibiotics were discontinued
for groups of 15 mice after completion of 2 or 4 months of
treatment for relapse assessment (Table 1).
TNF-neutralizing agent, MP6-XT22 (rat IgG1),19,22 was

purified from cell culture of a hybridoma obtained from
DNAX by the National Cell Culture Center and injected
(0.5 mg i.p.) twice weekly per mouse for 4 weeks.23

Animals

A total of 217 female C3HeB/FeJ mice (aged 5 to 6 weeks;
Jackson Laboratory, Bar Harbor, ME) were used in this
study. Animals were housed in a biosafety level 3, specific
pathogen-free facility and fed water and chow ad libitum.
All protocols were approved by the Animal Care and Use
Committee, Biosafety, and Radiation Safety offices at Johns
Hopkins University School of Medicine (Baltimore, MD).

Aerosol BCG Immunization and Challenge with Mtb

By using the inhalation exposure system (Glas-Col, Terre
Haute, IN), mice were immunized with log-phase cultures
(OD600, approximately 0.6) of rBCG3017 and infected 6
weeks later using a 1:2000 dilution of a 7-day-old broth
culture of Mtb H37Rv (OD600, approximately 1.0).

PET/CT Imaging

Live C3HeB/FeJ mice were imaged at 6 weeks after immu-
nization, 6 weeks after infection, and 4 weeks after TNF
neutralization. [18F] 2-fluoro-deoxy-D-glucose ([18F]FDG)-
PET or copper(II)-diacetyl-bis(N4-methylthiosemicarbazone)
([64Cu]ATSM)-PET imaging was performed.11,24 All images
were reconstructed and coregistered with CT images using
either Amide version 0.9.1 (http://amide.sourceforge.net), or
Amira version 5.2.2 (Visage Imaging, San Diego, CA), and
standardized uptake values computed.11
Experiments for

W16 Imaging Time to death analysis Total mice

4 4
5 (þ12) 4 15 49

4 15 29
5 (þ15) 45
5 (þ15) 45
5 (þ15) 45
25 217

e treatment; week �6, low-dose aerosol challenge with Mtb 6 weeks before
itiation, and so on. (þ12) signifies that the indicated number of mice were
acrificed to determine the proportion with culture-positive relapse.
ined to be equivalent on the basis of area under the serum concentration-
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Mouse Model of Latent TB Infection
Clinical, Histopathological, and Microbiological End
Points

Total body, lung, and spleen weights were recorded, and lungs
and spleens were examined for visible lesions at the time of
sacrifice. Lung samples were placed into 10% buffered form-
aldehyde, processed, and paraffin embedded for histological
staining with H&E and Kinyoun stain for acid-fast bacilli
(AFB) detection. Remaining lung samples were homogenized
andplated inparallel on the following: i) selectiveMiddlebrook
7H11 agar (Becton-Dickinson, Baltimore, MD) containing
10% oleic acidealbuminedextroseecatalase, ii) 7H11 agar
supplemented with 40 mg/mL of hygromycin (Roche Di-
agnostics, Indianapolis, IN) to select for rBCG30, and iii) 7H11
agar supplemented with 4 mg/mL of 2-thiophenecarboxylic
acid hydrazide (TCH; Sigma, St. Louis, MO) to select forMtb
colonies.25 Plates were incubated at 37�C for 6 weeks for
colony-forming unit (CFU) determination. Relapse was
defined as a positive culture result on plating entire undiluted
lung homogenates.

TNF Bioassay

To ensure that MP6-XT22, a rat IgG1 monoclonal antibody,
reduced local TNF activity in mouse lung tissues, functional
TNF activity and levels were measured by theWEHI assay and
enzyme-linked immunosorbent assay (please see Confirmation
of Transcriptional Data by Multiplex Cytokine Analysis),
respectively. TNF bioactivity was measured in filter (0.22-
mm)esterilized lung homogenates using the WEHI assay.26

WEHI13-VAR cells (ATCC, Manassas, VA) were plated at
1.5 � 105 per well in 96-well plates (Becton Dickinson), and
serial dilutions of experimental lung homogenates or standard
recombinant mouse TNF (BioLegend, San Diego, CA) were
added to eachwell and incubated for 24hours.Toeachwell, 100
mg of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide was added and incubated at 37�C for 4 hours.
Dimethyl sulfoxide was added and plates were read at 595 nm.
Levels of TNF in experimental samples were calculated on the
basis of a standard curve for recombinant TNF.

Pimonidazole IHC

Mice were injected i.p. with 60 mg/kg pimonidazole hydro-
chloride at least 1.5 hours before sacrifice, and lungs and
kidneyswere harvested,fixed, and stainedwith a hypoxyprobe
staining kit (Hypoxyprobe, Inc, Burlington, MA).11,27 Unin-
fected C3HeB/FeJ mouse lungs and kidney sections contain-
ing hypoxic renal tubular cells served as negative and positive
controls, respectively.27

Microarray Experiments and Pathway Analysis

Total RNA was extracted from frozen lungs using the Ribo-
Pure Kit plus DNA-free reagents (Ambion, Grand Island,
NY). cRNA samples were prepared using an Illumina
The American Journal of Pathology - ajp.amjpathol.org
TotalPrep RNA Amplification Kit (Ambion) and hybridized
to Illumina Mouse WG-6 version 2.0 BeadArrays (San
Diego, CA) according to manufacturer’s protocols. Raw and
normalized array results were deposited into an National
Center for Biotechnology Information Gene Expression
Omnibus database (http://www.ncbi.nlm.nih.gov/geo; acces-
sion number GSE55183). Genes whose expression changed
by at least twofold (P < 0.05) were considered significantly
differentially expressed.28

Pathway analysis was performed by uploading statistically
significant (P < 0.05) data set(s) into an Ingenuity Pathways
Analysis algorithm (Ingenuity Systems, Redwood City, CA).28

Quantitative RT-PCR

To validate transcriptomic results, the mouse RT2Profi-
lerPCR arrays for Cytokines and Chemokines (PAMM-
150Z) and hypoxia signaling pathway (PAMM-032Z) (SA
Biosciences, Frederick, MD) were used, using an ABI 7500
real-time PCR machine (Applied Biosystems, Grand Island,
NY). The data for biological duplicates were analyzed using
the SA Biosciences PCR Array Data Analysis Software
(http://www.sabiosciences.com/pcr/arrayanalysis.php, last
accessed December 2012).28

LCM and RT-PCR

Tissue processing and laser capture microdissection (LCM)
were performed as per PALM MicroLaser systems protocols
(Carl Zeiss MicroImaging, Munich, Germany). Total RNA
from stained (LCM Staining Kit Reagents; Ambion), pooled
granulomatous tissue of formalin-fixed, paraffin-embedded
lung sectionswas isolated using anRNeasyMicroKit (Qiagen,
Frederick, MD), and cDNA was synthesized using a Tran-
scriptor First Strand cDNASynthesis Kit (RocheDiagnostics).
RT-PCR was performed using Power SYBR Green PCR
Master Mix (Invitrogen, Grand Island, NY) and gene-specific
primers for mouse hypoxia-inducible factor 1a, vascular
endothelial growth factor (VEGF), matrix metalloproteinase
(MMP)-9, and glyceraldehyde-3-phosphate dehydrogenase.
Gene expression data were normalized to the housekeeping
gene glyceraldehyde-3-phosphate dehydrogenase.

Confirmation of Transcriptional Data by Multiplex
Cytokine Analysis

Murine cytokine levels were quantified from whole lung
homogenates and serum using a microbead-based Bio-plex
method (Bioplex mouse cytokine group 1, 23-plex assay; Bio-
Rad Laboratories, Hercules, CA) and a Bioplex-200 apparatus
(Luminex, Austin, TX).28

Statistical Analysis

Pairwise comparisons of groupmean values for organ weights
and log10-transformedCFU countsweremade using Student’s
2047
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t-test, and one-way analysis of variance and Bonferroni’s post
test with GraphPad InStat, version 3.05 (GraphPad, San
Diego, CA). Comparisons of the normalized mean PET lung
activity data among experimental groups were performed by
U-test. For each analysis, five mice were used at each time
point, except for relapse groups, in which 15 mice were used.

Results

Establishment and Validation of a Novel Paucibacillary
Mouse Model

Mice were immunized via aerosol with rBCG30, resulting in
a means � SD implanted lung CFU count of 3.61 � 0.07
log10. Six weeks later, mean lung rBCG30 CFU counts had
increased to 5.86 � 0.18 log10. On the day after aerosol
challenge, the mean Mtb lung CFU count in the lungs was
1.36 � 0.03 log10. Six weeks later (day 0 of treatment), the
mean Mtb lung bacillary count was 4.24 � 0.13 log10
(Figure 1). All regimens displayed bactericidal activity, and
the rank order of potency was consistent with that against
human LTBI.18 Thus, RZ was significantly more active than
H or R alone by week 4 (P < 0.0001), and rendered all
mouse lungs culture negative by week 8. All 15 mice
receiving 2 months of R and H monotherapy showed
relapse, whereas only 60% of RZ-treated animals relapsed
(P < 0.01). Treatment with R and RZ for 4 months resulted
in relapse rates of 30% and 0%, respectively.

No significant differences were observed between treat-
ment groups in mean total body weights or normalized
mean organ weights over time. However, gross pathological
characteristics revealed a marked reduction in the number
and size of lung tubercles in the RZ group within 8 weeks of
treatment initiation (data not shown).

Reactivation of Infection with TNF Neutralization

Compared with untreated mice, local TNF activity in the
lung homogenates of MP6-XT22etreated mice was signif-
icantly (P < 0.01) reduced (Figure 2A), confirming
Figure 1 Validation of a paucibacillary model in C3HeB/FeJ mice. Six
weeks after BCG immunization, mice were infected with Mtb, and 6 weeks
later (week 0), treatment was initiated. Results are expressed as
means � SD of five mice per group. Colony-forming units (on TCH-
containing plates) of Mtb in lungs. ***P < 0.001, R þ Z versus R/H;
yyyP < 0.001, R versus H.
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systemic neutralization of TNF by MP6-XT22. Weight loss
was significantly greater in antieTNF-treated mice relative
to untreated controls (P < 0.0001) (Figure 2B). The median
survival time of mice was 34 days after anti-TNF therapy
(Figure 2C), compared with 200 days in control mice
(P < 0.0001). Although we cannot exclude the possibility
that untreated mice succumbed from progressive Mtb in-
fection, the observed gross pathological and histological
characteristics in these mice were not compatible with TB-
related mortality.
[18F]FDG-PET activity is a marker of metabolic activity

or inflammation and has been extensively used to evaluate
TB lesions.24 Diffuse [18F]FDG-PET activity was noted in
the lung fields of rBCG30-immunized/Mtb-challenged mice
at the time of initiation of TNF neutralization. Mice were
imaged 4 weeks later, revealing well-defined foci of
increased [18F]FDG uptake colocalizing with TB lesions in
lung fields of control mice, and significantly higher PET
activity in lungs of mice receiving anti-TNF antibody
(P Z 0.004) (Figure 2, D and E), indicating increasing
inflammation with disease progression. In fact, the FDG-
PET activity is highly localized to TB lesions in the un-
treated mice compared with more diffuse and peripheral
activities in the TNF-neutralization group.
Mouse lung and spleen bacillary loads increased dramat-

ically after 4 weeks of TNF neutralization (Figure 2, F and
G), respectively. Normalized mean lung and spleen weights
were significantly higher in TNF-neutralized mice relative to
those of control mice (P < 0.001) (Figure 2, H and I),
respectively. Numerous large nodules were present on the
lung surface in the TNF-neutralization group (Figure 2J).
Small, scattered granulomas with central caseous necrosis
containing few extracellular AFB were observed at the onset
of anti-TNF treatment (Figure 3, BeE). The lungs harbored
zones of chronic inflammation, mainly comprising lympho-
cytes and macrophages, accompanied by infiltrates of gran-
ulocytes within alveolar spaces. Epithelioid macrophages
and multinucleated giant cells were observed, as previously
described in this mouse strain.14 After 4 weeks of anti-TNF
treatment, lung granulomas became disorganized, and consol-
idating lesions consistent with acute bronchopneumonia were
present, which contained massive numbers of extracellular
AFB within expanded foci of acute necrosis (Figure 3, FeI).
There was a statistically significant (P Z 0.0002) increase in
percentage lung surface area inflammation in antieTNF-
treated mice compared with control animals (Figure 3J).

Reduced Hypoxia in Lung Lesions of AntieTNF-Treated
Mice

[64Cu]ATSM is a PET imaging tracer used to detect hypoxia
noninvasively. Although Cu-ATSM is cleared rapidly by
euoxic cells, it is retained in oxygen-deprived, live cells and
has been used to evaluate TB lesions in animal models.11

Significantly higher [64Cu]ATSM uptake was observed in
untreated infected control lungs compared with those of
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 Reactivation of TB infection by TNF neutralization. A: Determination of effectiveness of TNF neutralization by WEHI bioassay. Data are normalized to
the total protein concentration of lung homogenates from mice receiving anti-TNF antibodies for 4 weeks (TNF) or those receiving no treatment (untreated) and
represent means � SD for five mice. TB reactivation results in changes in total body weights (B) and survival proportions (C). Data are shown for day 0 (day of
treatment initiation, which is 12 weeks after rBCG30 immunization and 6 weeks after aerosol challenge with H37Rv) until experimental death (210 days). The x
axis values represent days after infection. Median survival of TNF neutralization group, 34 days; untreated, 200 days. D: PET images of immunized C3HeB/FeJ mice
challenged with H37Rv after TNF neutralization. [

18F]FDG-PET activity correlates with TB-induced lung inflammation with [18F]FDG localizing to TB granulomas.
Cross hair is centered over the TB lesions. E: [18F]FDG-PET activity correlates with bacterial burden in C3HeB/FeJ mice. Mean lung PET activities for the mice
treated with the MP6X22 were significantly higher than those for untreated mice. Data are means � SD (n Z 4 for each group). F: Lung bacterial burden. G:
Colony-forming units (on TCH-containing plates) of Mtb in spleen. Results are expressed as means� SD of five mice per group. Lung weights (H), spleen weights
(I), and gross lung pathological characteristics of control mice (untreated) and TNF-neutralized mice (J). The images shown were chosen on the basis of median
lung weights. **P < 0.01, ***P < 0.001 versus untreated control. H, heart; S, sternum; St, stomach air bubble; TNF, anti-TNF monoclonal antibody.

Mouse Model of Latent TB Infection
TNF-neutralized mice 40 to 60 minutes after tracer injection
(P > 0.0001) (Figure 4A and Supplemental Figure S1).

Pimonidazole staining was clearly noted around the pe-
riphery of the necrotic granulomas in the untreated group,
whereas the analogous tissues of antieTNF-treated mice
showed markedly reduced staining (Figure 4B).

Changes in the Lung Transcriptome after TNF
Neutralization

A total of 1065 genes were differentially regulated (579
were up-regulated and 486 were down- regulated) after
4 weeks of TNF neutralization (Figure 5A). Genes previ-
ously reported to be associated with human TB are func-
tionally tabulated in Supplemental Table S1. Notably, after
The American Journal of Pathology - ajp.amjpathol.org
reactivation of infection, mouse lungs showed significant
up-regulation of the following genes: the toll-like receptor
genes Tlr4, Tlr13, and Cd14; the TNF familyelike genes
Tnfaip2, Tnfaip3, Tnfrsf1a, Tnfrsf11, Tnfsf12a, and Tnfrsf22;
the type II arginase genes Arg1 and Arg2; the transforming
growth factor (TGF)-b family genes Tgfb1, Ltbp4, and
Ltb4r1; and BclIII and Casp4, whose products protect T cells
from cell death by apoptosis.29,30 The matrix metal-
loproteinase genesMmp3,Mmp9,Mmp10,Mmp12,Mmp13,
Mmp23, andMmp25were also significantly overexpressed in
the lungs of TNF-neutralized mice. Genes encoding the small
calcium-binding proteins S100a8, S100a9, and S100a14,
which induce neutrophil chemotaxis and are expressed in TB
patients,31,32 were also up-regulated in mouse lungs after
TNF neutralization. Similarly, the immunoresponsive gene1
2049
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Figure 3 Histological characteristics of the lungs of mice during latent infection and reactivation. Mouse lung histopathological characteristics after anti-
TNF treatment. A: Six weeks after immunization with rBCG30 via aerosol. BeE: Six weeks after aerosol challenge with Mtb. FeI: Four weeks after anti-TNF
treatment. H&E staining (AeD and FeH) and acid-fast staining (E and I) were performed on lung tissues. Images shown are representative of sections
obtained from five animals per group. J: Morphometric analysis confirmed these findings and demonstrated increased lung involvement in mice treated with
anti-TNF antibodies versus untreated controls. Results are represented as percentage of lung surface area involved, calculated using image viewer software
(three fields of view, obtained from five animals per group). ***P < 0.001 versus untreated control.
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(Irg1)33,34 was induced. The interleukin genes Il1a, Il1b, IL6,
and Il11 were induced in lungs of reactivated mice, whereas
the interleukin receptor genes Il11, Il1r2, Il1rn, Il4i1, and
Il8rb were induced, and Il11ra1 and Il8ra were repressed
(Figure 5B).35 Expression of several CC chemokines, such as
Ccl2 (monocyte chemoattractant protein-1), Ccl3 (macro-
phage inflammatory protein-1a), Ccl4, Ccl6, Ccl7, and Ccl9,
and CXC chemokines, such as Cxcl1, Cxcl2, Cxcl4, Cxcl13,
Figure 4 The Mtb infection and lung tissue hypoxia. PET imaging demonstr
C3HeB/FeJ mice (A) and its validation by pimonidazole IHC analysis (B). The mean
acquisitions is shown for rBCG30-immunized/Mtb-infected mice with and without
of the necrotic granulomas in the untreated group but is greatly reduced in the
versus untreated control. Original magnification: �4 (B); �10 (B, insets).

2050
Cxcl17, and Cxcl19,36,37 were also induced in the lungs of
TNF-neutralized mice (Figure 5B).

The Effect of TNF Neutralization on Several Key
Immune Pathways

Major pathways that were altered after TNF neutralization
included the following: regulation of cytokine production in
ates accumulation of hypoxia probe [64Cu]ATSM in tuberculosis lesions of
[64Cu]ATSM PET lung activity normalized to the thigh muscles from dynamic
anti-TNF treatment. Pimonidazole staining is observed around the periphery
TNF-neutralization group. Data are presented as means � SD. **P < 0.01

ajp.amjpathol.org - The American Journal of Pathology
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Figure 5 Cytokine gene expression signature of mice with reactivation TB. A: Heat map of microarray gene expression data comparing mice receiving anti-
TNF antibodies for 4 weeks (TNF) with mice receiving no treatment (UTX). Values represent genes with significant change in expression (P < 0.05, fold change
>2, n Z 1065). Expression values are also shown for RT-PCR experiments. RT-PCR arrays specific for the mouse chemokines and cytokines (B) and mouse
hypoxia signaling (C) pathway were used to confirm microarray results. The figure shows the average of two biological replicates. D: Gene expression profiling
of granulomatous lung tissues using laser capture microdissection by RT-PCR. The values represent gene expression levels in the TNF-neutralized group relative
to the untreated control group (dotted line) (means � SD). Data in each group were normalized to a housekeeping gene before calculation of fold change. M1,
mouse 1; M2, mouse 2.

Mouse Model of Latent TB Infection
macrophages and T-helper cells by IL-17A and IL-17F,
histamine biosynthesis, airway pathological characteristics
of chronic obstructive pulmonary disease, and superoxide
radical degradation (Supplemental Figure S2). By using RT-
PCR, we confirmed changes in expression of a subset of
cytokine and chemokine genes, as well as those related to
hypoxic signaling (Figure 5, B and C).

Hypoxia induces gene expression and secretion of many
inflammatory mediators via binding of hypoxia-inducible
factor 1a. Extensive lung destruction is a hallmark of pul-
monary TB and is caused by breakdown of extracellular
matrix by host MMPs. Consistent with the results of
The American Journal of Pathology - ajp.amjpathol.org
noninvasive [64Cu]ATSM PET imaging and pimonidazole
IHC analysis, lung tissues of TNF-neutralized mice showed
lower expression of hypoxia-inducible genes than untreated
control groups. Conversely, the MMPs were more highly
expressed in the former group by microarray analysis. LCM
was performed on lung tissues to determine whether our
findings were granuloma specific. We observed reduced
expression of Hif-la and Vegf, and up-regulation of Mmp9
in granulomas from TNF-neutralized mice, relative to those
of control animals, consistent with reduced hypoxia and
increased disruption of granuloma structure in the former
group (Figure 5D).
2051
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Altered Cytokine Profiles in Whole Lungs and Sera after
TNF Neutralization

By using multiplex enzyme-linked immunosorbent assays,
we analyzed 23 different cytokines in the sera of untreated
and TNF-neutralized mice. We found significantly increased
serum levels of granulocyte colony-stimulating factor,
interferon (IFN) g, IL-1b, IL-1 receptor antagonist protein,
IL-6, IL-10, IL-12 (P70), IL-13, CXCL1, and chemokine
ligand (CCL) 2 in the sera of animals after TNF neutraliza-
tion. Although the median absolute levels of individual cy-
tokines were different among whole lungs and sera, there was
considerable overlap in cytokine profiles between these two
sources. Thus, IFN-g, IL-1b, IL-6, IL-10, CXCL1, CCL2,
and CCL338e40 were significantly (P< 0.05) more abundant
in lungs and sera of TNF-neutralized mice compared with
corresponding samples derived from immunized/infected
control mice (Table 2).
Discussion

In the current study, we describe a novel animal model, which
shares several key features of human LTBI. Specifically, this
model establishes a paucibacillary infection, allowing the
infected animals to survive free of symptoms for a prolonged
period of time. Unlike standard mice, the C3HeB/FeJ mice
used in this study develop necrotic lung granulomas, which
are believed to harbor latent bacilli in humans.7 The advan-
tage of this model is that a clinically latent infection and
human-like histopathological characteristics are achieved in a
relatively economical and tractable species, compared with
larger animal models of LTBI, including the rabbit and
nonhuman primate. Although the absolute length of treatment
with the various LTBI regimens required to achieve eradi-
cation in this model appears to differ from that observed in
Table 2 Concentrations of Cytokines and Chemokines in Whole Lung

Lung homogenates

Marker Untreated (n Z 5) TNF (n Z 5) P value

GCSF 8.7 162.14 (93.83e2061.59) 0.1546

IFNg 4.2 22.89 (8.29e22.89) 0.00845
IL-1b 106.72 (89.67e127.86) 1446.58 (933.93e1495.05) 2.60�10�

IL-1RA 13.08 (11.78e18.58) 36.09 (22.42e516.85) 0.185
IL-6 2.1 44.94 (31.43e71.66) 0.00015

IL-10 4.79 (4e5) 13.54 (31.54e1006.71) 0.02
IL-12
(P70)

9.46 (4e5) 11.22 (4.8e1734.13) 0.30298

IL-13 40.49 (33.25e47.23) 39.76 (22.27e98.96) 0.60523

KC 7.06 (6e14.35) 216.24 (153.26e489.41) 0.00234
MCP-1 14.76 (12.47e15.87) 350.94 (188.88e2145.5) 0.007

MCP-1A 6 (6e7.93) 62.71 (36.62e6366) 0.009
TNF 27.61 (24.01e30.77) 26.05 (14.34e46.88) 0.94017

Results are expressed as median (range). Representative qualitative levels of cyt
receiving anti-TNF antibodies for 4 weeks (TNF) or without treatment (untreated
GCSF, granulocyte colony-stimulating factor; IL-1RA, IL-1 receptor antagonist
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human LTBI, this model nevertheless recapitulates the hier-
archy of sterilizing activities of these standard regimens,
suggesting it may be a useful tool in assessing the treatment-
shortening potential of novel LTBI regimens in humans.18

Furthermore, as in humans,41 paucibacillary infection can
be reactivated in this model after TNF neutralization, as
manifested by increasing organ bacillary loads, diffuse
radiographic infiltrates, exacerbated histopathological fea-
tures, and markedly accelerated weight loss and mortality.
The advent of TNF antagonist therapy for the treatment of

chronic inflammatory conditions led to a stark increase in
TB cases. Specifically, the incidence of TB was reported to
be 144 cases per 100,000 patients treated with the human-
ized mouse anti-TNF monoclonal antibody infliximab.
Interestingly, 44% of infliximab-related TB cases occurred
within 90 days of treatment initiation, suggesting that these
may represent reactivation of LTBI, perhaps due to disso-
lution of granuloma architecture and disseminated infec-
tion.42 In the model described herein, we found that TNF
neutralization led to increased lung inflammation overall, as
manifested by increased mean lung weights and total lung
uptake of [18F]FDG by PET imaging. Histological analysis
revealed disorganization of lung granuloma architecture
with diffuse consolidation and more extensive necrosis after
TNF neutralization. These findings are consistent with those
of Chakravarty et al,22 who reported that TNF blockade with
MP6-XT22 led to dissolution of B-cell macrophage units in
granulomatous tissues and increased inflammatory cell
infiltration in the lungs of chronically infected C57BL/6
mice. We found reduced lung uptake of [64Cu]ATSM by
PET imaging and reduced lung lesion staining by pimonidazole
in the TNF neutralization group relative to controls. Because
[64Cu]ATSM retention and pimonidazole staining require
viable cells in the context of hypoxia,11 it is possible that these
findings simply reflect more extensive tissue necrosis in the
lungs of TNF-neutralizedmice. However, we observed reduced
Homogenates and Serum, as Measured by a 23-Plex Assay

Serum

Untreated (n Z 5) TNF-a (n Z 5) P value

9.62 (8.7e13.72) 4338.48 (4095e4316) 2.04�10�10

4.2 16.67 (16.07e19.52) 4.24�10�8

6 79.22 (10.11e95.16) 165.08 (155.3e184.77) 0.0003

3.3 515.75 (467.42e592.45) 1.14�10�8

1.8 153.48 (135.87e180.55) 3.96�10�8

21.55 (13.37e36.92) 7825.36 (7555e8050) 5.74�10�13

20.1 (20.1e36.73) 11,818.83 (10,462e13,502) 1.79�10�8

62.58 (45.7e102.06) 348.68 (315.62e404.92) 4.38�10�7

8.41 (6.2e13.51) 205.55 (189.38e226.06) 5.20�10�9

20.56 (9.76e26.65) 77 (69.58e83.07) 2.08�10�7

5.7 47.28 (45.45e53.21) 3.53�10�9

99.79 (78.59e150.66) 96.6 (93.4e111.57) 0.56188

okine protein expression in whole lung homogenates and plasma from mice
). P < 0.05 compared with corresponding control.
protein; KC, CXCL1/KC.
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pimonidazole staining even in highly cellular areas of the
consolidated lung lesions in the TNF neutralization group. In
addition, LCM revealed reduced expression of the hypoxia-
responsive genes Vegf and Hif-la. Expression of several ma-
trixmetalloproteinase genes, includingMmp9, was increased in
the lungs of TNF-neutralized mice, which may account for
breakdown of granuloma structure in this group. Hypoxia re-
duces the output of MMP-9 in monocytes by inhibiting its
secretion and increasing membranal association,43 further
corroborating the hypothesis that tissue oxygen levels were
higher in the lesions of TNF-neutralized animals relative to
those of controls. Although our study does not allow us to
unequivocally assign cause and effect, we hypothesize that
TNF neutralization disrupts granuloma organization through
increased expression of matrix metalloproteinases, thus in-
creasing oxygen permeability into the lesions, which, in turn,
permits bacillary regrowth.

We observed increased expression of primarily proin-
flammatory cytokines and chemokines in the lungs of mice
after administration of MP6-XT22, likely accounting for the
greater inflammation observed in these lungs by imaging
and histological analysis. However, these proinflammatory
responses were largely ineffective in controlling bacillary
regrowth in the lungs of antieTNF-treated mice. Similarly,
Chakravarty et al22 also reported increased expression of
IFNg, IL-10, IL-12p40, CCL2, CCL3, and CCL4 in lung
lesions of chronically infected mice treated with MP6-
XT22. Therefore, in addition to maintaining the structure
of TB granulomas, TNF may exert an anti-inflammatory
effect through modulation of the expression of proin-
flammatory mediators. Although our cytokine analysis by
gene expression and immunoassays used whole lung ho-
mogenates rather than individual lesions, we believe that the
findings are qualitatively valid, because inclusion of normal
lung in each group might be expected to have the effect of
dampening the total signal detected in the experimental
group, but not of altering the types of cytokines expressed.

Interestingly, the serum cytokine profile we identified in
TNF-neutralized mice correlates well with that observed in
the corresponding lung samples. Several studies have
compared serum cytokine levels in patients with active TB
with those with LTBI or healthy controls. Specifically,
relative to healthy controls, significantly elevated levels of
IL-10, IL-12p40, TNF, and IFN-g are seen in the sera of
patients with active pulmonary TB.38,44,45 According to a
recent study, significantly increased levels of CCL2
[monocyte chemoattractant protein (MCP-1)] were detected
in whole blood samples from patients with active TB
compared with the LTBI group, and the combination of
elevated MCP-1 and IL-15 accurately identified 83% of
active infections.46 Further corroborating our findings, pre-
vious studies have shown significantly increased levels of
IL-6 in subjects with active TB compared with those with
LTBI.47 Whether these cytokine profiles in any way reflect
the underlying immune pathophysiological characteristics
responsible for reactivation of LTBI or whether they are
The American Journal of Pathology - ajp.amjpathol.org
merely by-products of resumed Mtb replication remains to
be determined. In addition, their potential use as clinical
biomarkers to detect subclinical active TB cases or identify
persons with LTBI at increased risk for reactivation requires
further study. In particular, the specificity and positive
predictive value of this cytokine panel require evaluation in
patients with clinical presentations mimicking TB.48 Taken
together, our data largely concur with previously published
studies, further strengthening the validity of the model.

One of the limitations of our model is that paucibacil-
lary infection is achieved after recombinant BCG vacci-
nation, whereas such vaccination is clearly not required to
control bacillary replication and establish LTBI in
humans. On the other hand, we believe that our model
better emulates the human condition than the Cornell
model49 in that it is dependent on immunological control
of infection rather than antibiotic treatment. Moreover, the
latter model is technically demanding, and the proportion
of mice relapsing is variable and highly dependent on
the experimental conditions, requiring many mice for
adequate statistical power.50 However, further studies will
be required to validate our model and determine its utility
in predicting the efficacy and safety of novel regimens
for the treatment of LTBI. Eradication of infection after
anti-tuberculous treatment could be confirmed by TNF
neutralization, which appears to be sufficient for reac-
tivating infection in this model.

In conclusion, we have developed a novel paucibacillary
model, which may be useful in identifying the following: i)
novel regimens to shorten the duration of treatment of LTBI,
ii) novel biomarkers specific to the latent stage of infection
and to reactivation disease, and iii) novel attenuated vaccine
candidates with an inability to reactivate, which would be
particularly important in the setting of HIV/AIDS.

Supplemental Data

Supplemental material for this article can be found at
http://dx.doi.org/10.1016/j.ajpath.2014.03.008.
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